High Risk Species of Interest to Trade And/Or Hobby

Total Page:16

File Type:pdf, Size:1020Kb

High Risk Species of Interest to Trade And/Or Hobby High Risk Species Of Interest to Trade and/or Hobby Species Not At This Stage To Be Added To Noxious Lists (in States where they are not already on their Noxious lists). Family Species Common name Anabantidae Ctenopoma acutirostre Spotted ctenopoma Anabantidae Microctenopoma ansorgii Ornate ctenopoma Anabantidae Microctenopoma nanum Dwarf ctenopoma Characidae Bryconops affinis Orangefin tetra Characidae Bryconops melanurus Characidae Hollandichthys multifasciatus Cichlidae Amphilophus citrinellus Midas Cichlid Cichlidae Amphilophus labiatus Red devil Cichlidae Amphilophus zaliosus Arrow Cichlid Cichlidae Caquetaia kraussii Bucketmouth Cichlidae Caquetaia spectabilis Cichlidae Caquetaia umbrifera Turquoise cichlid Cichlidae Cichlasoma urophthalmus Mexican mojarra Cichlidae Crenicichla lacustris Cichlidae Crenicichla lepidota Pike Cichlid Cichlidae Crenicichla saxatilis Ringtail pike cichlid Cichlidae Geophagus brasiliensis Pearl Cichlid Cichlidae Herichthys cyanoguttatus Rio Grande cichlid Cyprinidae Cyprinus carpio Common carp/ Koi Fundulidae Adinia xenica Diamond killifish Fundulidae Fundulus chrysotus Golden topminnow Mastacembelidae Macrognathus pancalus Barred spiny eels Mastacembelidae Mastacembelus armatus Zig-zag eel Mastacembelidae Mastacembelus erythrotaenia Fire eel Notopteridae Chitala blanci Indochina featherback Notopteridae Chitala ornata Osteoglossidae Osteoglossurn bicirrhosurn Silver Arawana Pimelodidae Brachyplatystoma filamentosurn Kumakuma Pimelodidae Brachyplatystoma vaillantii Laulao Pimelodidae Phractocephalus hemioliopterus Redtail catfish Pimelodidae Pseudoplatystorna fasciaturn Barred sorubim Pimelodidae Sorubim elongatus shovelnose catfish Pimelodidae Sorubim lima Duckbill catfish Pimelodidae Sorubimichthys planiceps Firewood catfish Polypteridae Polypterus endlicheri Saddled bichir Polypteridae Polypterus retropinnis West African bichir Potamotrygonidae Potamotrygon hystrix Porcupine River stingray Potamotrygonidae Potamotrygon motoro Ocellate river stingray Potamotrygonidae Potamotrygon orbignyi Smooth back river stingray Potamotrygonidae Plesiotrygon iwamae Long-tailed river stingray Siluridae Ompok bimaculatus Butter catfish Siluridae (Anabantidae) Sandelia capensis Cape Kurper Tetraodontidae Auriglobus amabilis Tetraodontidae Auriglobus nefastus Greenbottle pufferfish Tetraodontidae Carinotetraodon borneensis Tetraodontidae Carinotetraodon lorteti Redeye puffer Tetraodontidae Carinotetraodon travancoricus Malabar pufferfish Tetraodontidae Chelonodon laticeps Blue Spotted Blaasop Tetraodontidae Chelonodon pleurospilus Blaasop beauty Tetraodontidae Chonerhinos silus Tetraodontidae Colomesus asellus Amazon puffer Tetraodontidae Colomesus psittacus Banded puffer Tetraodontidae Takifugu radiatus Tetraodontidae Takifugu rubripes Japanese pufferfish Tetraodontidae Takifugu vermicularis Purple puffer Tetraodontidae Tetraodon baileyi Hairy puffer Tetraodontidae Tetraodon mbu Fresh water puffer Ash Tetraodontidae Tetraodon nigroviridis Spotted green pufferfish .
