Download This Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2014 Observers Challenge List
2014 TMSP Observer's Challenge Atlas page #s # Object Object Type Common Name RA, DEC Const Mag Mag.2 Size Sep. U2000 PSA 18h31m25s 1 IC 1287 Bright Nebula Scutum 20'.0 295 67 -10°47'45" 18h31m25s SAO 161569 Double Star 5.77 9.31 12.3” -10°47'45" Near center of IC 1287 18h33m28s NGC 6649 Open Cluster 8.9m Integrated 5' -10°24'10" Can be seen in 3/4d FOV with above. Brightest star is 13.2m. Approx 50 stars visible in Binos 18h28m 2 NGC 6633 Open Cluster Ophiuchus 4.6m integrated 27' 205 65 Visible in Binos and is about the size of a full Moon, brightest star is 7.6m +06°34' 17h46m18s 2x diameter of a full Moon. Try to view this cluster with your naked eye, binos, and a small scope. 3 IC 4665 Open Cluster Ophiuchus 4.2m Integrated 60' 203 65 +05º 43' Also check out “Tweedle-dee and Tweedle-dum to the east (IC 4756 and NGC 6633) A loose open cluster with a faint concentration of stars in a rich field, contains about 15-20 stars. 19h53m27s Brightest star is 9.8m, 5 stars 9-11m, remainder about 12-13m. This is a challenge obJect to 4 Harvard 20 Open Cluster Sagitta 7.7m integrated 6' 162 64 +18°19'12" improve your observation skills. Can you locate the miniature coathanger close by at 19h 37m 27s +19d? Constellation star Corona 5 Corona Borealis 55 Trace the 7 stars making up this constellation, observe and list the colors of each star asterism Borealis 15H 32' 55” Theta Corona Borealis Double Star 4.2m 6.6m .97” 55 Theta requires about 200x +31° 21' 32” The direction our Sun travels in our galaxy. -
Guidance Equations
o Jo o z E (J t-u¡ l! LLO o l¡t l- GUIDANCE, NAVIGATION f AND CONTR t l-= vt Approved: .7/ "tu, /,f_t> G. M. LEVINE, DIREÇTO CE ANALYSIS APOLLO GUIDANCE AND NAVIGATION PROGRAM vl= - F Approvedr oate: ts Ü:l l- t2Z/ l¡t S.L PPS, SKYLARK MANAGER rrt APOLLO GUIDANCE AND NAVIGATION PROGRAM Ð T Approved Date: ,/1-orl7t (J R. H. BATT DEVELOPMENT APOLLO CE ATION PROGRAM rt) vt Approved: oate, / iZ)ci7 I D. G. HOAG, f APOLLO GUTDAN N TION PROGRAM Approved: ø,// Q, ,A-,-**- Date í ô.( R. R. RAGAN, #epurv DIREC{oR INSTRUMENTATION LABORATORY R- 693 GUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED CSM EARTH ORB ITAL MISS IONS USING PROGRAM SKYLARK 1 SECTION 5 GUIDANCE EQUATIONS OCTOBER 19?1 Itl II. cHARrEs STAR,K DR.APER CAMBRIÓGE, MASSACHUSETTS, O2139 LABORATORY INOEXI¡{Ê DATA SIGTIATOR r0c T PCH sus,lfgf'i -ll ¡ r 4., DATE OPR L,, t&-w ,0-3f "11 ¡{ ¡f Ê-åE3 -æLW * Mtr { '-)¡:, ;tÍi't, f*ti')t'/.15'¿¡ ACKNOWLEDGEMENT This |eport was p|epared under DSR Project 55-23890, sponsored by the ìlanned Spacecraft Center of the National Aeronautics and Space Administration thlough Contlact NAS 9-4065. 'ì, 11 R- 693 GUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED CM EARTH ORBITAL MISSIONS USING PROGRAM SKYLARK 1 SECTION 5 GUIDANCE EQUATIONS ) Signatures appearing on this page designate approval of this document by NASA/MSC. Approved Date: '2/ John R. Ga Section Chief, Guidance Program Section Manned Spacecraft Center, NASA Approved: f Date /a/ z ohn E. Williams, J Chief, Simulation and Flight Software Branch Manned Spacecraft Center, N ApproverJ: Date ,{r es C, Stokes, Jr. -
Gaia Data Release 2 Special Issue
A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D. -
8603517.PDF (12.42Mb)
Umversify Microfilins International 1.0 12.5 12.0 LI 1.8 1.25 1.4 1.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2) University Microfilms Inc. 300 N. Zeeb Road, Ann Arbor, MI 48106 INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec tioning the original, beginning at the upper left hand comer and continu ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.* 4. Most photographs reproduce acceptably on positive microfilm or micro fiche but lack clarify on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format. -
