8603517.PDF (12.42Mb)

Total Page:16

File Type:pdf, Size:1020Kb

8603517.PDF (12.42Mb) Umversify Microfilins International 1.0 12.5 12.0 LI 1.8 1.25 1.4 1.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2) University Microfilms Inc. 300 N. Zeeb Road, Ann Arbor, MI 48106 INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.* 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarify on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format. * *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. ’IMvBTsity U IVJîcrônlms . International 8603517 Olowin, Ronald Paul PROBING THE LARGE-SCALE STRUCTURE OF THE UNIVERSE: AN ANALYSIS OF 55 BRIGHT SOUTHERN CLUSTERS OF GALAXIES The University of Oklahom a Ph.D. 1985 University Microfilms Internstionsiso o n , zeeb Roaa, Ann Arbor, Ml 481 06 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this docum ent have been identified here with a check mark V 1. Glossy photographs or pages. 2. Colored illustrations, paper or print ______ 3. Photographs with dark background _____ 4. Illustrations are poor copy 5. Pages with black marks, not original copy 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements ______ 9. Tightly bound copy with print lost in sp in e _______ 10. Computer printout pages with indistinct print 11. Page(s) ____________ lacking when material received, and not available from school or author. 12. Page(s) ____________ seem to be missing in numbering only as text follows. 13. Two pages num bered . Text follows. 14. Curling and wrinkled pages _______ 15. Dissertation contains pages with print at a slant, filmed a s received __________ 16. Other University Microfilms International THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE PROBING THE LARGE-SCALE STRUCTURE OF THE UNIVERSE: AN ANALYSIS OF 55 BRIGHT SOUTHERN CLUSTERS OF GALAXIES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Ronald Paul Olowin Norman, Oklahoma PROBING THE LARGE-SCALE STRUCTURE OF THE UNIVERSE: AN ANALYSIS OF 55 BRIGHT SOUTHERN CLUSTERS OF GALAXIES A DISSERTATION APPROVED FOR THE DEPARTMENT OF PHYSICS AND ASTRONOMY By I Gnldo L. Chincarinl, Chair --- David R. Branch Tibor J. H^rcVeg Ronald Kantowski Thomas M. Smith DEDICATION This thesis is dedicated to my family: in levins rnemory of my parents Clement Jan and Sophia Ann Olowin a n i with grateful appreciation of Mary Dreisbach, Aaron Benjamin and Frederick Alexander. m DESIDERATUM Melius est enim in via clauiicare quam praeter viam fortiter ambulare. Nam qui in via claudicat, etiam si parum proficiscatur, appropinquat ad terminum; qui vero extra viam ambulat, quanto fortius currit, tanto magis a termina elongatur. — Aquinas In laonnem IV ACKNOWLEDGEMENTS Financial support for this work came from the Department of Physics and As­ tronomy and the Associates of The University of Oklahoma. Without their generous infusion of funds, resources and equipment this effort would have been impossible. In particular, I would like to thank the Departmental Chairs during my tenure, David Golden and David Branch, for making so many facilities available so readily. Special thanks for the valuable and continued aid are given to A1 Schwarzkopf of the Statistical Consulting Laboratory of the Energy Resources Institute of the Univer­ sity of Oklahoma and Lynn Wellborn of the Physics and Astronomy Branch of the University of Oklahoma Libraries. My gratitude is also extended to Russell Cannon of the U. K. Schmidt Telescope Unit of the Royal Observatory, Edinburgh, Scotland for providing survey plates of the Virgo Cluster of Galaxies and to Wayne H. War­ ren of the National Space Science Data Center for providing a machine-readable version of the Smithsonian Astrophysical Observatory Star Catalogue. My Professors have been patient and tolerant individuals. In particular, I have been privUedged to work under the guidance of David Branch, Guido Chincarini, John Cowan, Tibor Herczeg, Ronald Kantowski, Michael Morrison, Gregory Parker, Stan Robertson and Deborah Watson all of whom have made lasting contributions to my academic development. During the production of this thesis the special assistance of Judith Tucker at Printing Concepts, Inc. has been extremely helpful. Likewise, my thanks go to Richard Henry and, in particular, to Michael Morrison who unraveled the mysteries of for me. My close friends have been invaluable. Sherman and Laura Kent have been steadfast, robust and nourishing allies. Lome Thomas and John Schiff have been marvelous role models of genuine scholarship in the highest academic tradition; they have rescued me innumenrable times from the arms of ignorance. I greatly appre­ ciate their unselfish support. Klaus Rossberg quietly maintained me throughout. The special help and encouragement of Tibor Herczeg has been sustaining. His deep grasp of the History of Astronomy and his impeccable scholarship will always be an influence. The expert guidance and help from Harold Corwin has been immeasurable. The eager and generous support and advice he has given has illuminated for me what it means to do professional astronomy. To Doris Jane Chediak I owe a sincere debt of gratitude and thanks. She has made a living and deep contribution to my growth and development and has been an invaluable asset to my family. The advice and guidance of ray thesis advisor, Guido Chincarini, has been in­ dispensable. He has provided my first exposure to research on clusters of galaxies and throughout this effort has given me encouragement and unencumbered oppor­ tunities to broaden