Molecular Ecology of the NOR5/OM60 Group Of

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Ecology of the NOR5/OM60 Group Of Molecular Ecology of the NOR5/OM60 Group of Gammaproteobacteria Dissertation zur Erlangung des akademischen Grades Doktors der Naturwissenschaften (Dr. rer. nat.) Dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von YAN Shi Bremen Februar 2009 Die vorliegende Arbeit wurde in der Zeit von April 2006 bis Februar 2009 am Max- Planck-Institut für marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 26. März 2009 Table of Contents Summary............................................................................................................................ 1 Zusammenfassung............................................................................................................. 2 ᨬ㽕 .................................................................................................................................... 3 List of Abbreviations ........................................................................................................ 4 1 Introduction................................................................................................................. 5 1.1 Marine bacteria that utilize light............................................................................ 5 1.2 The NOR5/OM60 group.......................................................................................... 6 1.2.1 Phylogeny of Bacteria ............................................................................................ 6 1.2.2 History, phylogeny and abundance of the NOR5/OM60 clade .............................. 7 1.2.3 Strain KT71........................................................................................................... 10 1.2.4 Members of NOR5/OM60 group are AAnPs ....................................................... 11 1.3 Sampling stations ................................................................................................... 11 1.3.1 Yangtze River estuary........................................................................................... 11 1.3.2 Namibian upwelling region................................................................................... 12 1.3.3 Vision cruise......................................................................................................... 13 1.3.4 German Bight........................................................................................................ 14 1.3.5 North Sea sediment............................................................................................... 14 1.3.6 Other sampling stations......................................................................................... 15 1.4 Methodological aspects.......................................................................................... 15 1.4.1 The 16S rRNA approach....................................................................................... 16 1.4.2 Genomics and metagenomics ............................................................................... 17 1.4.3 Culturing ............................................................................................................... 17 1.5 Aims of this study................................................................................................... 17 2 Results and Discussion.............................................................................................. 18 2.1 Phylogeny................................................................................................................ 18 2.2 Biogeography.......................................................................................................... 20 2.2.1 Worldwide existence............................................................................................. 20 2.2.2 Design and optimization of new probes sets......................................................... 24 2.2.3 Quantification of NOR5/OM60 in the environment............................................. 26 2.3 North Sea strains of NOR5/OM60........................................................................ 28 2.3.1 Isolation sources and growth features................................................................... 28 2.3.2 Pigments................................................................................................................ 30 2.3.3 General genomic features ..................................................................................... 30 2.3.4 pufM genes............................................................................................................ 31 2.4 Genomics................................................................................................................. 31 2.4.1 General comparison of the genomes..................................................................... 31 2.4.2 Functional genes ................................................................................................... 34 2.5 Evolution and functions of NOR5/OM60 group in the ocean............................ 39 3 Outlook....................................................................................................................... 41 3.1 Phylogeny and biogeography................................................................................... 41 3.2 Comparative genomics............................................................................................. 41 3.3 Gene searching in metagenomic libraries................................................................ 42 3.4 Combining detection of FISH and functions ........................................................... 