Full Curriculum Vitae
Jason Thomas Wright—CV Department of Astronomy & Astrophysics Phone: (814) 863-8470 Center for Exoplanets and Habitable Worlds Fax: (814) 863-2842 525 Davey Lab email: [email protected] Penn State University http://sites.psu.edu/astrowright University Park, PA 16802 @Astro_Wright US Citizen, DOB: 2 August 1977 ORCiD: 0000-0001-6160-5888 Education UNIVERSITY OF CALIFORNIA, BERKELEY PhD Astrophysics May 2006 Thesis: Stellar Magnetic Activity and the Detection of Exoplanets Adviser: Geoffrey W. Marcy MA Astrophysics May 2003 BOSTON UNIVERSITY BA Astronomy and Physics (mathematics minor) summa cum laude May 1999 Thesis: Probing the Magnetic Field of the Bok Globule B335 Adviser: Dan P. Clemens Awards and fellowships NASA Group Achievement Award for NEID 2020 Drake Award 2019 Dean’s Climate and Diversity Award 2012 Rock Institute Ethics Fellow 2011-2012 NASA Group Achievement Award for the SIM Planet Finding Capability Study Team 2008 University of California Hewlett Fellow 1999-2000, 2003-2004 National Science Foundation Graduate Research Fellow 2000-2003 UC Berkeley Outstanding Graduate Student Instructor 2001 Phi Beta Kappa 1999 Barry M. Goldwater Scholar 1997 Last updated — Jan 15, 2021 1 Jason Thomas Wright—CV Positions and Research experience Associate Department Head for Development July 2020–present Astronomy & Astrophysics, Penn State University Director, Penn State Extraterrestrial Intelligence Center March 2020–present Professor, Penn State University July 2019 – present Deputy Director, Center for Exoplanets and Habitable Worlds July 2018–present Astronomy & Astrophysics, Penn State University Acting Director July 2020–August 2021 Associate Professor, Penn State University July 2015 – June 2019 Associate Department Head for Diversity and Equity August 2017–August 2018 Astronomy & Astrophysics, Penn State University Visiting Associate Professor, University of California, Berkeley June 2016 – June 2017 Assistant Professor, Penn State University Aug. -
Download This Issue (Pdf)
Volume 43 Number 1 JAAVSO 2015 The Journal of the American Association of Variable Star Observers The Curious Case of ASAS J174600-2321.3: an Eclipsing Symbiotic Nova in Outburst? Light curve of ASAS J174600-2321.3, based on EROS-2, ASAS-3, and APASS data. Also in this issue... • The Early-Spectral Type W UMa Contact Binary V444 And • The δ Scuti Pulsation Periods in KIC 5197256 • UXOR Hunting among Algol Variables • Early-Time Flux Measurements of SN 2014J Obtained with Small Robotic Telescopes: Extending the AAVSO Light Curve Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Edward F. Guinan Paula Szkody University of Toronto Villanova University University of Washington Toronto, Ontario, Canada Villanova, Pennsylvania Seattle, Washington Associate Editor John B. Hearnshaw Matthew R. Templeton Elizabeth O. Waagen University of Canterbury AAVSO Christchurch, New Zealand Production Editor Nikolaus Vogt Michael Saladyga Laszlo L. Kiss Universidad de Valparaiso Konkoly Observatory Valparaiso, Chile Budapest, Hungary Editorial Board Douglas L. Welch Geoffrey C. Clayton Katrien Kolenberg McMaster University Louisiana State University Universities of Antwerp Hamilton, Ontario, Canada Baton Rouge, Louisiana and of Leuven, Belgium and Harvard-Smithsonian Center David B. Williams Zhibin Dai for Astrophysics Whitestown, Indiana Yunnan Observatories Cambridge, Massachusetts Kunming City, Yunnan, China Thomas R. Williams Ulisse Munari Houston, Texas Kosmas Gazeas INAF/Astronomical Observatory University of Athens of Padua Lee Anne M. Willson Athens, Greece Asiago, Italy Iowa State University Ames, Iowa The Council of the American Association of Variable Star Observers 2014–2015 Director Arne A. -
