Ages of LMC Star Clusters from Their Integrated Properties

Total Page:16

File Type:pdf, Size:1020Kb

Ages of LMC Star Clusters from Their Integrated Properties Ages of LMC Star Clusters from their Integrated Properties A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics of the College of Arts and Sciences by Randa Asa'd M.S University of Cincinnati May, 11 2012 Committee Chairs: M. M. Hanson, Ph.D. and M. D. Sokoloff, Ph.D Abstract Star Clusters are the building blocks of galaxies. Determining their ages gives us information about the formation history of their hosting galaxies. For far-away galaxies, star clusters are not resolved. Only their integrated properties can be observed. Both integrated photometry and integrated spectra have been used as age indicators of stellar clusters. The Large Magellanic Cloud (LMC) is a perfect galaxy to test these methods of age determination, because its clusters are close enough to see their individual stars, but also far enough away so that each cluster can be observed as a whole. This work first shows that the traditional methods of using the integrated broad-band photometry for age determination are highly inaccurate. This is attributed primarily to two things. First, the UBV integrated broad-band aging methods require matching a cluster with an expected model prediction of the cluster colors as a function of age. The biggest problem we find is the stellar clusters in our sample do not typically lie on the model line based on their known age and extinction. That is to say, real cluster colors often do not match the model colors and can be found some distance from expected model values. A second issue, which has been previously documented in numerous studies, is the strong degeneracy between age and extinction in the UBV color-color plane. Certainly, providing more photometric bands will reduce degeneracy between age and reddening. Better yet, if extinc- tion can be independently determined, we show that ages from methods based on integrated broad-band colors will more closely match those ob- tained from more accurate methods based on stellar photometry. But the underlying issue remains. Simple stellar population models often do not accurately represent the colors of real stellar clusters due to the incomplete and stochastic sampling of the stellar mass function in low and moderate mass stellar clusters. On the other hand, integrated spectra provide better age predictions than broad-band photometry in the wavelength range 3626 6248 A when com- pared with high resolution computational models. I obtained the integrated spectra of 20 clusters that didn't have integrated spectra in the optical range, or they have never been observed before. Using ths sample and 7 other clusters from the literature I show that the statistical Kolmogorov- Smirnov (KS) test can better find the closest match between the observed spectrum and theoretical model than the traditional χ2. Finally, I present a new software routine that efficiently predicts the age of a star cluster given its optical integrated spectrum compared to spectra generated by compu- tational models. To my parents : Dorina and Samir Acknowledgements I would like to acknowledge my advisors, Dr. Margaret Hanson and Dr. Mike Sokoloff. I have been lucky to have them as advisors and mentors. Dr. Margaret Hanson is a role model for me. She not only trusted me by giving me the opportunity to choose and shape my own research project, but also helped me improve both my teaching and leadership skills by encouraging me to attend workshops, classes and even conferences overseas. Dr. Sokoloff has been very patient with me from the first day when I told him that I don't have the needed background knowledge for any research work. He simply replied: "That's why you are here; To learn!". And indeed, ever since then he has been teaching and guiding me. My gratitude also goes to Dr. Andrea Ahumada, who although not physically present with me, was a great advisor for me. She was so patient and kind to answer tens of my questions about my project. I would also like to thank all my professors in the physics department at University of Cincinnati, my professors at Jordan University of Science and Technology who taught me the basics of physics, as well as all my professors and teachers who taught me since the day I learned how to hold a pencil in my hand. My words won't be enough to express my gratitude to the great people I met in Cincinnati. They not only made the six years I spent