The Hi Gas Content of Galaxies Around Abell 370, a Galaxy Cluster at Z = 0.37
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GMRT 610 Mhz Observations of Galaxy Clusters in the ACT Equatorial Sample
MNRAS 000,1{26 (2018) Preprint 20 March 2019 Compiled using MNRAS LATEX style file v3.0 GMRT 610 MHz observations of galaxy clusters in the ACT equatorial sample Kenda Knowles,1? Andrew J. Baker,2 J. Richard Bond,3 Patricio A. Gallardo,4 Neeraj Gupta,5 Matt Hilton,1 John P. Hughes,2 Huib Intema,6 Carlos H. L´opez- Caraballo,7;8 Kavilan Moodley,1 Benjamin L. Schmitt,9 Jonathan Sievers,10 Crist´obal Sif´on,4;11 Edward Wollack,12 1Astrophysics & Cosmology Research Unit, School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban, 3690, South Africa 2Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA 3Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON, M5S 3H8, Canada 4Department of Physics, Cornell University, Ithaca, NY USA 5IUCAA, Post Bag 4, Ganeshkhind, Pune 411007, India 6Leiden Observatory, Leiden University, PO Box 9513, NL2300 RA Leiden, Netherlands 7Instituto de Astrof´ısica and Centro de Astro-Ingenier´ıa, Facultad de F´ısica, Pontificia Universidad Cat´olica de Chile, Av. Vicu~na Mackenna 4860, 7820436 Macul, Santiago, Chile 8Departamento de Matem´aticas, Universidad de La Serena, Av. Juan Cisternas 1200, La Serena, Chile 9Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA 10Astrophysics & Cosmology Research Unit, School of Chemistry & Physics, University of KwaZulu-Natal, Durban, 3690, South Africa 11Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA 12NASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA Accepted XXX. -
Title Goes Here
Jurnal Fizik Malaysia Volume 39 Issue 1 (2018) pgs 10017-10028 Z. Zainal Abidin Study of A1367 Cluster by Curve Fitting Variations Zamri Zainal Abidina, Zainol Abidin Ibrahima, Low Wei Yewa, Muhammad Mustaqim Mezana, Danial Ahmad Ariffin Leea, and Christine Jordanb aRadio Cosmology Laboratory Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. bThe School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (Received: 17.12.2017 ; Published: 23.7.2018) Abstract. We investigate the possible gain spectrum of the A1367 cluster or more commonly known as the Leo cluster using different polynomial fitting techniques in DRAWSPEC. For one of the aspects of the research on the possible mass of dark matter in the Leo cluster, the mass of neutral hydrogen ( ) is to be determined using gain analysis in the DRAWSPEC programme, prior to using the virialized mass of the Leo cluster to determine the mass of dark matter in the cluster. This investigation is significant because by using different polynomial fittings, one set of data could yield different gain, thus providing different , ultimately affecting the calculation of mass of dark matter in a cluster. In this paper, we present a comparison between different gain spectrum and using different polynomial fittings and we conclude that the result yields different by using different curve fitting techniques. Keywords: galaxy cluster-curve fitting-neutral hydrogen mass-gain spectrum- DRAWSPEC I. INTRODUCTION When determining the mass of all the observable matter in a galaxy cluster, interstellar matter plays a role in contributing to the mass [1]. Among the interstellar matters taken into consideration, neutral hydrogen (HI) is chosen due to the fact that starlight is not required to give off 21cm line emission and is generally abundant in clusters [2]. -
16Th HEAD Meeting Session Table of Contents
16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113 -
Where Are the Missing Baryons in Clusters?