42 3.5 Physiological tests for the model strains of NOR5/OM60 ...................................... 42 4 References.................................................................................................................. 44 List of Publications and Manuscripts ........................................................................... 49 Unit 1 Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria................................................................................................ 51 Unit 2 Potential novel photoautotrophy in the NOR5/OM60 clade of Gammaproteobacteria discovered by genome comparison .................................... 83 Unit 3 Characterization of the NOR5/OM60 strains from the North Sea............... 113 Acknowledgement......................................................................................................... 122 Summary In this thesis, a newly discovered gammaproteobacterial group – the NOR5/OM60 clade, which includes the novel aerobic anoxygenic phototrophs (AAnPs), was studied in the aspects of phylogeny, biogeography and physiology using both molecular and culturing methods. By means of 16S rRNA phylogenetic analysis, NOR5/OM60 group was defined as a monophyletic clade inside the class Gammaproteobacteria. More than 500 16S rRNA sequences of this clade were retrieved from public databases. Further studies classified the sequences into 13 subclades. My studies on the biogeography of NOR5/OM60 clade showed a cosmopolitan distribution. They were found in all oceans and at the coasts of all the continents. NOR5/OM60 seems to be most abundant in marine coastal water and sediment. However, they have also been encountered in surface water of open ocean, deep-sea sediment, freshwater, saline lakes and soil. The abundance of members of the NOR5/OM60 clade in various marine sites was determined by fluorescence in situ hybridization (FISH) with a newly designed and optimized probe set. In the ocean, the common relative abundance ranges from <1% in the open ocean to about 10% in the North Sea coastal water. The existence in coastal sediment and freshwater was also proved by FISH. More than 30 strains of the NOR5/OM60 clades had been isolated as pure cultures in several studies. Of these, the genomes of five strains (KT71, RAp1red, Ivo14, HTCC2080 and HTCC2148) were fully sequenced. In this thesis, these five genomes were compared to each other and to a closely related strain, HTCC2143 from the BD1-7 group. The photosynthesis (PS) superoperon, the key genes of 3-hydroxypropionate cycle for carbon fixation, and the sox operon for sulfur compound oxidation were found in four strains: KT71, RAp1red, Ivo14 and HTCC2080. Genomic comparison indicated that, like KT71, many NOR5/OM60 members may also be AAnPs and potentially be able to use light as energy source. 1 Zusammenfassung In dieser Arbeit wurde eine kürzlich entdeckte Gruppe, die NOR5/OM60-Gruppe der Gammaproteobacteria, einige von dessen Mitglieder den aeroben anoxygenen und phototrophen Bakterien (AAnP) gehöhren, in Phylogenie, Biogeographie und Physiologie anhand molekularer und kultivierungsbasierender Methoden untersucht. Anhand der phylogenetischen Analyse der 16S rRNA Sequenzen wurde die NOR5/OM60-Gruppe als eine Monophylie in der Klasse Gammaproteobacteria begrenzt. Mehr als 500 16S rRNA Sequenzen aus dieser Gruppe wurden in öffentlichen Daten- banken gefunden. Weitere Studien klassifizierten die Sequenzen in 13 Untergruppen. Biogeographische Untersuchungen zeigten eine weltweite Verteilung der NOR5/OM60- Gruppe, welche in allen Ozeanen und an Küsten aller Kontinenten vorkommt. Diese Organismen scheinen am häufigsten in marinen Küstengewässer und Sediment aufzu- treten, jedoch kommen sich auch in Hochseeoberflächengewässer, Tiefseesedimenten, Süßwasser, Salzseen und im Boden vor. Die Abundanz der
Recommended publications
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • Marine Bacteria with a Hybrid Engine 15 February 2007
    Marine Bacteria with a Hybrid Engine 15 February 2007 Growth experiments showed that KT71 is heterotrophic and depends on carbon sources like sugars and small peptides. After they obtained and analysed the genome data from the Craig Venter Institute in the USA, the researchers were quite surprised to find all the genes for bacterial photosynthesis. KT71 was unlike other photosynthetic bacteria not pigmented and therefore the big question was: „Is KT71 really mediating photosynthesis?“ Their colleagues at the laboratory of the German Collection of Microorganisms and Cell Cultures (DSMZ) could show that KT71 grows better with light, when Bernhard Fuchs and his culture of Congegribacter nutrients were depleted. The scientists assume that (Source MPI/ D. Todd) KT71 switches from carbon burning to photovoltaic mode, depending on the environmental conditions. During periods of starvation KT71 can also rely on internal storage compounds. Interestingly, in culture What was considered a breakthrough in the KT71 often forms aggregates and prefers low automobile industry almost five years ago is in fact oxygen concentrations for growth. a million year old success story of nature - the ability to use a mix of different energy sources. Genetic fingerprints from a novel group of bacteriochlorophyll a containing Some organisms like plants and green algae Gammaproteobacteria were found five years ago. depend on light and carbon dioxide, while others Now it is clear that Congregibacter litoralis KT71 is like animals and fungi need complex nutrition the first member of this group of photoheterotrophic (proteins and carbohydrates). And some even may marine bacteria which can be cultivated in the use a mix of energy.