here a joyful time, but also inspired and taught me a lot. They reshaped my personality in a good way. I would also like to acknowledge my two sisters, my friends and relatives overseas who never stopped encouraging me throughout the years. I am thankful for every person who had a role in my life helping me reach this point. Last and not least I want to thank my dear parents who trusted me, allowed me to follow my dreams and never stopped believing in me. For Chapter 2: Rolf Andreassen provided significant assistance in creating the χ2 surface plots. We also acknowledge critical suggestions and guid- ance early on in this project from Rupali Chandar, Ata Sarajedini, Bogdan Popescu and in particular, Mark Hancock, who shared his χ2 minimization software with us. This material is based upon work supported by the Na- tional Science Foundation under Grant No. AST-0607497 and AST-1009550 to the University of Cincinnati, P.I., M. Hanson. R.S.A. was supported in part by NSF Grant No. PHY-0855860 to the University of Cincinnati, P.I., M. Sokoloff. For Chapter 4: I acknowledge Dr. Stephane Blondin who helped me learn IRAF, Dr. Mario Muray for the assistance with the flux calibration, Dr. Nidia Morel helped establishing the collaboration of this work. Dr. San- tos, Dr. Fernandes, Claus Leitherer and Bogdan Popescu provided useful comments. I also acknowledge Dr. Sean Points for his assistance the staff at CTIO and SOAR for their valuable help and guidance. This material is based upon work supported by the National Science Foundation under Grant No. AST-0607497 and AST-1009550 to the University of Cincinnati, P.I., M. Hanson. NOAO sponsored my travels to Blanco and SOAR viii Contents List of Figures xi List of Tables xvii 1 Introduction 1 1.1 The Large Magellanic Cloud (LMC) . .1 1.2 Ages and Colors of Stars . .3 1.3 Simple Stellar Populations . .3 1.4 Masses of clusters using MASSCLEAN . .4 1.5 Some attempts to determine accurate ages of star clusters . .5 2 Investigating aging methods of LMC star clusters using integrated colours 9 2.1 abstract . .9 2.2 Introduction . 10 2.3 The cluster sample . 12 2.3.1 Using MASSCLEAN to estimate cluster mass . 12 2.4 CMD age compared with different studies of photometric age . 14 2.4.1 s-parameter age . 14 2.4.2 Hunter et al. photometric ages . 16 2.4.3 A χ2 minimization method . 19 2.5 The s-parameter age and Hunter age . 22 2.6 The χ2 minimization method . 23 2.6.1 The colours produced by the model . 26 2.6.2 Further investigations of the χ2 minimization method . 27 2.6.3 Restricting the extinction limit . 30 ix CONTENTS 2.6.4 The χ2 minimization surface plots . 31 2.6.5 χ2 minimization for lower metallicity . 35 2.7 Discussion . 35 2.8 Conclusion . 37 3 Integrated Spectra of Stellar Clusters 49 3.1 The Spectrum of a Star . 49 3.1.1 The Spectral Classes . 51 3.2 Ages of Star Clusters from their Integrated Spectra . 52 3.3 Observations . 58 3.3.1 Day Calibration images . 62 3.3.2 Night observations . 66 3.4 Data Reduction . 67 4 Ages of LMC star clusters from integrated spectra 73 4.1 Introduction . 73 4.2 The Data . 74 4.3 Integrated Spectra Models . 81 4.4 The Method . 84 4.5 More Integrated Spectra from the Literature . 97 4.6 Review of Previous Results on the Subsample of this Work . 119 4.7 Discussion . 119 4.8 Conclusion and future work . 119 5 Conclusion and Future Work 131 5.1 Introduction . 131 5.2 Introducing New Software: ASAD . 132 5.3 Future Work . 133 Bibliography 137 x List of Figures 1.1 The Large Magellanic Cloud galaxy . .2 1.2 The HR diagram . .3 1.3 Integrated colors for different SSP models as a function of age for solar metallicity . .4 1.4 Star clusters follow a main sequence similar to the one of the stars. .6 1.5 S parameter . .7 2.1 The number of clusters in our sample for each log (age). Our sample has few age gaps, the biggest one is between log (age)= 8.2 and 8.6 yrs. 13 2.2 Estimating cluster mass. 14 2.3 The number of clusters in our sample for each mass region listed in section 2.1. 15 2.4 The s-parameter-derived age vs CMD-derived age. The two aging meth- ods show a very good match, with a correlation coefficient of 0.95. 16 2.5 Mass regions on the s-parameter age versus CMD age diagram. 17 2.6 Hunter et al. (2003) photometry-derived age vs CMD-derived age. 18 2.7 Similar to Figure 6, but the mass regions are identified. For this sample the scatter about the line doesn't appear to be a clear function of cluster mass. 18 2.8 The modeled colour-colour diagram for different values of reddening.
