MKL1-Actin Pathway Restricts Chromatin Accessibility and Prevents Mature Pluripotency Activation

Total Page:16

File Type:pdf, Size:1020Kb

MKL1-Actin Pathway Restricts Chromatin Accessibility and Prevents Mature Pluripotency Activation ARTICLE https://doi.org/10.1038/s41467-019-09636-6 OPEN MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation Xiao Hu1,2, Zongzhi Z. Liu1,2,3, Xinyue Chen1,2, Vincent P. Schulz4, Abhishek Kumar 5, Amaleah A. Hartman1,2, Jason Weinstein1,2, Jessica F. Johnston 1, Elisa C. Rodriguez1, Anna E. Eastman1,2, Jijun Cheng2,6, Liz Min1, Mei Zhong1,2, Christopher Carroll1, Patrick G. Gallagher3,4,6, Jun Lu2,6, Martin Schwartz 5, Megan C. King1, Diane S. Krause1,2,7 & Shangqin Guo1,2 1234567890():,; Actin cytoskeleton is well-known for providing structural/mechanical support, but whether and how it regulates chromatin and cell fate reprogramming is far less clear. Here, we report that MKL1, the key transcriptional co-activator of many actin cytoskeletal genes, regulates genomic accessibility and cell fate reprogramming. The MKL1-actin pathway weakens during somatic cell reprogramming by pluripotency transcription factors. Cells that reprogram efficiently display low endogenous MKL1 and inhibition of actin polymerization promotes mature pluripotency activation. Sustained MKL1 expression at a level seen in typical fibro- blasts yields excessive actin cytoskeleton, decreases nuclear volume and reduces global chromatin accessibility, stalling cells on their trajectory toward mature pluripotency. In addition, the MKL1-actin imposed block of pluripotency can be bypassed, at least partially, when the Sun2-containing linker of the nucleoskeleton and cytoskeleton (LINC) complex is inhibited. Thus, we unveil a previously unappreciated aspect of control on chromatin and cell fate reprogramming exerted by the MKL1-actin pathway. 1 Department of Cell Biology, Yale University, New Haven, CT 06520, USA. 2 Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA. 3 Department of Pathology, Yale Cancer Center, Yale University, New Haven, CT 06520, USA. 4 Department of Pediatrics, Yale University, New Haven, CT 06520, USA. 5 Department of Medicine (Cardiology), Yale University, New Haven, CT 06520, USA. 6 Department of Genetics, Yale University, New Haven, CT 06520, USA. 7 Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA. Correspondence and requests for materials should be addressed to S.G. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1695 | https://doi.org/10.1038/s41467-019-09636-6 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09636-6 he nucleus orchestrates characteristic gene expression The expression of many actin cytoskeletal genes is controlled Tprograms often by modulating chromatin accessibility, by the transcriptional co-activator, MKL1 (Megakaryoblastic thereby determining cellular identity. Chromatin accessi- Leukemia 1, MRTF-A), in complex with the Serum Response bility is best known to be catalyzed by biochemical activities from Factor (SRF) via binding to the CArG consensus sequence various nuclear-localized epigenetic remodeling enzymes1,2. (Supplementary Fig. 1d)19,20. The transcriptional activity of Whether the nucleus and chromatin accessibility is controlled by MKL1 is primarily controlled by its cytoplasmic-nuclear shuttling elements external to the nucleus, such as those conducting the via binding to monomeric actins21. To determine whether the biomechanical cues, is largely unexplored. subcellular localization of MKL1 changes during reprogramming, The nucleus is physically connected with the cytoskeleton via we tracked the localization of a virally expressed MKL1-GFP the linker of the nucleoskeleton and cytoskeleton (LINC) com- fusion protein22 in mouse embryonic fibroblasts (MEFs) under- plex, a highly conserved nuclear envelope bridge consisting of going reprogramming, during which all cells expressed OKSM Sun proteins and Nesprins3–5. It is known that the cytoskeleton when doxycycline (Dox) was added23. While many cells displayed and the LINC system are responsible for physically positioning nuclear MKL1-GFP at the onset of reprogramming, as expected the nucleus inside the cell and for deforming it in response to for fibroblasts grown in the presence of serum24, its subcellular mechanical signals6–9. Mechanical strains on the nucleus medi- localization became predominantly cytoplasmic when reprogram- ated by the actomyosin system could be severe enough to cause