    [Show full text]
  • The Reaction Center of Green Sulfur Bacteria1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1507 (2001) 260^277 www.bba-direct.com Review The reaction center of green sulfur bacteria1 G. Hauska a;*, T. Schoedl a, Herve¨ Remigy b, G. Tsiotis c a Lehrstuhl fu«r Zellbiologie und P£anzenphysiologie, Fakulta«tfu«r Biologie und Vorklinische Medizin, Universita«t Regensburg, 93040 Regenburg, Germany b Biozentrum, M.E. Mu«ller Institute of Microscopic Structural Biology, University of Basel, CH-4056 Basel, Switzerland c Division of Biochemistry, Department of Chemistry, University of Crete, 71409 Heraklion, Greece Received 9 April 2001; received in revised form 13 June 2001; accepted 5 July 2001 Abstract The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA^D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A0, which is a Chl a-derivative and FeS-center FX.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Carbon Flow of Heliobacteria Is Related More
    Supplemental Material can be found at: http://www.jbc.org/content/suppl/2010/08/31/M110.163303.DC1.html THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 45, pp. 35104–35112, November 5, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria*□S Received for publication, July 14, 2010, and in revised form, August 30, 2010 Published, JBC Papers in Press, August 31, 2010, DOI 10.1074/jbc.M110.163303 Kuo-Hsiang Tang‡§1,2, Xueyang Feng¶1, Wei-Qin Zhuangʈ, Lisa Alvarez-Cohenʈ, Robert E. Blankenship‡§, and Yinjie J. Tang¶3 From the Departments of ‡Biology, §Chemistry, and ¶Energy, Environment, and Chemical Engineering, Washington University, St. Louis, Missouri 63130 and the ʈDepartment of Civil and Environmental Engineering, University of California, Berkeley, California 94720 The recently discovered heliobacteria are the only Gram-pos- cultured heliobacteria (2), Heliobacterium modesticaldum is itive photosynthetic bacteria that have been cultured. One of the the only one that can grow at temperatures of Ͼ50 °C. Madigan unique features of heliobacteria is that they have properties of and co-workers (1, 3) reported that pyruvate, lactate, acetate both the photosynthetic green sulfur bacteria (containing the (ϩHCOϪ), or yeast extract can support the phototrophic 3 Downloaded from type I reaction center) and Clostridia (forming heat-resistant growth of H. modesticaldum, and our recent studies demon- endospores). Most of the previous studies of heliobacteria, strated that D-sugars can also support the growth of H.
    [Show full text]
  • Tracking Molecular Evolution of Photosynthesis by Characterization
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14851–14856, December 1998 Evolution Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis (bacteriochlorophyll biosynthesisycytochrome bc complexyphylogenetic analysisyphotosystem origin) JIN XIONG*, KAZUHITO INOUE†, AND CARL E. BAUER*‡ *Department of Biology, Indiana University, Bloomington, IN 47405; and †Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan Communicated by Norman R. Pace, University of California, Berkeley, CA, October 13, 1998 (received for review July 21, 1998) ABSTRACT A DNA sequence has been obtained for a With the aim of providing more substantive information on 35.6-kb genomic segment from Heliobacillus mobilis that con- the evolution of photosynthesis, we have undertaken an ex- tains a major cluster of photosynthesis genes. A total of 30 tensive characterization of photosynthesis genes from Helioba- ORFs were identified, 20 of which encode enzymes for bacte- cillus mobilis. A gene cluster was found to encode enzymes for riochlorophyll and carotenoid biosynthesis, reaction-center bacteriochlorophyll and carotenoid biosynthesis, as well as the (RC) apoprotein, and cytochromes for cyclic electron trans- RC core polypeptide and cytochromes involved in photosyn- port. Donor side electron-transfer components to the RC thetic electron transfer. Phylogenetic studies based on this new include a putative RC-associated cytochrome c553 and a sequence information provide important clues for the unique unique four-large-subunit cytochrome bc complex consisting evolutionary position of H. mobilis in the course of develop- of Rieske Fe-S protein (encoded by petC), cytochrome b6 ment of photosynthesis. (petB), subunit IV (petD), and a diheme cytochrome c (petX).