Recommended publications
  • Download the 2016 Spring Deep-Sky Challenge
    Deep-sky Challenge 2016 Spring Southern Star Party Explore the Local Group Bonnievale, South Africa Hello! And thanks for taking up the challenge at this SSP! The theme for this Challenge is Galaxies of the Local Group. I’ve written up some notes about galaxies & galaxy clusters (pp 3 & 4 of this document). Johan Brink Peter Harvey Late-October is prime time for galaxy viewing, and you’ll be exploring the James Smith best the sky has to offer. All the objects are visible in binoculars, just make sure you’re properly dark adapted to get the best view. Galaxy viewing starts right after sunset, when the centre of our own Milky Way is visible low in the west. The edge of our spiral disk is draped along the horizon, from Carina in the south to Cygnus in the north. As the night progresses the action turns north- and east-ward as Orion rises, drawing the Milky Way up with it. Before daybreak, the Milky Way spans from Perseus and Auriga in the north to Crux in the South. Meanwhile, the Large and Small Magellanic Clouds are in pole position for observing. The SMC is perfectly placed at the start of the evening (it culminates at 21:00 on November 30), while the LMC rises throughout the course of the night. Many hundreds of deep-sky objects are on display in the two Clouds, so come prepared! Soon after nightfall, the rich galactic fields of Sculptor and Grus are in view. Gems like Caroline’s Galaxy (NGC 253), the Black-Bottomed Galaxy (NGC 247), the Sculptor Pinwheel (NGC 300), and the String of Pearls (NGC 55) are keen to be viewed.
    [Show full text]
  • Assessment of Stellar Stratification in Three Young Star Clusters in The
    ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 11/10/09 ASSESSMENT OF STELLAR STRATIFICATION IN THREE YOUNG STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD. DIMITRIOS A. GOULIERMIS Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany DOUGAL MACKEY Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK YU XIN Argelander-Institut für Astronomie, Rheinische Friedrich-Wilhelms-Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany AND BOYKE ROCHAU Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany Accepted for Publication in the Astrophysical Journal ABSTRACT We present a comprehensive study of stellar stratification in young star clusters in the LargeMagellanicCloud (LMC). We apply our recently developed effective radius method for the assessment of stellar stratification on imaging data obtained with the Advanced Camera for Surveys of three young LMC clusters to characterize the phenomenon and develop a comparative scheme for its assessment in such clusters. The clusters of our sample, NGC 1983, NGC 2002 and NGC 2010, are selected on the basis of their youthfulness, and their variety in appearance, structure, stellar content, and surrounding stellar ambient. Our photometry is complete for magnitudes down to m814 ≃ 23 mag, allowing the calculation of the structural parameters of the clusters, the estimation of their ages and the determination of their stellar content. Our study shows that each cluster in our sample demonstrates stellar stratification in a quite different manner and at different degree from the others. Specifically, NGC 1983 shows to be partially segregated with the effective radius increasing with fainter magnitudes only for the faintest stars of the cluster.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey? XXIX