ming progressed (Fig. 1a, b), indicating reduced MKL1 activity. nuclear envelope herniation or rupture7,10–12. Strains from The altered MKL1 localization was paralleled by significant polymerized actins have also been reported to cause transcrip- reduction in F-actins, as determined by phalloidin staining tional repression13. These evidences suggest that in addition to (Fig. 1c). At gene expression level, the resulting induced regulating the physical state of the nucleus, the cytoskeleton pluripotent stem cells (iPSCs) showed reduced expression of might also be able to modify the nucleus’ biochemical state. many actin cytoskeletal genes, as well as low levels of endogenous However, the extent and nature of this modulation, as well as the MKL1 as compared to MEFs (Fig. 1d). Of note, mouse embryonic underlying mechanism remain unclear. stem cells (mESCs) displayed similarly low expression and We explored these questions using somatic cell reprogramming polymerization of actins (Fig. 1c, d), suggesting that the MKL1- into pluripotency as a model system. Pluripotent stem cells dis- actin pathway activity is low in pluripotent cells. Overall, MKL1 play highly open/accessible chromatin14,15, which can be activity and actin cytoskeletal genes are decreased during somatic experimentally induced from somatic cells of much reduced cell reprogramming into pluripotency. genomic accessibility. During reprogramming, when the tran- scription factors Oct4/Sox2/Klf4 (OSK) are first expressed in fibroblasts, they fail to bind the authentic pluripotency sites even MKL1 elevates cytoskeletal genes and blocks pluripotency.To though they are considered to possess pioneer activity16,17. The test whether the reduction in actin and related genes merely mark promiscuous binding by these pioneer factors to the somatic the cells progressing toward pluripotency, or functionally control genome suggests that chromatin accessibility might be initially cell fate transition into pluripotency, we sustained the level of constrained by mechanisms that are particularly active in somatic actin cytoskeletal genes by expressing a constitutively active cells. Here, we report that the actin cytoskeleton, and the main mutant MKL1 (caMKL1)21, or the control vector, in repro- transcription factor complex controlling its abundance, MKL1/ grammable MEFs that also contain an Oct4:GFP knock-in SRF, limits cell fate reprogramming by regulating global chro- reporter25 (Fig. 2a). The choice of expressing MKL1, instead of matin accessibility. High MKL1 activity generates excessive specific actin genes, is because MKL1/SRF concertedly upregulate actins, polymerization of which leads to a significantly reduced many actin and related genes19,20, as is the case represented by nuclear volume via a mechanism involving the LINC complex. the slow cycling cells (Supplementary Fig. 1b). A constitutively Within the small nucleus, chromatin accessibility is impaired and nuclear localized MKL1 was necessary because the wild type endogenous pluripotency fails to establish. Overall, we propose (WT) protein is inhibited by G-actin21, resulting in cytoplasmic that the actin cytoskeleton is capable of constraining global localization (Fig. 1a, b) and ineffective upregulation of actin genes chromatin accessibility. The highly accessible pluripotent genome as reprogramming progresses. The MKL1 mRNA level yielded by is accommodated by a weak actin cytoskeleton. ectopic expression was comparable to that of bulk MEFs (Fig. 2b). In the presence of Dox, both caMKL1-expressing and empty vector control MEFs gave rise to alkaline phosphatase (AP)+ Results colonies of ESC/iPSC-like morphology (Fig. 2c), indicating suc- Reprogramming is accompanied by reduced actin-MKL1 cessful early reprogramming. However, unlike control iPSCs, activity. Our previous work revealed that somatic cells with an caMKL1-expressing cells failed to activate the endogenous plur- ultrafast cell cycle are efficiently reprogrammed via ectopic ipotency reporter Oct4:GFP, even after prolonged Dox treatment expression of Oct4/Sox2/Klf4/Myc (OSKM), a property that (Fig. 2d, Supplementary Fig. 1e). They remained strictly depen- allows for their prospective isolation18. The fast cycling cells were dent on exogenous reprogramming factors, as Dox withdrawal morphologically distinct as compared to their slower cycling induced their rapid reversion to a fibroblastic morphology and counterparts (Supplementary Fig. 1a). While the