1 Where Are the Missing Baryons in Clusters? Bilhuda Rasheed Adviser: Dr. Neta Bahcall Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts Department of Astrophysical Sciences Princeton University May 2010 I hereby declare that I am the sole author of this thesis. I authorize Princeton University to lend this thesis to other institutions or individuals for the purpose of scholarly research. Bilhuda Rasheed I further authorize Princeton University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. Bilhuda Rasheed Abstract We address previous claims that the baryon fraction in clusters is significantly below the cosmic value of the baryon fraction as determined from WMAP 7-year results. We use X-ray and SZ observations to determine the slope of the gas density profile to R200. This is shallower than the slope of total mass density (NFW) profile. We use the gas density slope to extrapolate the X-ray observations of gas fraction at R500 to the virial radius (R100). The gas fraction increases beyond R500 for all cluster masses. We add the stellar fraction as determined from COSMOS and 2MASS samples, with ICL contributing 10% to the stellar fraction. For massive clusters 14 (M500 ∼ 7 × 10 M ), the baryon fraction reaches the cosmic baryon fraction at Rvir± 20%. Poorer clusters and groups typically reach 75–85% of the cosmic baryon fraction at the virial radius. We compare these results with simulations which take into account gravitational shock-heating, star formation, heating from SNe and AGN, and energy transfer from dark matter. -
Extended Ionized Gas out of Galaxies in the Leo Cluster (Abell 1367)
Extended Ionized Gas out of Galaxies in the Leo Cluster (Abell 1367) YAGI, Masafumi, YOSHIDA, Michitoshi, KOMIYAMA, Yutaka, KASHIKAWA, Nobunari (NAOJ) GAVAZZI, Giuseppe OKAMURA, Sadanori (University of Milano-Bicocca) (Hosei University) In clusters of galaxies, the relative motion of member galaxies to the hot gas of the cluster produces a ram pressure. The ram pressure strips gas from galaxies, and sometimes the gas stripped out of the galaxy gets ionized by some mechanism to be detected as an Hα emitting cloud. We observed a part of the Virgo cluster and the Coma cluster, in Hα narrow-band, and B, and R broad-bands of the Subaru Suprime-Cam to study such intergalactic ionized gas (e.g., [1,2]). We then executed a systematic survey of the Leo cluster (Abell 1367) with an Hα filter for redshift z=0.022 of the Suprime-Cam [3]. By the survey, we detected six new extended ionized gas clouds in addition to three galaxies with known gas tails (CGCG 097-073, CGCG 097-079, CGCG 097- 087; [4]), and one of the new clouds was confirmed to have much longer tail by a follow-up observation [5]. Remarkable objects compared to the previous studies were the clouds which show no relation to the galaxies; “Orphan clouds” (Figure 1 top). Other clouds known so far show the connection to the galaxy from which the gas came from (parent galaxies). Meanwhile, no parent candidates are found at least within 85 kpc from the orphan clouds, and any member galaxies around the region show no sign of stripping toward the orphans. -
8603517.PDF (12.42Mb)
Umversify Microfilins International 1.0 12.5 12.0 LI 1.8 1.25 1.4 1.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD REFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2) University Microfilms Inc. 300 N. Zeeb Road, Ann Arbor, MI 48106 INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec tioning the original, beginning at the upper left hand comer and continu ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.* 4. Most photographs reproduce acceptably on positive microfilm or micro fiche but lack clarify on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format. -
MASS and LIGHT of ABELL 370: a STRONG and WEAK LENSING ANALYSIS ABSTRACT We Present a New Gravitational Lens Model of the Hubble
Draft version October 15, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 MASS AND LIGHT OF ABELL 370: A STRONG AND WEAK LENSING ANALYSIS V. Strait1, M. Bradacˇ1, A. Hoag1, K.-H. Huang1, T. Treu2, X. Wang2,4, R. Amorin6,7, M. Castellano5, A. Fontana5, B.