    A&A 618, A73 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833433 & c ESO 2018 Astrophysics The VLT-FLAMES Tarantula Survey? XXIX. Massive star formation in the local 30 Doradus starburst F. R. N. Schneider1, O. H. Ramírez-Agudelo2, F. Tramper3, J. M. Bestenlehner4,5, N. Castro6, H. Sana7, C. J. Evans2, C. Sabín-Sanjulián8, S. Simón-Díaz9,10, N. Langer11, L. Fossati12, G. Gräfener11, P. A. Crowther5, S. E. de Mink13, A. de Koter13,7, M. Gieles14, A. Herrero9,10, R. G. Izzard14,15, V. Kalari16, R. S. Klessen17, D. J. Lennon3, L. Mahy7, J. Maíz Apellániz18, N. Markova19, J. Th. van Loon20, J. S. Vink21, and N. R. Walborn22,?? 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK e-mail: [email protected] 2 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3 European Space Astronomy Centre, Mission Operations Division, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 5 Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH, UK 6 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA 7 Institute of Astrophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 8 Departamento de Física y Astronomía, Universidad de La Serena, Avda. Juan Cisternas 1200, Norte, La Serena, Chile 9 Instituto de Astrofísica de Canarias, 38205 La Laguna,
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • The Changing Role of the 'Catts
    Journal of Astronomical History and Heritage , 13(3), 235-254 (2010). THE CHANGING ROLE OF THE ‘CATTS TELESCOPE’: THE LIFE AND TIMES OF A NINETEENTH CENTURY 20-INCH GRUBB REFLECTOR Wayne Orchiston Centre for Astronomy, James Cook University, Townsville, Queensland 4811, Australia. [email protected] Abstract: An historic 20-in (50.8-cm) Grubb reflector originally owned by the London amateur astronomer, Henry Ellis, was transferred to Australia in 1928. After passing through a number of amateur owners the Catts Telescope— as it became known locally—was acquired by Mount Stromlo Observatory in 1952, and was then used for astrophysical research and for site-testing. In the mid-1960s the telescope was transferred to the University of Western Australia and was installed at Perth Observatory, but with other demands on the use of the dome it was removed in 1999 and placed in storage, thus ending a century of service to astronomy in England and Australia. Keywords: Catts Telescope, Henry Ellis, Walter Gale, Mount Stromlo Observatory, Mount Bingar field station, photoelectric photometry, spectrophotometry, Lawrence Aller, Bart Bok, Priscilla Bok, Olin Eggen, Don Faulkner, John Graham, Arthur Hogg, Gerald Kron, Pamela Kennedy, Antoni Przybylski, David Sher, Robert Shobbrook, Bengt Westerlund, John Whiteoak, Frank Bradshaw Wood. 1 INTRODUCTION what of other telescopes, like the 20-in (50.8-cm) ‘Catts Telescope’? After passing from amateur owner- One of the roles of the Historic Instruments Working ship to Mount Stromlo Observatory in 1952, this was Group of the IAU is to assemble national master lists used over the following twelve years to make a valu- of surviving historically-significant telescopes and able contribution to astrophysics and to provide data auxiliary instrumentation, and at the 2000 General for five different Ph.D.