Recommended publications
  • Growth of the Shortnose Mojarra Diapterus Brevirostris (Perciformes: Gerreidae) in Central Mexican Pacific
    Growth of the Shortnose Mojarra Diapterus brevirostris (Perciformes: Gerreidae) in Central Mexican Pacific Crecimiento de la malacapa Diapterus brevirostris (Perciformes: Gerreidae) en el Pacífico centro mexicano Manuel Gallardo-Cabello,1 Elaine Espino-Barr,2* Esther Guadalupe Cabral-Solís,2 Arturo García-Boa2 y Marcos Puente-Gómez2 1 Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Av. Ciudad Universitaria 3000, Col. Copilco México, D. F. (C. P. 04360). 2 INAPESCA, CRIP-Manzanillo Playa Ventanas s/n Manzanillo, Colima (C.P. 28200). Tel: (314) 332 3750 *Corresponding author: [email protected] Abstract Resumen Samples of Shortnose Mojarra Diapterus brevi- Se obtuvieron muestras y datos morfométricos rostris were obtained from the commercial catch de 394 individuos de la malacapa Diapterus from April 2010 to July 2012, morphometric brevirostris, de la captura comercial entre abril data of 394 individuals were registered. The de 2010 y julio de 2012. El estudio del creci- growth study entailed two methods: length fre- miento se realizó por dos métodos: análisis de quency analysis and study of sagittae and as- frecuencia de longitud y el estudio de los otoli- terisci otoliths. Both methods identified six age tos sagittae y asteriscus. Ambos métodos iden- groups. Growth parameters of von Bertalanffy’s tificaron seis grupos de edad. Los parámetros equation were determined by Ford-Walford and de crecimiento de la ecuación de von Berta- Gulland methods and by ELEFAN routine ad- lanffy se determinaron con el método de Ford- justment. Both methods gave the same results: Walford y Gulland y por rutina ELEFAN. L∞= 48.61 cm, K= 0.135, to= -0.696.
    [Show full text]
  • Biological Aspects of Longfin Mojarra (Pentaprion Longimanus, Cantor 1849) in North Coast of Central Java, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 2, March 2018 E-ISSN: 2085-4722 Pages: 733-739 DOI: 10.13057/biodiv/d190248 Biological aspects of Longfin Mojarra (Pentaprion longimanus, Cantor 1849) in north coast of Central Java, Indonesia DIAN OKTAVIANI1,♥, RIA FAIZAH1, DUTO NUGROHO1,2 1Research Centre for Fisheries, Agency for Research and Human Resource of Marine and Fisheries. BRSDM KP II Building. Jl. Pasir Putih II, Ancol Timur, Jakarta 14430, Indonesia. Tel.: +62-21-64700928, Fax.: 62-21-64700929, ♥email: [email protected] 2Doctor Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Jl. Lingkar Kampus Raya, Kampus UI, Gedung E Lt. 2, Depok 16424, West Java, Indonesia. Manuscript received: 1 July 2017. Revision accepted: 29 March 2018. Abstract. Oktaviani D, Faizah R, Nugroho D. 2018. Biological aspects of Longfin Mojarra (Pentaprion longimanus, Cantor 1849) in north coast of Central Java, Indonesia. Biodiversitas 19: 683-689. Longfin Mojarra (Pentaprion longimanus) locally named as rengganis, is a demersal fish species that is commonly caught in Scottish seine fisheries off the north coast of Java. The fisheries are in heavily harvest level since decades. The aim of this study was to observe the biological aspects of this species. Observations were made between August 2014-July 2015 from Tegal fishing port, western part of north coast central Java. General life-history parameters were measured, i.e., monthly length frequency for 1876 fishes, among them 573 specimens were observed for length-weight relationship, including 541 specimens for sex ratio and maturity stages. Fulton index, Gonadosomatic index, sex ratio and estimated length at first mature were analyzed.