-C. Lemaux1, E. Merlin5, K.B. Schmidt3, T. Schrabback8, A. Tomczack1, M. Trenti9,10, and B. Vulcani9,11 1Physics Department, University of California, Davis, CA 95616, USA 2Department of Physics and Astronomy, UCLA, Los Angeles, CA, 90095-1547, USA 3Leibniz-Institut f¨urAstrophysik Postdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 4Department of Physics, University of California, Santa Barbara, CA, 93106-9530, USA 5INAF - Osservatorio Astronomico di Roma Via Frascati 33 - 00040 Monte Porzio Catone, 00040 Rome, Italy 6Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, UK 7Kavli Institute for Cosmology, University of Cambridge, Madingley Rd., CB3 0HA, Cambridge, UK 8Argelander-Institut f¨urAstronomie, Auf dem H¨ugel71, D-53121 Bonn, Germany 9School of Physics, University of Melbourne, Parkville, Victoria, Australia 10ARC Centre of Excellence fot All Sky Astrophysics in 3 Dimensions (ASTRO 3D) and 11INAF - Astronomical Observatory of Padora, 35122 Padova, Italy Draft version October 15, 2018 ABSTRACT We present a new gravitational lens model of the Hubble Frontier Fields cluster Abell 370 (z = 0:375) using imaging and spectroscopy from Hubble Space Telescope and ground-based spectroscopy. We combine constraints from a catalog of 909 weakly lensed galaxies and 39 multiply-imaged sources comprised of 114 multiple images, including a system of multiply-imaged candidates at z = 7:84 ± 0:02, to obtain a best-fit mass distribution using the cluster lens modeling code Strong and Weak Lensing United. -
List of Reserved Targets Sent to GRANTECAN for the Exploitation of the MEGARA Guaranteed Time at GTC
List of Reserved Targets sent to GRANTECAN for the exploitation of the MEGARA Guaranteed Time at GTC List of Reserved Targets sent to GRANTECAN for the exploitation of the MEGARA Guaranteed Time at GTC List of Reserved Targets sent to GRANTECAN for the exploitation of the MEGARA Guaranteed Time at GTC INDEX 1. MEGADES – MEGARA GALAXY DISKS EVOLUTION SURVEY: S4G .................. 3 2. MEGADES – MEGARA GALAXY DISKS EVOLUTION SURVEY: M33 ............... 11 3. SPECTROSCOPIC STUDY OF COMPACT STELLAR CLUSTERS AND THEIR SURROUNDINGS IN NEARBY GALAXIES ........................................................................ 12 4. THE CHEMICAL COMPOSITION OF PHOTOIONIZED NEBULAE¡ERROR! MARCADOR NO DEFINIDO. 5. CHROMOSPHERIC ACTIVITY AND AGE OF SOLAR ANALOGS IN OPEN CLUSTERS ................................................................ ¡ERROR! MARCADOR NO DEFINIDO. 6. STUDY OF STELLAR POPULATIONS AND GAS PROPERTIES IN STAR FORMING GALAXIES ............................................................................................................ 14 7. DISSECTING Z∼2-3 HEII-EMITTERS: SPECTRAL TEMPLATES FOR THE SOURCES OF THE COSMIC DAWN ................................................................................... 16 8. CHEMODYNAMICS OF METAL-POOR EXTREME EMISSION LINE GALAXIES AT INTERMEDIATE Z ...................................................................................... 18 9. CONSTRAINING WOLF-RAYET STARS IN EXTREMELY METAL-POOR GALAXIES ................................................................................................................................ -
Ricardo Ogando Observatório Nacional
Galaxy Clusters Hunters Ricardo Ogando Observatório Nacional South American Workshop on Cosmology in the LSST Era matter distribution in space 2 South American Workshop on Cosmology in the LSST Era "São Paulo" 3 SouthThierry American Workshop Cohen on Cosmology in the LSST Era 90's revolutions First large 2D galaxy surveys APOD 4 South American Workshop on Cosmology in the LSST Era Detailing the structures with spectra ● CfA2 ○ Geller & Huchra 1989 ● SSRS2 ○ da Costa et al. 1994 Reticon 5 South American Workshop on Cosmology in the LSST Era More observations and simulations ● 2dFGRS and SDSS ○ large samples ○ clustering versus physical properties ■ luminosity ■ color ■ stellar mass 6 South American Workshop on Cosmology in the LSST Era Springel et al. 2006 how to detect a galaxy cluster? 7 South American Workshop on Cosmology in the LSST Era Galaxy Cluster optical samples ● Abell (1958) 2,712 rich clusters z ≤ 0.2 8 South American Workshop on Cosmology in the LSST Era Leo Cluster. Galaxy Cluster optical samples 9 South American Workshop on Cosmology in the LSST Era Leo Cluster. Waid Observatory Coma Cluster HST ACS 10 South American Workshop on Cosmology in the LSST Era 11 South American Workshop on Cosmology in the LSST Era SZ X-ray effect Coma cluster Copyright: Planck image: ESA/ LFI & HFI Consortia; ROSAT image: Max-Planck-Institut für extraterrestrische Physik; DSS image: (Abell NASA, ESA, and the Digitized Sky Survey 2. Acknowledgment: Davide De Martin (ESA/Hubble) 1656) 12 South American Workshop on Cosmology in the LSST Era Weak lensing Science News Emily Conover 13 South American Workshop on Cosmology in the LSST Era August 25, 2017 160403 1743 677 14 15 16 South American Workshop on Cosmology in the LSST Era SDSS galaxy cluster Samples (all reportedly very pure and complete*) Authors Publication # clusters z max Miller et al. -
An ISOCAM Survey Through Gravitationally Lensing Galaxy Clusters