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS
    MNRAS 000, 1–39 (2015) Preprint 29 January 2016 Compiled using MNRAS LATEXstylefilev3.0 The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters Paul A. Crowther1⋆, S.M. Caballero-Nieves1, K.A. Bostroem2,3,J.Ma´ız Apell´aniz4, F.R.N. Schneider5,6,N.R.Walborn2,C.R.Angus1,7,I.Brott8,A.Bonanos9, A. de Koter10,11,S.E.deMink10,C.J.Evans12,G.Gr¨afener13,A.Herrero14,15, I.D. Howarth16, N. Langer6,D.J.Lennon17,J.Puls18,H.Sana2,11,J.S.Vink13 1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA 3Department of Physics, University of California, Davis, 1 Shields Ave, Davis CA 95616, USA 4Centro de Astrobiologi´a, CSIC/INTA, Campus ESAC, Apartado Postal 78, E-28 691 Villanueva de la Ca˜nada, Madrid, Spain 5 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 6 Argelanger-Institut fur¨ Astronomie der Universit¨at Bonn, Auf dem Hugel¨ 71, D-53121 Bonn, Germany 7 Department of Physics, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK 8 Institute for Astrophysics, Tuerkenschanzstr. 17, AT-1180 Vienna, Austria 9 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St, P. Penteli 15236, Greece 10 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, Netherlands 11 Institute of Astronomy, KU Leuven, Celestijnenlaan
    [Show full text]
  • 1970Aj 75. . 933H the Astronomical Journal
    933H . 75. THE ASTRONOMICAL JOURNAL VOLUME 75, NUMBER 8 OCTOBER 1970 The System of Stellar Associations of the Large Magellanic Cloud 1970AJ Paul W. Hodge and Peter B. Lucke Astronomy Department, University of Washington, Seattle, Washington (Received 13 May 1970; revised 10 July 1970) From a study of the 122 recognized stellar O associations in the Large Magellanic Cloud it is found that the mean diameter is 78 pc, similar to the mean diameter of stellar associations recognized in the solar neigh- borhood. The mean number of stars with absolute visual magnitudes brighter than about —4 per 103 projected square parsecs in the associations is 19, while the mean total population of such stars is 18 per stellar association. Both of these figures are somewhat larger than the populations and the population densities of such stars in stellar associations near the sun. There is a considerable spread in the densities of bright stars in the LMC’s associations, but a general over-all correlation exists between the size of the asso- ciation and the total number of stars. Fifteen “star clouds” are recognized and these have a mean diameter of 225 pc, with total populations averaging 32 stars brighter than A/V= —4.2. In dimensions these objects are more similar to the objects studied in M31 by van den Bergh than are the majority of the stellar associa- tions in the LMC or our Galaxy. There is, however, no obvious discontinuity between the characteristics of the two kinds of objects. The radial distribution of the associations is shown in Fig.
    [Show full text]
  • Open Clusters PAGING
    Open Clusters in Turn Left at Orion (5th edition) Page Name Constellation RA Dec Chapter 193 NGC 129 Cassiopeia 0 H 29.8 min. 60° 14' North 210 NGC 220 Tucana 0 H 40.5 min. −73° 24' South 210 NGC 222 Tucana 0 H 40.7 min. −73° 23' South 210 NGC 231 Tucana 0 H 41.1 min. −73° 21' South 192 NGC 225 Cassiopeia 0 H 43.4 min. 61° 47' North 210 NGC 265 Tucana 0 H 47.2 min. −73° 29' South 202 NGC 188 Cepheus 0 H 47.5 min. 85° 15' North 210 NGC 330 Tucana 0 H 56.3 min. −72° 28' South 210 NGC 371 Tucana 1 H 3.4 min. −72° 4' South 210 NGC 376 Tucana 1 H 3.9 min. −72° 49' South 210 NGC 395 Tucana 1 H 5.1 min. −72° 0' South 210 NGC 460 Tucana 1 H 14.6 min. −73° 17' South 210 NGC 458 Tucana 1 H 14.9 min. −71° 33' South 193 NGC 436 Cassiopeia 1 H 15.5 min. 58° 49' North 210 NGC 465 Tucana 1 H 15.7 min. −73° 19' South 193 NGC 457 Cassiopeia 1 H 19.0 min. 58° 20' North 194 M103 Cassiopeia 1 H 33.2 min. 60° 42' North 179 NGC 604, in M33 Triangulum 1 H 34.5 min. 30° 47' October–December 195 NGC 637 Cassiopeia 1 H 41.8 min. 64° 2' North 195 NGC 654 Cassiopeia 1 H 43.9 min. 61° 54' North 195 NGC 659 Cassiopeia 1 H 44.2 min.