    [Show full text]
  • Food Resources of Eucinostomus(Perciformes
    Revista de Biología Marina y Oceanografía Vol. 51, Nº2: 395-406, agosto 2016 DOI 10.4067/S0718-19572016000200016 ARTICLE Food resources of Eucinostomus (Perciformes: Gerreidae) in a hyperhaline lagoon: Yucatan Peninsula, Mexico Recursos alimenticios de Eucinostomus (Perciformes: Gerreidae) en una laguna hiperhalina: Península de Yucatán, México Ariel Adriano Chi-Espínola1* and María Eugenia Vega-Cendejas1** 1Laboratorio de Taxonomía y Ecología de Peces, CINVESTAV-IPN, Unidad Mérida, km 6 antigua carretera a Progreso, AP 73 Cordemex, C. P. 97310 Mérida, Yucatán, México. *[email protected], **[email protected] Resumen.- La alta salinidad de las lagunas hiperhalinas las convierte en hábitats extremos para los organismos acuáticos, poniendo presión sobre sus adaptaciones fisiológicas especiales. Gerreidae es una familia de peces de amplia distribución y abundancia en las lagunas costeras, muy importantes para la función del ecosistema y las pesquerías. El objetivo de este estudio fue evaluar y comparar la ecología trófica de 2 especies de mojarra en la laguna hiperhalina (> 50) de Ría Lagartos, Yucatán, para proporcionar evidencia sobre la importancia de este hábitat sobre su crecimiento y requerimientos tróficos. Las muestras fueron colectadas bimensualmente durante un ciclo anual (2004-2005). Un total de 920 ejemplares de Eucinostomus argenteus (493) y E. gula (427) fueron colectados. Los componentes tróficos fueron analizados usando el Índice de Importancia Relativa (IIR) y análisis multivariados. Las mojarras fueron definidas como consumidores de segundo orden, alimentándose de anélidos, microcrustáceos (anfípodos, copépodos, tanaidáceos, ostrácodos) y cantidades significantes de detritus con variaciones en proporción y frecuencia de acuerdo a la disponibilidad del alimento. Ambas especies compartieron los mismos recursos alimenticios, sin embargo se observaron diferencias ontogenéticas con variaciones espaciales y temporales, que con ello se evita la competencia interespecífica.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]
  • I CHARACTERIZATION of the STRIPED MULLET (MUGIL CEPHALUS) in SOUTHWEST FLORIDA: INFLUENCE of FISHERS and ENVIRONMENTAL FACTORS
    i CHARACTERIZATION OF THE STRIPED MULLET (MUGIL CEPHALUS) IN SOUTHWEST FLORIDA: INFLUENCE OF FISHERS AND ENVIRONMENTAL FACTORS ________________________________________________________________________ A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment of the requirements for the degree of Master of Science ________________________________________________________________________ By Charlotte Marin 2018 ii APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Masters of Science ________________________________________ Charlotte A. Marin Approved: 2018 ________________________________________ S. Gregory Tolley, Ph.D. Committee Chair ________________________________________ Richard Cody, Ph.D. ________________________________________ Edwin M. Everham III, Ph.D. The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii ACKNOWLEDGMENTS I would like to dedicate this project to Harvey and Kathryn Klinger, my loving grandparents, to whom I can attribute my love of fishing and passion for the environment. I would like to express my sincere gratitude to my mom, Kathy, for providing a solid educational foundation that has prepared me to reach this milestone and inspired me to continuously learn. I would also like to thank my aunt, Deb, for always supporting my career aspirations and encouraging me to follow my dreams. I would like to thank my in-laws, Carlos and Dora, for their enthusiasm and generosity in babysitting hours and for always wishing the best for me. To my son, Leo, the light of my life, who inspires me every day to keep learning and growing, to set the best example for him.
    [Show full text]
  • Juvenile Bonefish (Albula Vulpes)
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Psychology 2020-06 Juvenile bonefish (Albula vulpes) show a preference to shoal with mojarra (Eucinostomus spp.) in the presence of conspecifics and another gregarious co-occurring species Szekeres, P http://hdl.handle.net/10026.1/15684 10.1016/j.jembe.2020.151374 Journal of Experimental Marine Biology and Ecology Elsevier BV All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Juvenile bonefish (Albula vulpes) show a preference to shoal with mojarra (Eucinostomus 1 spp.) in the presence of conspecifics and morphologically similar species 3 4 5 Petra Szekeres1, Christopher R. Haak2, Alexander D.M. Wilson1,3, Andy J. Danylchuk2, Jacob 6 W. Brownscombe1,4*, Aaron D. Shultz5, and Steven J. Cooke1 7 8 1Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton 9 University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada 10 2Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, 11 MA, USA 12 3School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, PL4 13 8AA, United Kingdom 14 4 Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, 15 Canada B4H 4R2 16 17 5 Flats Ecology and Conservation Program, Cape Eleuthera Institute, Rock Sound, Eleuthera, 18 The Bahamas 19 *corresponding author email: [email protected] 20 21 Declarations of interest: none 22 23 24 25 2 26 27 Abstract 28 There are several benefits derived from social behaviour in animals, such as enhanced 29 information transfer, increased foraging opportunities, and predator avoidance.
    [Show full text]
  • Recycled Fish Sculpture (.PDF)
    Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun.