my astronomical experience. For this, for his sometimes painful honesty, and for his deep scientific integrity, I give Professor Chincarini my great and sincere thanks. I am extremely grateful for his time and friendship. Finally, I wish to express my deepest appreciation to my family. That they tolerated this eff’ort and suffered my neglect with patience, unselfishness and wit is remarkable. VI Table of Contents vii TABLE OF CONTENTS Page D edication ..........................................................................................................................iii Desideratum ....................................................................................................................... iv Acknowledgements ............................................................................................................. v Table of Contents .............................................................................................................vii List of Tables ..................................................................................................................... ix List of Illustrations ..........................................................................................................ixx A b stra ct ......................................................................................................................... xxxii Chapter 1. The Discovery of Clusters of Galaxies ................................................. 1 Chapter 2. Data Acquisition and Preparation ........................................................8 2.1. Measuring the Clusters ..................................................................................10 2.2. The Step-Scale Calibrations ........................................................................ 14 2.3. Coordinate Transformation of Measurements .......................................... 18 2.4. Determination of Cluster Centers ............................................................... 27 2.5. The Classification of Galaxy Clusters ........................................................ 35 vu Table of Contents viii Page Chapter 3. The Cluster Catalogue ............................................................................43 3.1. Catalogue of Bright Southern Galaxy Clusters .........................................47 3.2. Descriptions of Bright Southern Galaxy Clusters ....................................50 Chapter 4. An Isothermal Analysis of Clusters of Galaxies .................................251
Recommended publications
  • SUBJECT INDEX Abell 370 Abell Catalogue Abell Clusters
    SUBJECT INDEX Abell 370 463, 467 Abell catalogue 229 Abell clusters 151, 221, 243, 281, 533, 536, 538, 543, 550 Absorption redshifts 333 Age of the Universe 479 Active galaxies 311 Alignment of clusters 536, 546, 547 Angular momentum 259, 273, 544, 552 Angular 3-point function 161 Anisotropics (large scale) 15 Arcs (giant) 463, 467, 598 Autocorrelation function (spatial) 259 Automatic plate measuring (Cambridge) 151 Baryogenesis 1 Baryon dark matter 77, 93, 513, 589, 592 Biased galaxy formation 43, 161, 169, 245, 437, 495 Biasing 163 Big Bang 1, 281 Bimodal initial mass function (IMF) 387 Bimodal star formation rate (SFR) 387 Binary galaxies 401, 409 Black hole 67, 429 Bootes void 255 Break (4000 Angstroms) 311 Bubble 67, 259 Bulge 273, 301 Burgers equations 273 Carbon stars 409 Centaurus Pavo supercluster 169, 185, 520 Carina 409 CfA catalogue 105, 191, 255, 519 Cloud motions 333 Cold dark matter 37, 43, 77, 93, 169, 191, 259, 273, 281, 293, 387 613 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.229, on 29 Sep 2021 at 05:32:41, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900137313 614 Colors of galaxies 221 Coma cluster 139, 535 Coma supercluster 139, 239 Companions 401 Compton cooling 93 Cooling flows 429, 437 Correlation functions (three points) 161, 163 Cosmological HI 207, 211 Cosmological constant 67, 516, 517 Cosmological parameter (Ω) 1, 51, 191, 259, 273 Corona Borealis supercluster 139, 532 Correlation functions (angular)
    [Show full text]
  • Chapter 1 the PHYSICS of CLUSTER MERGERS
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server To appear in Merging Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G. Giovannini (Dordrecht: Kluwer), in press (2001) Chapter 1 THE PHYSICS OF CLUSTER MERGERS Craig L. Sarazin Department of Astronomy University of Virginia [email protected] Abstract Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Some of the basic physical proper- ties of mergers will be discussed, with an emphasis on simple analytic arguments rather than numerical simulations. Semi-analytic estimates of merger rates are reviewed, and a simple treatment of the kinematics of binary mergers is given. Mergers drive shocks into the intracluster medium, and these shocks heat the gas and should also accelerate non- thermal relativistic particles. X-ray observations of shocks can be used to determine the geometry and kinematics of the merger. Many clus- ters contain cooling flow cores; the hydrodynamical interactions of these cores with the hotter, less dense gas during mergers are discussed. As a result of particle acceleration in shocks, clusters of galaxies should con- tain very large populations of relativistic electrons and ions. Electrons 2 with Lorentz factors γ 300 (energies E = γmec 150 MeV) are expected to be particularly∼ common. Observations and∼ models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these mergers are described.