A&A 431, 433–449 (2005) Astronomy DOI: 10.1051/0004-6361:20041782 & c ESO 2005 Astrophysics An ISOCAM survey through gravitationally lensing galaxy clusters IV. Luminous infrared galaxies in Cl 0024+1654 and the dynamical status of clusters D. Coia1, B. McBreen1,L.Metcalfe2,3,A.Biviano4, B. Altieri2,S.Ott5,B.Fort6,J.-P.Kneib7,8, Y. Mellier6,9, M.-A. Miville-Deschênes10 , B. O’Halloran1,11, and C. Sanchez-Fernandez2 1 Department of Experimental Physics, University College, Belfield, Dublin 4, Ireland e-mail: [email protected] 2 XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, PO Box 50727, 28080 Madrid, Spain 3 ISO Data Centre, European Space Agency, Villafranca del Castillo, PO Box 50727, 28080 Madrid, Spain 4 INAF/Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131, Trieste, Italy 5 Science Operations and Data Systems Division of ESA, ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands 6 Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France 7 Observatoire Midi-Pyrénées, 14 avenue Edouard Belin, 31400 Toulouse, France 8 California Institute of Technology, Pasadena, CA 91125, USA 9 Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France 10 Canadian Institute for Theoretical Astrophysics, 60 St-George Street, Toronto, Ontario M5S 3H8, Canada 11 Dunsink Observatory, Castleknock, Dublin 15, Ireland Received 3 August 2004 / Accepted 26 October 2004 Abstract. Observations of the core of the massive cluster Cl 0024+1654, at a redshift z ∼ 0.39, were obtained with the Infrared Space Observatory using ISOCAM at 6.7 µm (hereafter 7 µm) and 14.3 µm (hereafter 15 µm). -
2013Auguststarstuff
Volume 23, Number 8 August 2013 Size Does Matter, But containing more than 3,000 In This Issue So Does Dark Energy galaxies. There are millions of giant clusters like this in our Page One By Dr. Ethan Siegel observable universe, and the gravitational forces at play are Size Does Matter, But Here in our own galactic absolutely tremendous: there So Does Dark Energy backyard, the Milky Way are literally quadrillions of contains some 200-400 billion times the mass of our Sun in Inside Stuff stars, and that's not even the these systems. biggest galaxy in our own local 4 Treasurers Report group. Andromeda (M31) is The largest superclusters even bigger and more massive line up along filaments, forming 4 Equipment List than we are, made up of a great cosmic web of structure around a trillion stars! When with huge intergalactic voids in 4 Meeting Agenda you throw in the Triangulum between the galaxy-rich regions. These galaxy filaments 5 Astro-Imaging SIG Galaxy (M33), the Large and Small Magellanic Clouds, and span anywhere from hundreds 6 FAAC Meeting the dozens of dwarf galaxies of millions of light-years all the Minutes - July 25, and hundreds of globular way up to more than a billion 2013 clusters gravitationally bound light years in length. The CfA2 Great Wall, the Sloan Great 7 HJRO Update to us and our nearest neighbors, our local group sure Wall, and most recently, the does seem impressive. Huge-LQG (Large Quasar Group) are the largest known Yet that's just chicken feed ones, with the Huge-LQG -- a compared to the largest group of at least 73 quasars – structures in the universe. -
October 2013 by Observer Editor, Paul Tartabini
BACKBACK BAYBAY observerobserver The Official Newsletter of the Back Bay Amateur Astronomers P.O. Box 9877, Virginia Beach, VA 23450-9877 Looking Up! EPHEMERALS Editor’s Note: This month’s Looking Up column was written october 2013 by Observer Editor, Paul Tartabini. Have you ever found yourself “giving up” on deep sky observing at your home because of light pollution? As much as I love observing at dark locations, a fact of life for me right now is that most of my observing takes place at my home in the middle of the light-polluted 10/11, 7:30 PM Peninsula. I have learned to adapt and have acquired quite Garden Stars a love for double stars and lunar observing, but I recently Norfolk Botanical Gardens noticed that I was neglecting deep sky observing from home, not because I wasn’t interested, but mostly because of my frustration with light pollution and yard lights. 10/25 After reading an article in the November Sky and Skywatch Telescope on viewing globular clusters of the Andromeda Northwest River Park galaxy, I decided that I could not wait until the next chance I had to get out to a dark site to try to find one of these extragalactic treats. So on Oct. 3, I spent about an hour using blankets, tarps and even taped newspaper to 10/31 - 11/02 block every single extraneous light source that I could see East Coast Star Party from my favorite observing spot. I set my alarm for early Coinjock, NC morning, when I knew light pollution is at its minimum.