    [Show full text]
  • Skytools Chart
    33 Dorado - Carina SkyTools 3 / Skyhound.com NGC 2546 ν α - ζ 40° σ α δ Puppis η2 Collinder 173 τ β 2 γ Canopus γ1 1433 NGC 2547 Horologium Pictor γ δ IC 2395 γ NGC 2670 χ α 1566 -5 0° ζ 1553 1549 ο NGC 2669 1672 IC 2391 δ ε α β 1261 Carina NGC 2516 ε Dorado ι α δ 2 γ η 1559 δ 1978 1866 1818 1783 NGC 1955 1805 Reticulum IC 2488 θ 2867 2164 κ ι NGC 1962 Large Magellanic Cloud β δ 2210 PK 278-06.1 Volans NGC 1874 NGC 1965 β NGC 1770 Tarantula Nebula NGC 1876 IC 2501 2031 β γ2 1313 ε -60° 2808 α NGC 3114 ζ Mensa ζ α υ PK 285-09.1 IC 2448 ε 1 β 0 -70° h 3211 h 0 02 8 52° x 34° 6h γ h 0 δ 06h00m00.0s -60°00'00" (Skymark) Globular Cl. Dark Neb. Galaxy 8 7 6 5 4 3 2 1 Globule Planetary Open Cl. Nebula 33 Dorado - Carina GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 1313 Ret 03h 18m 15s -66° 29' 51" +9,70 9',5x7',2 SBcd 13,5 Mly --- --- --- NGC 1433 Hor 03h 42m 02s -47° 13' 19" +10,80 6',2x3',6 Sba 43,0 Mly --- --- --- NGC 1549 Dor 04h 15m 45s -55° 35' 32" +10,70 5',0x4',3 E 42,0 Mly --- --- --- NGC 1553 Dor 04h 16m 10s -55° 46' 51" +10,30 6',2x4',1 S0 28,0 Mly --- --- --- NGC 1559 Ret 04h 17m 36s -62° 47' 01" +11,00 4',2x2',1 SBc 34,0 Mly --- --- --- NGC 1566 Dor 04h 20m 04s +54° 56' 16" +10,30 8',1 4',8 34,0 Mly --- --- --- NGC 1672 Dor 04h 45m 43s -59° 14' 51" +10,30 6',6x5',4 Sb 270,0 Mly --- --- --- PGC 17223 Large Magellanic Cloud Dor 05h 23m 35s -69° 45' 22" +0,80 648',0x552',0 SBm 0,2 Mly --- --- --- AMMASSI APERTI Sigla Nome Cost.
    [Show full text]
  • REFEREED PUBLICATIONS of YOU-HUA CHU A. Articles in Journals
    REFEREED PUBLICATIONS OF YOU-HUA CHU A. Articles in Journals 1. Heiles, C., and Chu, Y.-H. 1980, “The Magnetic Field Strength in the H II Region S232,” ApJ, 235, L105-L109. 2. Chu, Y.-H., and Lasker, B.M. 1980, “Ring Nebulae Associated with Wolf-Rayet Stars in the Large Magellanic Cloud,” PASP, 92, 730-735. [Erratum: 1981, PASP, 93, 163] 3. Heiles, C., Chu, Y.-H., Reynolds, R.J., Yegingil, I., and Troland, T.H. 1980, “A New Look at the North Polar Spur,” ApJ, 242, 533-540. 4. Chu, Y.-H. 1981, “Galactic Ring Nebulae Associated with Wolf-Rayet Stars. I. Introduction and Classification,” ApJ, 249, 195-200. 5. Chu, Y.-H., and Treffers, R.R. 1981, “Galactic Ring Nebulae Associated with Wolf-Rayet Stars. III. H II Region-Type Nebulae,” ApJ, 250, 615-620. 6. Heiles, C., Chu, Y.-H., and Troland, T.H. 1981, “Magnetic Field Strengths in the H II Regions S117, S119, and S264,” ApJ, 247, L77-L80. 7. Chu, Y.-H., and Treffers, R.R. 1981, “Galactic Ring Nebulae Associated with Wolf-Rayet Stars. II. M1-67: A Nebula Braked by the Interstellar Medium,” ApJ, 249, 586-591. 8. Treffers, R.R., and Chu, Y.-H. 1982, “Galactic Ring Nebulae Associated with Wolf-Rayet Stars. VII. The Nebula G2.4+1.4,” ApJ, 254, 132-135. 9. Chu, Y.-H., Gull, T.R., Treffers, R.R., Kwitter, K.B., and Troland, T.H. 1982, “Galactic Ring Nebulae Associated with Wolf-Rayet Stars. IV. The Ring Nebula S308 and its Interstellar Environment,” ApJ, 254, 562-568.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey. XXIX. Massive Star Formation in The