    [Show full text]
  • 2014 Observers Challenge List
    2014 TMSP Observer's Challenge Atlas page #s # Object Object Type Common Name RA, DEC Const Mag Mag.2 Size Sep. U2000 PSA 18h31m25s 1 IC 1287 Bright Nebula Scutum 20'.0 295 67 -10°47'45" 18h31m25s SAO 161569 Double Star 5.77 9.31 12.3” -10°47'45" Near center of IC 1287 18h33m28s NGC 6649 Open Cluster 8.9m Integrated 5' -10°24'10" Can be seen in 3/4d FOV with above. Brightest star is 13.2m. Approx 50 stars visible in Binos 18h28m 2 NGC 6633 Open Cluster Ophiuchus 4.6m integrated 27' 205 65 Visible in Binos and is about the size of a full Moon, brightest star is 7.6m +06°34' 17h46m18s 2x diameter of a full Moon. Try to view this cluster with your naked eye, binos, and a small scope. 3 IC 4665 Open Cluster Ophiuchus 4.2m Integrated 60' 203 65 +05º 43' Also check out “Tweedle-dee and Tweedle-dum to the east (IC 4756 and NGC 6633) A loose open cluster with a faint concentration of stars in a rich field, contains about 15-20 stars. 19h53m27s Brightest star is 9.8m, 5 stars 9-11m, remainder about 12-13m. This is a challenge obJect to 4 Harvard 20 Open Cluster Sagitta 7.7m integrated 6' 162 64 +18°19'12" improve your observation skills. Can you locate the miniature coathanger close by at 19h 37m 27s +19d? Constellation star Corona 5 Corona Borealis 55 Trace the 7 stars making up this constellation, observe and list the colors of each star asterism Borealis 15H 32' 55” Theta Corona Borealis Double Star 4.2m 6.6m .97” 55 Theta requires about 200x +31° 21' 32” The direction our Sun travels in our galaxy.
    [Show full text]
  • Title Goes Here
    Jurnal Fizik Malaysia Volume 39 Issue 1 (2018) pgs 10017-10028 Z. Zainal Abidin Study of A1367 Cluster by Curve Fitting Variations Zamri Zainal Abidina, Zainol Abidin Ibrahima, Low Wei Yewa, Muhammad Mustaqim Mezana, Danial Ahmad Ariffin Leea, and Christine Jordanb aRadio Cosmology Laboratory Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. bThe School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (Received: 17.12.2017 ; Published: 23.7.2018) Abstract. We investigate the possible gain spectrum of the A1367 cluster or more commonly known as the Leo cluster using different polynomial fitting techniques in DRAWSPEC. For one of the aspects of the research on the possible mass of dark matter in the Leo cluster, the mass of neutral hydrogen ( ) is to be determined using gain analysis in the DRAWSPEC programme, prior to using the virialized mass of the Leo cluster to determine the mass of dark matter in the cluster. This investigation is significant because by using different polynomial fittings, one set of data could yield different gain, thus providing different , ultimately affecting the calculation of mass of dark matter in a cluster. In this paper, we present a comparison between different gain spectrum and using different polynomial fittings and we conclude that the result yields different by using different curve fitting techniques. Keywords: galaxy cluster-curve fitting-neutral hydrogen mass-gain spectrum- DRAWSPEC I. INTRODUCTION When determining the mass of all the observable matter in a galaxy cluster, interstellar matter plays a role in contributing to the mass [1]. Among the interstellar matters taken into consideration, neutral hydrogen (HI) is chosen due to the fact that starlight is not required to give off 21cm line emission and is generally abundant in clusters [2].