slow cycling cells loss of AP expression (Fig. 2e), suggesting that sustained MKL1 had a typical fibroblastic appearance, the fast cycling cells activity inhibits the activation of mature pluripotency. appeared light-reflective and minimally spread (Supplementary Examination of reprogramming from additional somatic cell Fig. 1a). This morphological distinction suggests underlying dif- types, i.e. hematopoietic cells, confirmed the inhibitory effect by ferences in the level and/or conformation of their cytoskeletal caMKL1 (Supplementary Fig. 2). Specifically, granulocyte and components. Indeed, the fast cycling cells displayed reduced macrophage progenitors (GMPs), which reprogram efficiently as expression in many actin
Recommended publications
  • Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential
    Author Manuscript Published OnlineFirst on August 28, 2018; DOI: 10.1158/0008-5472.CAN-18-0608 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Emerin deregulation links nuclear shape instability to metastatic potential Mariana Reis-Sobreiro1, Jie-Fu Chen1,†, Tatiana Novitskya2, Sungyong You1, Samantha Morley1, Kenneth Steadman1, Navjot Kaur Gill3, Adel Eskaros2, Mirja Rotinen1, Chia-Yi Chu4,5, Leland W.K. Chung4, 5, Hisashi Tanaka1, Wei Yang1, Beatrice S. Knudsen6, 7, Hsian-Rong Tseng8, Amy C. Rowat3, Edwin M. Posadas4, 5, Andries Zijlstra2, 9, Dolores Di Vizio1, and Michael R. Freeman1,* 1Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; 2Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37240; 3Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7246; 4Urologic Oncology Program/Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Center Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; 5Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048; 6Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; 7Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048; 8Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735; 9Vanderbilt-Ingram Cancer Center, Nashville, TN 37232. †Present address: Department of Pathology and Immunology, Washington University in St Louis School of Medicine. * Corresponding Author. Running title: Emerin deregulation leads to metastasis Keywords: nuclear shape instability, emerin, metastasis, circulating tumor cells, extracellular vesicles 1 Downloaded from cancerres.aacrjournals.org on September 28, 2021.
    [Show full text]
  • SETD1B-Associated Neurodevelopmental Disorder
    Genotype- phenotype correlations J Med Genet: first published as 10.1136/jmedgenet-2019-106756 on 16 June 2020. Downloaded from Original research SETD1B- associated neurodevelopmental disorder Alexandra Roston ,1 Dan Evans,2 Harinder Gill,1,3 Margaret McKinnon,1 Bertrand Isidor,4 Benjamin Cogné ,4,5 Jill Mwenifumbo,1,6 Clara van Karnebeek,7,8 Jianghong An,9 Steven J M Jones,9 Matthew Farrer,2 Michelle Demos,10 Mary Connolly,10 William T Gibson ,1 CAUSES Study, EPGEN Study ► Additional material is ABSTRACT same gene allows causal inference for those geno- published online only. To view Background Dysfunction of histone methyltransferases type–phenotype correlations. This is especially true please visit the journal online (http:// dx. doi. org/ 10. 1136/ and chromatin modifiers has been implicated in complex when perturbation of the general biological process jmedgenet- 2019- 106756). neurodevelopmental syndromes and cancers. SETD1B has, in similar contexts, been shown reproducibly encodes a lysine- specific methyltransferase that assists to result in similar phenotypes. For numbered affiliations see in transcriptional activation of genes by depositing Individual case reports have appeared in the end of article. H3K4 methyl marks. Previous reports of patients with literature describing neurodevelopmental delays rare variants in SETD1B describe a distinctive phenotype associated with rare coding variants in SETD1B, Correspondence to Dr Alexandra Roston, that includes seizures, global developmental delay and and with hemizygosity for SETD1B due to CNVs. Department of Medical intellectual disability. Here we show that pathogenic variants within Genetics, The University of Methods Two of the patients described herein were SETD1B contribute to a conserved phenotype that British Columbia, Vancouver, BC identified via genome-wide and exome-wide testing, includes intellectual disability and childhood- onset, V6T 1Z4, Canada; with microarray and research- based exome, through treatment- refractory seizures.