    [Show full text]
  • Mixotrophic Growth of Bacteriochlorophyll A-Containing
    Spring and Riedel BMC Microbiology 2013, 13:117 http://www.biomedcentral.com/1471-2180/13/117 RESEARCH ARTICLE Open Access Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability Stefan Spring1* and Thomas Riedel2,3 Abstract Background: Populations of aerobic anoxygenic photoheterotrophic bacteria in marine environments are dominated by members of the Roseobacter lineage within the Alphaproteobacteria and the OM60/NOR5 clade of gammaproteobacteria. A wealth of information exists about the regulation of pigment production and mixotrophic growth in various members of the Roseobacter clade, but a detailed knowledge about aerobic bacteriochlorophyll a-containing gammaproteobacteria is still limited to one strain of the species Congregibacter litoralis. Results: The production of photosynthetic pigments and light-dependent mixotrophic growth was analysed in Luminiphilus syltensis DSM 22749T, Chromatocurvus halotolerans DSM 23344T and Pseudohaliea rubra DSM 19751T, representing three taxonomically diverse strains of bacteriochlorophyll a-containing gammaproteobacteria affiliated to the OM60/NOR5 clade. In these strains the expression of a photosynthetic apparatus depended mainly on the type of carbon source and availability of oxygen. The effect of illumination on pigment expression varied significantly between strains. In contrast to Chromatocurvus halotolerans, pigment production in Luminiphilus syltensis and Pseudohaliea rubra was repressed by light of moderate intensities, probably indicating a higher sensitivity to light-induced oxidative stress. The efficiency of using light for mixotrophic growth did not correlate with the cellular level of photosynthetic pigments, but depended mainly on the type of metabolized substrate with malate being the optimal carbon source in most cases.
    [Show full text]
  • A Taxonomic Framework for Emerging Groups of Ecologically
    Spring S, Scheuner C, Göker M, Klenk H-P. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Frontiers in Microbiology 2015, 6, 281. Copyright: Copyright © 2015 Spring, Scheuner, Göker and Klenk. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. DOI link to article: http://dx.doi.org/10.3389/fmicb.2015.00281 Date deposited: 07/03/2016 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk ORIGINAL RESEARCH published: 09 April 2015 doi: 10.3389/fmicb.2015.00281 A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data Stefan Spring 1*, Carmen Scheuner 1, Markus Göker 1 and Hans-Peter Klenk 1, 2 1 Department Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 School of Biology, Newcastle University, Newcastle upon Tyne, UK Edited by: Marcelino T. Suzuki, Sorbonne Universities (UPMC) and In recent years a large number of isolates were obtained from saline environments that are Centre National de la Recherche phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, Scientifique, France which were originally identified in seawater samples using cultivation independent Reviewed by: Fabiano Thompson, methods and are characterized by high seasonal abundances in coastal environments.
    [Show full text]
  • Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
    fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides).