Milestone Goto-Bino Series .Cdr
Kson MilestoneK Standard Alt/Az GOTO Mount INSTRUCTIONS CONTENT FOR KSON STANDARD ALT/AZ GOTO USER INTRODUCTION.................................................................................1 ACCESSORIES..................................................................................2 ASSEMBLY INSTRUCTIONS.............................................................3 FEATURES.........................................................................5 OPERATION MANUAL FOR SKYTOUCH CONTROLLER............... 6 KEY DESCRIPTION.................................................................................6 STATUS DESCRIPTION...........................................................................6 OPERATION PROCESS...........................................................................7 POWER ON......................................................................................7 WARNING........................................................................................7 ALIGNMENT STATUS........................................................................7 CHANGE THE DATE..................................................................7 CHANGE THE TIME...................................................................8 CHANGE THE SITE...................................................................8 ALIGNMENT.............................................................................9 NAVIGATION STATUS.....................................................................11 MENU STATUS................................................................................11 -
Extrasolar Planets and Their Host Stars
Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it. -
Star Name Identity SAO HD FK5 Magnitude Spectral Class Right Ascension Declination Alpheratz Alpha Andromedae 73765 358 1 2,06 B
Star Name Identity SAO HD FK5 Magnitude Spectral class Right ascension Declination Alpheratz Alpha Andromedae 73765 358 1 2,06 B8IVpMnHg 00h 08,388m 29° 05,433' Caph Beta Cassiopeiae 21133 432 2 2,27 F2III-IV 00h 09,178m 59° 08,983' Algenib Gamma Pegasi 91781 886 7 2,83 B2IV 00h 13,237m 15° 11,017' Ankaa Alpha Phoenicis 215093 2261 12 2,39 K0III 00h 26,283m - 42° 18,367' Schedar Alpha Cassiopeiae 21609 3712 21 2,23 K0IIIa 00h 40,508m 56° 32,233' Deneb Kaitos Beta Ceti 147420 4128 22 2,04 G9.5IIICH-1 00h 43,590m - 17° 59,200' Achird Eta Cassiopeiae 21732 4614 3,44 F9V+dM0 00h 49,100m 57° 48,950' Tsih Gamma Cassiopeiae 11482 5394 32 2,47 B0IVe 00h 56,708m 60° 43,000' Haratan Eta ceti 147632 6805 40 3,45 K1 01h 08,583m - 10° 10,933' Mirach Beta Andromedae 54471 6860 42 2,06 M0+IIIa 01h 09,732m 35° 37,233' Alpherg Eta Piscium 92484 9270 50 3,62 G8III 01h 13,483m 15° 20,750' Rukbah Delta Cassiopeiae 22268 8538 48 2,66 A5III-IV 01h 25,817m 60° 14,117' Achernar Alpha Eridani 232481 10144 54 0,46 B3Vpe 01h 37,715m - 57° 14,200' Baten Kaitos Zeta Ceti 148059 11353 62 3,74 K0IIIBa0.1 01h 51,460m - 10° 20,100' Mothallah Alpha Trianguli 74996 11443 64 3,41 F6IV 01h 53,082m 29° 34,733' Mesarthim Gamma Arietis 92681 11502 3,88 A1pSi 01h 53,530m 19° 17,617' Navi Epsilon Cassiopeiae 12031 11415 63 3,38 B3III 01h 54,395m 63° 40,200' Sheratan Beta Arietis 75012 11636 66 2,64 A5V 01h 54,640m 20° 48,483' Risha Alpha Piscium 110291 12447 3,79 A0pSiSr 02h 02,047m 02° 45,817' Almach Gamma Andromedae 37734 12533 73 2,26 K3-IIb 02h 03,900m 42° 19,783' Hamal Alpha -
Brightest Stars : Discovering the Universe Through the Sky's Most Brilliant Stars / Fred Schaaf
ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. flast.qxd 3/5/08 6:28 AM Page vi ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. ffirs.qxd 3/5/08 6:26 AM Page ii This book is dedicated to my wife, Mamie, who has been the Sirius of my life. This book is printed on acid-free paper. Copyright © 2008 by Fred Schaaf. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustration credits appear on page 272. Design and composition by Navta Associates, Inc. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copy- right.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. -
Constellations
Your Guide to the CONSTELLATIONS INSTRUCTOR'S HANDBOOK Lowell L. Koontz 2002 ii Preface We Earthlings are far more aware of the surroundings at our feet than we are in the heavens above. The study of observational astronomy and locating someone who has expertise in this field has become a rare find. The ancient civilizations had a keen interest in their skies and used the heavens as a navigational tool and as a form of entertainment associating mythology and stories about the constellations. Constellations were derived from mankind's attempt to bring order to the chaos of stars above them. They also realized the celestial objects of the night sky were beyond the control of mankind and associated the heavens with religion. Observational astronomy and familiarity with the night sky today is limited for the following reasons: • Many people live in cities and metropolitan areas have become so well illuminated that light pollution has become a real problem in observing the night sky. • Typical city lighting prevents one from seeing stars that are of fourth, fifth, sixth magnitude thus only a couple hundred stars will be seen. • Under dark skies this number may be as high as 2,500 stars and many of these dim stars helped form the patterns of the constellations. • Light pollution is accountable for reducing the appeal of the night sky and loss of interest by many young people as the night sky is seldom seen in its full splendor. • People spend less time outside than in the past, particularly at night. • Our culture has developed such a profusion of electronic devices that we find less time to do other endeavors in the great outdoors. -
Globular Clusters, Though
Appendix: What You’re Looking At Early astronomers divided astronomical objects into three main types: planets, stars, and what were called mists or clouds; in Latin, nebulae. Stars had fixed positions relative to one another, but the planets moved about, and so the ancient Greeks called them wanderers, plan¯et¯es. The changing positions of the planets were hard to explain, and none of the Solar System models proposed bytheancientGreeksorRomansadequatelyexplainedthingssuchasretrograde motion. But even though they didn’t understand why the planets moved about, the Greeks and Romans both placed huge value on interpreting the movements of the planets. This is the art of astrology, a practice that has developed independently in many different cultures around the world. That stars were in some way similar to the Sun was something the ancient Greeks had guessed at, but it wasn’t until the nineteenth century and the invention of spec- troscopy that scientists could demonstrate that the light produced by the Sun was the similar to that produced by the stars. Over time different types of stars were identi- fied, and it soon became clear that the Sun was a relatively small and ordinary star by cosmic standards, even though it is vitally important to us. Nebulae posed particular problems for astronomers prior to the invention of the telescope. To the naked eye all nebulae look alike, nothing more than faint, misty patches of light. Only with the telescope was the diversity of nebulae revealed, but while they could be seen to be morphologically different, astronomers of the early modern era didn’t understand that a planetary nebula is a very different thing to something like the Great Nebula in Andromeda, what we’d today recognize as a galaxy.