    [Show full text]
  • Dynamic Complexes of A-Type Lamins and Emerin Influence Adipogenic Capacity of the Cell Via Nucleocytoplasmic Distribution of Β-Catenin
    Research Article 401 Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of β-catenin Katarzyna Tilgner*, Kamila Wojciechowicz*, Colin Jahoda, Christopher Hutchison and Ewa Markiewicz‡ The School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham DH1 3LE, UK *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 22 October 2008 Journal of Cell Science 122, 401-413 Published by The Company of Biologists 2009 doi:10.1242/jcs.026179 Summary It is well documented that adipogenic differentiation of the cell contrast, dermal fibroblasts, which are emerin null, is associated with downregulation of Wnt/β-catenin signalling. demonstrated increased nuclear accumulation of stable β- Using preadipocytes and dermal fibroblasts, we have found that catenin and constant lamin expression. This was also associated activation of the adipogenic program was associated with with an unusual adipogenic capacity of the cells, with marked changes in the expression of nuclear β-catenin- adipogenesis occurring in the presence of activated β-catenin interacting partners, emerin and lamins A/C, to influence but declining upon silencing of the protein expression with expression and activation of peroxisome proliferators-activated siRNA. We propose that the process of adipogenesis is affected receptors γ (PPARγ). In addition, silencing of protein expression by a dynamic link between complexes of emerin and lamins with siRNA revealed that β-catenin and emerin influenced each A/C at the nuclear envelope and nucleocytoplasmic distribution other’s levels of expression and the onset of adipogenesis, of β-catenin, to influence cellular plasticity and differentiation.
    [Show full text]
  • Abnormal Nuclear Shape and Impaired Mechanotransduction in Emerin
    JCB: ARTICLE Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells Jan Lammerding,1 Janet Hsiao,2 P. Christian Schulze,1 Serguei Kozlov,3 Colin L. Stewart,3 and Richard T. Lee1 1Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA 02115 2HST Division, Massachusetts Institute of Technology, Cambridge, MA 02139 3Cancer and Developmental Biology Lab, National Cancer Institute, Frederick, MD 21702 mery-Dreifuss muscular dystrophy can be caused type cells in cellular strain experiments, and the integrity by mutations in the nuclear envelope proteins lamin of emerin-deficient nuclear envelopes appeared normal E A/C and emerin. We recently demonstrated that in a nuclear microinjection assay. Interestingly, expres- A-type lamin-deficient cells have impaired nuclear me- sion of mechanosensitive genes in response to mechani- chanics and altered mechanotransduction, suggesting cal strain was impaired in emerin-deficient cells, and two potential disease mechanisms (Lammerding, J., P.C. prolonged mechanical stimulation increased apoptosis in Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R.D. Kamm, emerin-deficient cells. Thus, emerin-deficient mouse em- C.L. Stewart, and R.T. Lee. 2004. J. Clin. Invest. 113: bryo fibroblasts have apparently normal nuclear me- 370–378). Here, we examined the function of emerin on chanics but impaired expression of mechanosensitive nuclear mechanics and strain-induced signaling. Emerin- genes in response to strain, suggesting that emerin muta- deficient mouse embryo fibroblasts have
    [Show full text]
  • Live Cell Imaging and Electron Microscopy Reveal Dynamic Processes of BAF-Directed Nuclear Envelope Assembly
    2540 Research Article Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly Tokuko Haraguchi1,2,*, Tomoko Kojidani1, Takako Koujin1, Takeshi Shimi1, Hiroko Osakada1, Chie Mori1, Akitsugu Yamamoto3 and Yasushi Hiraoka1,2,4 1CREST Research Project, Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan 2Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan 3Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan 4Graduate School of Frontier Biosciences, Osaka University 1-3 Suita 565-0871, Japan *Author for correspondence (e-mail: [email protected]) Accepted19 May 2008 Journal of Cell Science 121, 2540-2554 Published by The Company of Biologists 2008 doi:10.1242/jcs.033597 Summary Assembly of the nuclear envelope (NE) in telophase is essential consistently abolished BAF accumulation at the core. In for higher eukaryotic cells to re-establish a functional nucleus. addition, RNAi of BAF eliminated the core assembly of lamin Time-lapse, FRAP and FRET analyses in human cells showed A and emerin, caused abnormal cytoplasmic accumulation of that barrier-to-autointegration factor (BAF), a DNA-binding precursor nuclear membranes and resulted in a significant delay protein, assembled first at the distinct ‘core’ region of the of NE assembly. These results suggest that the MT-mediated telophase chromosome and formed an immobile complex by BAF accumulation at the core facilitates NE assembly at the directly binding with other core-localizing NE proteins, such as end of mitosis.