    [Show full text]
  • Photosynthesis 481
    Photosynthesis 481 C3 plants, which regulate the opening of stomatal in the dark by using respiration to utilize organic pores for gas exchange in leaves, also lack rubisco compounds from the environment. They are ther- and apparently use PEP carboxylase exclusively to mophilic bacteria found in hot springs around the fix CO2. world. They also distinguish themselves among the Contributions of the late Martin Gibbs to this arti- photosynthetic bacteria by possessing mobility. An cleare acknowledged. example is Chloroflexus aurantiacus. Gerald A. Berkowitz; Archie R. Portis, Jr.; Govindjee 4. Heliobacteria (Heliobacteriaceae). These are strictly anaerobic bacteria that contain bacterio- Bacterial Photosynthesis chlorophyll g. They grow primarily using organic Certain bacteria have the ability to perform photo- substrates and have not been shown to carry out synthesis. This was first noticed by Sergey Vinograd- autotrophic growth using only light and inorganic sky in 1889 and was later extensively investigated substrates. An example is Heliobacterium chlorum. by Cornelis B. Van Niel, who gave a general equa- Like plants, algae, and cyanobacteria, anoxygenic tion for bacterial photosynthesis. This is shown in photosynthetic bacteria are capable of photophos- reaction (9). phorylation, which is the production of adeno- sine triphosphate (ATP) from adenosine diphosphate bacteriochlorophyll 2H2A + CO2 + light −−−−−−−−−→ {CH2O}+2A + H2O (ADP) and inorganic phosphate (Pi) using light as the enzymes (9) primary energy source. Several investigators have suggested that the sole function of the light reaction where A represents any one of a number of reduc- in bacteria is to make ATP from ADP and Pi. The hy- tants, most commonly S (sulfur). drolysis energy of ATP (or the proton-motive force Photosynthetic bacteria cannot use water as the that precedes ATP formation) can then be used to hydrogen donor and are incapable of evolving oxy- drive the reduction of CO2 to carbohydrate by H2A gen.
    [Show full text]
  • BMC Microbiology Biomed Central
    BMC Microbiology BioMed Central Research article Open Access Novel Tn4371-ICE like element in Ralstonia pickettii and Genome mining for comparative elements Michael P Ryan1, J Tony Pembroke2 and Catherine C Adley*1 Address: 1Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland and 2Molecular Biochemistry Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland Email: Michael P Ryan - [email protected]; J Tony Pembroke - [email protected]; Catherine C Adley* - [email protected] * Corresponding author Published: 26 November 2009 Received: 27 February 2009 Accepted: 26 November 2009 BMC Microbiology 2009, 9:242 doi:10.1186/1471-2180-9-242 This article is available from: http://www.biomedcentral.com/1471-2180/9/242 © 2009 Ryan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Integrative Conjugative Elements (ICEs) are important factors in the plasticity of microbial genomes. An element related to the ICE Tn4371 was discovered during a bioinformatic search of the Ralstonia pickettii 12J genome. This element was analysed and further searches carried out for additional elements. A PCR method was designed to detect and characterise new elements of this type based on this scaffold and a culture collection of fifty-eight Ralstonia pickettii and Ralstonia insidiosa strains were analysed for the presence of the element. Results: Comparative sequence analysis of bacterial genomes has revealed the presence of a number of uncharacterised Tn4371-like ICEs in the genomes of several β and γ- Proteobacteria.
    [Show full text]
  • LTI Journal Camera Ready Format
    Symposium 13 Regulation of Photosynthetic Gene Expression 315 Unique central carbon metabolic pathways and novel enzymes in phototrophic bacteria revealed by integrative genomics, 13C-based metabolomics and fluxomics Kuo-Hsiang Tanga,b, Xueyang Fengc, Anindita Bandyopadhyaya, Himadri B. Pakrasia,c, Yinjie J. Tangc, Robert E. Blankenshipa,b,* Departments of aBiology, bChemistry, cEnergy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA *Corresponding author. Tel. No. 1-314-935-7971; Fax No. 1-314-935-4432; E-mail: [email protected]. Abstract: Photosynthesis is the process to convert solar energy to biomass and biofuels, which are the only major solar energy storage means on Earth. To satisfy the increased demand for sustainable energy sources, it is essential to understand the process of solar energy storage, that is, the carbon metabolism in photosynthetic organisms. It has been well-recognized that one bottleneck of photosynthesis is carbon assimilation. In this report, we summarize our recent studies on the carbon metabolism pathways of several types of photosynthetic bacteria, including aerobic anoxygenic phototrophic proteobacteria, green sulfur bacteria, heliobacteria and cyanobacteria, using physiological studies, transcriptomics, enzyme assays, 13C-based metabolomics and fluxomics. Our studies have revealed several unique and/or significant central carbon metabolic pathways and novel enzymes that operate in these phototrophs, quantified CO2 assimilation pathways operative
    [Show full text]