    [Show full text]
  • From Messier to Abell: 200 Years of Science with Galaxy Clusters
    Constructing the Universe with Clusters of Galaxies, IAP 2000 meeting, Paris (France) July 2000 Florence Durret & Daniel Gerbal eds. FROM MESSIER TO ABELL: 200 YEARS OF SCIENCE WITH GALAXY CLUSTERS Andrea BIVIANO Osservatorio Astronomico di Trieste via G.B. Tiepolo 11 – I-34131 Trieste, Italy [email protected] 1 Introduction The history of the scientific investigation of galaxy clusters starts with the XVIII century, when Charles Messier and F. Wilhelm Herschel independently produced the first catalogues of nebulæ, and noticed remarkable concentrations of nebulæ on the sky. Many astronomers of the XIX and early XX century investigated the distribution of nebulæ in order to understand their relation to the local “sidereal system”, the Milky Way. The question they were trying to answer was whether or not the nebulæ are external to our own galaxy. The answer came at the beginning of the XX century, mainly through the works of V.M. Slipher and E. Hubble (see, e.g., Smith424). The extragalactic nature of nebulæ being established, astronomers started to consider clus- ters of galaxies as physical systems. The issue of how clusters form attracted the attention of K. Lundmark287 as early as in 1927. Six years later, F. Zwicky512 first estimated the mass of a galaxy cluster, thus establishing the need for dark matter. The role of clusters as laboratories for studying the evolution of galaxies was also soon realized (notably with the collisional stripping theory of Spitzer & Baade430). In the 50’s the investigation of galaxy clusters started to cover all aspects, from the distri- bution and properties of galaxies in clusters, to the existence of sub- and super-clustering, from the origin and evolution of clusters, to their dynamical status, and the nature of dark matter (or “positive energy”, see e.g., Ambartsumian29).
    [Show full text]
  • Guidance Equations
    o Jo o z E (J t-u¡ l! LLO o l¡t l- GUIDANCE, NAVIGATION f AND CONTR t l-= vt Approved: .7/ "tu, /,f_t> G. M. LEVINE, DIREÇTO CE ANALYSIS APOLLO GUIDANCE AND NAVIGATION PROGRAM vl= - F Approvedr oate: ts Ü:l l- t2Z/ l¡t S.L PPS, SKYLARK MANAGER rrt APOLLO GUIDANCE AND NAVIGATION PROGRAM Ð T Approved Date: ,/1-orl7t (J R. H. BATT DEVELOPMENT APOLLO CE ATION PROGRAM rt) vt Approved: oate, / iZ)ci7 I D. G. HOAG, f APOLLO GUTDAN N TION PROGRAM Approved: ø,// Q, ,A-,-**- Date í ô.( R. R. RAGAN, #epurv DIREC{oR INSTRUMENTATION LABORATORY R- 693 GUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED CSM EARTH ORB ITAL MISS IONS USING PROGRAM SKYLARK 1 SECTION 5 GUIDANCE EQUATIONS OCTOBER 19?1 Itl II. cHARrEs STAR,K DR.APER CAMBRIÓGE, MASSACHUSETTS, O2139 LABORATORY INOEXI¡{Ê DATA SIGTIATOR r0c T PCH sus,lfgf'i -ll ¡ r 4., DATE OPR L,, t&-w ,0-3f "11 ¡{ ¡f Ê-åE3 -æLW * Mtr { '-)¡:, ;tÍi't, f*ti')t'/.15'¿¡ ACKNOWLEDGEMENT This |eport was p|epared under DSR Project 55-23890, sponsored by the ìlanned Spacecraft Center of the National Aeronautics and Space Administration thlough Contlact NAS 9-4065. 'ì, 11 R- 693 GUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED CM EARTH ORBITAL MISSIONS USING PROGRAM SKYLARK 1 SECTION 5 GUIDANCE EQUATIONS ) Signatures appearing on this page designate approval of this document by NASA/MSC. Approved Date: '2/ John R. Ga Section Chief, Guidance Program Section Manned Spacecraft Center, NASA Approved: f Date /a/ z ohn E. Williams, J Chief, Simulation and Flight Software Branch Manned Spacecraft Center, N ApproverJ: Date ,{r es C, Stokes, Jr.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]