    [Show full text]
  • MRTF: Basic Biology and Role in Kidney Disease
    International Journal of Molecular Sciences Review MRTF: Basic Biology and Role in Kidney Disease Maria Zena Miranda 1, Zsuzsanna Lichner 1, Katalin Szászi 1,2 and András Kapus 1,2,3,* 1 Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; [email protected] (M.Z.M.); [email protected] (Z.L.); [email protected] (K.S.) 2 Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada 3 Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up- to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease.
    [Show full text]
  • Substrate Stiffness-Dependent Regulation of the SRF−Mkl1 Co-Activator Complex Requires the Inner Nuclear Membrane Protein Emerin Margaret K
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 2111-2118 doi:10.1242/jcs.197517 SHORT REPORT Substrate stiffness-dependent regulation of the SRF−Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin Margaret K. Willer and Christopher W. Carroll* ABSTRACT transcription is thought to underlie persistent myofibroblast The complex comprising serum response factor (SRF) and activation (Zhou et al., 2013). Thus, determining how mechanical − megakaryoblastic leukemia 1 protein (Mkl1) promotes myofibroblast cues modulate SRF Mkl1-dependent gene expression is critical to differentiation during wound healing. SRF−Mkl1 is sensitive to the understand wound healing and pathologies caused by altered ECM mechanical properties of the extracellular environment; but how cells mechanics. sense and transduce mechanical cues to modulate SRF−Mkl1- The nuclear lamina is a network of nuclear envelope-associated dependent gene expression is not well understood. Here, we intermediate filaments and their associated proteins. Recently, the demonstrate that the nuclear lamina-associated inner nuclear nuclear lamina proteins Lamins A/C and Emerin were shown to − membrane protein Emerin stimulates SRF−Mkl1-dependent gene promote SRF Mkl1-dependent transcription (Ho et al., 2014). activity in a substrate stiffness-dependent manner. Specifically, Actin-generated forces regulate Lamins A/C and Emerin (Buxboim Emerin was required for Mkl1 nuclear accumulation and maximal et al., 2014; Guilluy et al., 2014; Swift et al., 2013), but whether the − SRF−Mkl1-dependent gene expression in response to serum nuclear lamina contributes to the mechanical control of SRF Mkl1- stimulation of cells grown on stiff substrates but was dispensable on dependent gene expression has not been tested.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Regulation of gene expression programs by serum response factor and megakaryoblastic leukemia 1/2 in macrophages Permalink https://escholarship.org/uc/item/8cc7d0t0 Author Sullivan, Amy Lynn Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Regulation of Gene Expression Programs by Serum Response Factor and Megakaryoblastic Leukemia 1/2 in Macrophages A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Amy Lynn Sullivan Committee in charge: Professor Christopher K. Glass, Chair Professor Stephen M. Hedrick Professor Marc R. Montminy Professor Nicholas J. Webster Professor Joseph L. Witztum 2009 Copyright Amy Lynn Sullivan, 2009 All rights reserved. The Dissertation of Amy Lynn Sullivan is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Chair University of California, San Diego 2009 iii DEDICATION To my husband, Shane, for putting up with me through all of the long hours, last minute late nights, and for not letting me quit no matter how many times my projects fell apart. To my son, Tyler, for always making me smile and for making every day an adventure. To my gifted colleagues, for all of the thought-provoking discussions, technical help and moral support through the roller- coaster ride that has been my graduate career. To my family and friends, for all of your love and support. I couldn’t have done it without you! iv EPIGRAPH If at first you don’t succeed, try, try, again.