    Astronomy & Astrophysics manuscript no. vfts-massive-star-formation c ESO 2018 July 12, 2018 The VLT-FLAMES Tarantula Survey.? XXIX. Massive star formation in the local 30 Doradus starburst F.R.N. Schneider1??, O.H. Ram´ırez-Agudelo2, F. Tramper3, J.M. Bestenlehner4;5, N. Castro6, H. Sana7, C.J. Evans2, C. Sab´ın-Sanjulian´ 8, S. Simon-D´ ´ıaz9;10, N. Langer11, L. Fossati12, G. Grafener¨ 11, P.A. Crowther5, S.E. de Mink13, A. de Koter13;7, M. Gieles14, A. Herrero9;10, R.G. Izzard14;15, V. Kalari16, R.S. Klessen17, D.J. Lennon3, L. Mahy7, J. Ma´ız Apellaniz´ 18, N. Markova19, J.Th. van Loon20, J.S. Vink21, and N.R. Walborn22??? 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom 2 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom 3 European Space Astronomy Centre, Mission Operations Division, PO Box 78, 28691 Villanueva de la Canada,˜ Madrid, Spain 4 Max-Planck-Institut fur¨ Astronomie, Konigstuhl¨ 17, 69117 Heidelberg, Germany 5 Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH, United Kingdom 6 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA 7 Institute of Astrophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium 8 Departamento de F´ısica y Astronom´ıa, Universidad de La Serena, Avda. Juan Cisternas No 1200 Norte, La Serena, Chile 9 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna,
    [Show full text]
  • Near-Infrared Color Evolution of LMC Clusters
    A&A 409, 479–484 (2003) Astronomy DOI: 10.1051/0004-6361:20031136 & c ESO 2003 Astrophysics Near-infrared color evolution of LMC clusters J.-M. Kyeong1, M.-J. Tseng2, and Y.-I. Byun3 1 Korea Astronomy Observatory, Taejon, 305-348, Korea 2 Institute of Astronomy, National Central University, Chung-Li, 32054, Taiwan, ROC 3 Yonsei University Observatory and Department of Astronomy, Yonsei University, Seoul, 120-749, Korea Received 5 May 2003 / Accepted 7 July 2003 Abstract. We present here the digital aperture photometry for 28 LMC clusters whose ages are between 5 Myr and 12 Gyr. This photometry is based on our imaging observations in JHK and contains integrated magnitudes and colors as a function of aperture radius. In contrast to optical colors, our near-infrared colors do not show any strong dependence on cluster ages. Key words. galaxies: photometry – galaxies: Magellanic Clouds – galaxies: star clusters – infrared: stars 1. Introduction Previous effort in near-infrared includes Persson et al. (1983, hereafter Persson83) and Ferraro et al. (1995). Star clusters of the Large Magellanic Cloud (LMC) provide ex- Persson83 studied the integrated light of 84 clusters in the cellent templates for studies of stellar populations in external Large and Small Magellanic Clouds using a single cell pho- galaxies. The LMC is close enough that star clusters within the toelectric aperture photometry. In contrast to the UV and opti- galaxy can be resolved into individual stars by high spatial res- cal clusters colors which vary smoothly with age, their infrared olution imaging from both ground and space based telescopes. integrated colors display a large scatter among a given SWB Their CMDs can be used for detailed age calibration.
    [Show full text]