  • Extended Ionized Gas out of Galaxies in the Leo Cluster (Abell 1367)
    Extended Ionized Gas out of Galaxies in the Leo Cluster (Abell 1367) YAGI, Masafumi, YOSHIDA, Michitoshi, KOMIYAMA, Yutaka, KASHIKAWA, Nobunari (NAOJ) GAVAZZI, Giuseppe OKAMURA, Sadanori (University of Milano-Bicocca) (Hosei University) In clusters of galaxies, the relative motion of member galaxies to the hot gas of the cluster produces a ram pressure. The ram pressure strips gas from galaxies, and sometimes the gas stripped out of the galaxy gets ionized by some mechanism to be detected as an Hα emitting cloud. We observed a part of the Virgo cluster and the Coma cluster, in Hα narrow-band, and B, and R broad-bands of the Subaru Suprime-Cam to study such intergalactic ionized gas (e.g., [1,2]). We then executed a systematic survey of the Leo cluster (Abell 1367) with an Hα filter for redshift z=0.022 of the Suprime-Cam [3]. By the survey, we detected six new extended ionized gas clouds in addition to three galaxies with known gas tails (CGCG 097-073, CGCG 097-079, CGCG 097- 087; [4]), and one of the new clouds was confirmed to have much longer tail by a follow-up observation [5]. Remarkable objects compared to the previous studies were the clouds which show no relation to the galaxies; “Orphan clouds” (Figure 1 top). Other clouds known so far show the connection to the galaxy from which the gas came from (parent galaxies). Meanwhile, no parent candidates are found at least within 85 kpc from the orphan clouds, and any member galaxies around the region show no sign of stripping toward the orphans.
    [Show full text]
  • Ricardo Ogando Observatório Nacional
    Galaxy Clusters Hunters Ricardo Ogando Observatório Nacional South American Workshop on Cosmology in the LSST Era matter distribution in space 2 South American Workshop on Cosmology in the LSST Era "São Paulo" 3 SouthThierry American Workshop Cohen on Cosmology in the LSST Era 90's revolutions First large 2D galaxy surveys APOD 4 South American Workshop on Cosmology in the LSST Era Detailing the structures with spectra ● CfA2 ○ Geller & Huchra 1989 ● SSRS2 ○ da Costa et al. 1994 Reticon 5 South American Workshop on Cosmology in the LSST Era More observations and simulations ● 2dFGRS and SDSS ○ large samples ○ clustering versus physical properties ■ luminosity ■ color ■ stellar mass 6 South American Workshop on Cosmology in the LSST Era Springel et al. 2006 how to detect a galaxy cluster? 7 South American Workshop on Cosmology in the LSST Era Galaxy Cluster optical samples ● Abell (1958) 2,712 rich clusters z ≤ 0.2 8 South American Workshop on Cosmology in the LSST Era Leo Cluster. Galaxy Cluster optical samples 9 South American Workshop on Cosmology in the LSST Era Leo Cluster. Waid Observatory Coma Cluster HST ACS 10 South American Workshop on Cosmology in the LSST Era 11 South American Workshop on Cosmology in the LSST Era SZ X-ray effect Coma cluster Copyright: Planck image: ESA/ LFI & HFI Consortia; ROSAT image: Max-Planck-Institut für extraterrestrische Physik; DSS image: (Abell NASA, ESA, and the Digitized Sky Survey 2. Acknowledgment: Davide De Martin (ESA/Hubble) 1656) 12 South American Workshop on Cosmology in the LSST Era Weak lensing Science News Emily Conover 13 South American Workshop on Cosmology in the LSST Era August 25, 2017 160403 1743 677 14 15 16 South American Workshop on Cosmology in the LSST Era SDSS galaxy cluster Samples (all reportedly very pure and complete*) Authors Publication # clusters z max Miller et al.