    [Show full text]
  • Emerin Loss in C. Elegans 925 Inhibitors), Resuspended in 25 Μl of 2× SDS Gel-Sample Buffer and Boiled for 5 Minutes
    Research Article 923 The expression, lamin-dependent localization and RNAi depletion phenotype for emerin in C. elegans Yosef Gruenbaum1,*, Kenneth K. Lee2,*, Jun Liu3, Merav Cohen1 and Katherine L. Wilson2,‡ 1Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 2Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA 3Department of Molecular Biology and Genetics, 423 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 15 November 2001 Journal of Cell Science 115, 923-929 (2002) © The Company of Biologists Ltd Summary Emerin belongs to the LEM-domain family of nuclear fellow LEM-domain protein Ce-MAN1, as well as Ce- membrane proteins, which are conserved in metazoans lamin, UNC-84 and nucleoporins do not depend on Ce- from C. elegans to humans. Loss of emerin in humans emerin for their localization. This result suggests that causes the X-linked form of Emery-Dreifuss muscular emerin is not essential to organize or localize the only lamin dystrophy (EDMD), but the disease mechanism is not (B-type) expressed in C. elegans. We also analyzed the understood. We have begun to address the function of RNAi phenotype resulting from the loss of emerin function emerin in C. elegans, a genetically tractable nematode. The in C. elegans under laboratory growth conditions, and emerin gene (emr-1) is conserved in C. elegans. We detect found no detectable phenotype throughout development. Ce-emerin protein in the nuclear envelopes of all cell We propose that C.
    [Show full text]
  • Cloning and Characterization of Enaptin, a Novel Giant Actin-Binding Protein Connecting the Nucleus to the Actin Cytoskeleton
    Cloning and characterization of Enaptin, a novel giant actin-binding protein connecting the nucleus to the actin cytoskeleton INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zü Köln vorgelegt von Sabu Abraham aus Thiruvaniyoor, Kerala, Indien Köln, 2004 Referees/Berichterstatter: Prof. Dr. Angelika A. Noegel Prof. Dr. Jens Brüning Date of oral examination: 08.07.2004 Tag der mündlichen Prüfung The present research work was carried out under the supervision of Prof. Dr. Angelika A. Noegel, in the Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany from August 2001 to July 2004. Diese Arbeit wurde von August 2001 bis Juli 2004 am Biochemischen Institut I der Medizinischen Fakultät der Universität zu Köln unter der Leitung von Prof. Dr. Angelika A. Noegel durchgeführt. To my beloved Pappa and Mummy Acknowledgements First of all, I would like to thank Prof. Dr. Angelika A Noegel for giving me an opportunity to work in her department and to do my PhD studies under her guidance. Her valuable guidance, creative suggestions, constructive criticism and constant encouragement during the course of work inspired and enabled me to complete this project. I would like to express here my deep sense of gratitude to her. I cannot find words to say thanks to our group leader Dr. Iakowos Karakesisoglou for his constant encouragement and discussions during the course of this study. His ‘story for a lesson’ approach always lifted my spirit up. It was wonderful to work with him. Thank you Akis. I would also like to thank Dr. Elena Korenbaum for guiding me in the first year of my study.
    [Show full text]
  • Snapshot: the Nuclear Envelope II Andrea Rothballer and Ulrike Kutay Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
    SnapShot: The Nuclear Envelope II Andrea Rothballer and Ulrike Kutay Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland H. sapiens D. melanogaster C. elegans S. pombe S. cerevisiae Cytoplasmic filaments RanBP2 (Nup358) Nup358 CG11856 NPP-9 – – – Nup214 (CAN) DNup214 CG3820 NPP-14 Nup146 SPAC23D3.06c Nup159 Cytoplasmic ring and Nup88 Nup88 (Mbo) CG6819 – Nup82 SPBC13A2.02 Nup82 associated factors GLE1 GLE1 CG14749 – Gle1 SPBC31E1.05 Gle1 hCG1 (NUP2L1, NLP-1) tbd CG18789 – Amo1 SPBC15D4.10c Nup42 (Rip1) Nup98 Nup98 CG10198 Npp-10N Nup189N SPAC1486.05 Nup145N, Nup100, Nup116 Nup 98 complex RAE1 (GLE2) Rae1 CG9862 NPP-17 Rae1 SPBC16A3.05 Gle2 (Nup40) Nup160 Nup160 CG4738 NPP-6 Nup120 SPBC3B9.16c Nup120 Nup133 Nup133 CG6958 NPP-15 Nup132, Nup131 SPAC1805.04, Nup133 SPBP35G2.06c Nup107 Nup107 CG6743 NPP-5 Nup107 SPBC428.01c Nup84 Nup96 Nup96 CG10198 NPP-10C Nup189C SPAC1486.05 Nup145C Outer NPC scaffold Nup85 (PCNT1) Nup75 CG5733 NPP-2 Nup-85 SPBC17G9.04c Nup85 (Nup107-160 complex) Seh1 Nup44A CG8722 NPP-18 Seh1 SPAC15F9.02 Seh1 Sec13 Sec13 CG6773 Npp-20 Sec13 SPBC215.15 Sec13 Nup37 tbd CG11875 – tbd SPAC4F10.18 – Nup43 Nup43 CG7671 C09G9.2 – – – Centrin-21 tbd CG174931, CG318021 R08D7.51 Cdc311 SPCC1682.04 Cdc311 Nup205 tbd CG11943 NPP-3 Nup186 SPCC290.03c Nup192 Nup188 tbd CG8771 – Nup184 SPAP27G11.10c Nup188 Central NPC scaffold Nup155 Nup154 CG4579 NPP-8 tbd SPAC890.06 Nup170, Nup157 (Nup53-93 complex) Nup93 tbd CG7262 NPP-13 Nup97, Npp106 SPCC1620.11, Nic96 SPCC1739.14 Nup53(Nup35, MP44) tbd CG6540 NPP-19 Nup40 SPAC19E9.01c
    [Show full text]
  • Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage
    TISSUE-SPECIFIC STEM CELLS Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage a b a b GUNES UZER, ROBYN K. FUCHS, JANET RUBIN, WILLIAM R. THOMPSON Key Words. LINC • Emerin • Nesprin • Lamin • Vibration • Exercise • Mesenchymal stem cell aDepartment of Medicine, ABSTRACT University of North Carolina, Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell Chapel Hill, North Carolina, fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, USA; bSchool of Health and the role of mechanical force in the determination of lineage fate is just beginning to be under- Rehabilitation Sciences, stood. Investigation of the role of force on cell function has largely focused on “outside-in” sig- Department of Physical naling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the Therapy, Indiana University, Indianapolis, Indiana, USA cell uses integral membrane proteins, such as those found in focal adhesion complexes to trans- late force into biochemical signals. Akin to these outside-in connections, the internal cytoskele- Correspondence: William R. ton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although Thompson, D.P.T., Ph.D., 1140 structurally and biochemically distinct, these two forms of mechanical coupling influence stem W. Michigan Street, cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of Indianapolis, Indiana 46202, how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the USA. Telephone: 317-278-9619; role of force on stem cell differentiation, with focus on the biochemical signals generated at Fax: 317-278-1876; the cell membrane and the nucleus, and how those signals influence various diseases.
    [Show full text]