    [Show full text]
  • Observer's Handbook 1989
    OBSERVER’S HANDBOOK 1 9 8 9 EDITOR: ROY L. BISHOP THE ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS Alan H. B atten, Dominion Astrophysical Observatory, 5071 W . Saanich Road, Victoria, BC, Canada V8X 4M6 (The Nearest Stars). L a r r y D. B o g a n , Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Configurations of Saturn’s Satellites). Terence Dickinson, Yarker, ON, Canada K0K 3N0 (The Planets). D a v id W. D u n h a m , International Occultation Timing Association, 7006 Megan Lane, Greenbelt, MD 20770, U.S.A. (Lunar and Planetary Occultations). A lan Dyer, A lister Ling, Edmonton Space Sciences Centre, 11211-142 St., Edmonton, AB, Canada T5M 4A1 (Messier Catalogue, Deep-Sky Objects). Fred Espenak, Planetary Systems Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses and Transits). M a r ie F i d l e r , 23 Lyndale Dr., Willowdale, ON, Canada M2N 2X9 (Observatories and Planetaria). Victor Gaizauskas, J. W. D e a n , Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity). R o b e r t F. G a r r i s o n , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars). Ian H alliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data). W illiam H erbst, Van Vleck Observatory, Wesleyan University, Middletown, CT, U.S.A. 06457 (Galactic Nebulae). Ja m e s T. H im e r, 339 Woodside Bay S.W., Calgary, AB, Canada, T2W 3K9 (Galaxies).
    [Show full text]
  • 2013Auguststarstuff
    Volume 23, Number 8 August 2013 Size Does Matter, But containing more than 3,000 In This Issue So Does Dark Energy galaxies. There are millions of giant clusters like this in our Page One By Dr. Ethan Siegel observable universe, and the gravitational forces at play are Size Does Matter, But Here in our own galactic absolutely tremendous: there So Does Dark Energy backyard, the Milky Way are literally quadrillions of contains some 200-400 billion times the mass of our Sun in Inside Stuff stars, and that's not even the these systems. biggest galaxy in our own local 4 Treasurers Report group. Andromeda (M31) is The largest superclusters even bigger and more massive line up along filaments, forming 4 Equipment List than we are, made up of a great cosmic web of structure around a trillion stars! When with huge intergalactic voids in 4 Meeting Agenda you throw in the Triangulum between the galaxy-rich regions. These galaxy filaments 5 Astro-Imaging SIG Galaxy (M33), the Large and Small Magellanic Clouds, and span anywhere from hundreds 6 FAAC Meeting the dozens of dwarf galaxies of millions of light-years all the Minutes - July 25, and hundreds of globular way up to more than a billion 2013 clusters gravitationally bound light years in length. The CfA2 Great Wall, the Sloan Great 7 HJRO Update to us and our nearest neighbors, our local group sure Wall, and most recently, the does seem impressive. Huge-LQG (Large Quasar Group) are the largest known Yet that's just chicken feed ones, with the Huge-LQG -- a compared to the largest group of at least 73 quasars – structures in the universe.
    [Show full text]
  • October 2013 by Observer Editor, Paul Tartabini
    BACKBACK BAYBAY observerobserver The Official Newsletter of the Back Bay Amateur Astronomers P.O. Box 9877, Virginia Beach, VA 23450-9877 Looking Up! EPHEMERALS Editor’s Note: This month’s Looking Up column was written october 2013 by Observer Editor, Paul Tartabini. Have you ever found yourself “giving up” on deep sky observing at your home because of light pollution? As much as I love observing at dark locations, a fact of life for me right now is that most of my observing takes place at my home in the middle of the light-polluted 10/11, 7:30 PM Peninsula. I have learned to adapt and have acquired quite Garden Stars a love for double stars and lunar observing, but I recently Norfolk Botanical Gardens noticed that I was neglecting deep sky observing from home, not because I wasn’t interested, but mostly because of my frustration with light pollution and yard lights. 10/25 After reading an article in the November Sky and Skywatch Telescope on viewing globular clusters of the Andromeda Northwest River Park galaxy, I decided that I could not wait until the next chance I had to get out to a dark site to try to find one of these extragalactic treats. So on Oct. 3, I spent about an hour using blankets, tarps and even taped newspaper to 10/31 - 11/02 block every single extraneous light source that I could see East Coast Star Party from my favorite observing spot. I set my alarm for early Coinjock, NC morning, when I knew light pollution is at its minimum.
    [Show full text]