    [Show full text]
  • Safe Weekly Amounts of Mercury in Fish
    Safe weekly amounts of mercury in fish Florida testing for mercury in a variety of fish is helpful for calculating the amount of seafood a person can eat, and still stay within the EPA Reference Dose for mercury – the amount of mercury a person can consume on a continuing basis without fear of ill effects. Safe amounts of fish are calculated by weekly doses. Amounts are cumulative; each meal must be counted against the weekly reference dose. Mercury amounts vary from fish to fish, and the averages below should serve only as guidelines. How to use the chart When calculating weekly allowances of fish, refer to the box closest to your weight and see the safe amount in ounces (a typical serving of fish is about 6 ounces). For instance, if you weigh 150 pounds you should limit yourself to 4.6 ounces per week of Red Grouper. For Snook you could eat no more than 4.2 ounces per week. To eat more than one kind of fish or more than one fish meal per week, you would want to select species with high allowances, such as mullet (72.4 ounces per week) or sand bream (22.4 ounces). PPM WEIGHT OF INDIVIDUAL COMMON NAME MERCURY 50 LBS 100 LBS 150 LBS 200 LBS 250 LBS Smoked Salmon (unspecified species) 0.039 14.8 oz 29.6 44.4 59.2 73.0 Salmon (unspecified species) 0.04 14.3 28.6 42.9 57.1 70.5 Vermillion Snapper 0.051 11.2 22.4 33.6 44.8 55.3 Crabmeat (lump) 0.066 8.7 17.3 26.0 34.6 42.7 Yellowtail Snapper 0.078 7.3 14.7 22.0 29.4 36.3 Crabmeat (claw) 0.092 6.2 12.4 18.6 24.8 30.7 Lane Snapper 0.182 3.1 6.3 9.4 12.6 15.5 Canned Tuna (light) 0.205 2.8 5.6
    [Show full text]
  • Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States
    Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States Mark D. Moffler and Michael J. Durako Florida Department of Natural Resources Bureau of Marine Research 100 Eighth Ave., S.E. St. Petersburg, Florida 33701 ABSTRACT Studiesof reproductivebiology in seagrassesof the southeasternUnited States have addressed descriptive morphologyand anatomy,reproductive physiology, seed occurrence,and germination.Halodale wrightii Aschers.,Halophila engelmannii Aschers., Syringodium filiforme Kutz., and Thalassiatestudiaum Banks ex Konig are dioecious;Halophila decipiens Ostenfeld and Ruppiamaritima L. are monoecious.In Halophila johrtsoaii Eiseman, only fernale flowers are known. With the exception of R, maritima, which has hydroanemophilouspollination, these species have hydrophilous pollination. Recent reproductive-ecology studiessuggest that reproductivepatterns are due to phenoplasticresponses and/or geneticadaptation to physico-chemicalenvironmental conditions. Laboratory and field investigationsindicate that reproductive periodicityis temperaturecontrolled, but proposedmechanisms are disputed.Water temperature appears to influencefloral developmentand maybe importantin determiningsubsequent flower densities and fruit/seed production.Flowering under continuouslight in vitro suggeststhat photoperiodplays a limitedrole in floral induction.Flower expression and anthesis,however, may be influencedby photoperiod.Floral morpho- ontogeneticstudies of T. testudinumfield populationsdemonstrated the presenceof early-stageinflorescences
    [Show full text]
  • Systematic Review of the Mastacembelidae Or Spiny Eels of Burma and Thailand, with Description of Two New Species of Macrognathus
    Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol. 33, No. 2 1986 33巻2号1986年 Systematic Review of the Mastacembelidae or Spiny Eels of Burma and Thailand, with Description of Two New Species of Macrognathus Tyson R. Roberts (Received September 20, 1985) Abstract Burma and Thailand are inhabited by 14 species of Mastacembelidae, eight Macro gnathus and six Mastacembelus. Two new species of Macrognathus are described from Thailand, one with rostral toothplates and one without. Mastacembelus dayi, known only from Burma, is a valid species related to M. alboguttatus; Mastacembelus favus, from Thailand and Western Ma laysia, is distinct from its close relative M. armatus. Mastacernbeloids or spiny eels are a distinct and Mastacembelus unicolor do not occur there. group of percomorph fishes restricted to fresh On the other hand, it appears that Mastacembelus waters of Africa and Asia. The suborder has favus, known only from Thailand and Western recently been divided into two families, Chaud Malaysia, is distinct from the more widely dis huriidae and Mastacembelidae, and the Masta tributed Mastacembelus armatus, with which it is cembelidae into two subfamilies, Afromastacem sometimes sympatric. belinae (restricted to Africa) and Mastacembelinae Methods and materials (restricted to Asia) (Travers, 1984a, b). Thus understood, Mastacembelinae comprise the genera Descriptions given for some species, including Macrognathus and Mastacembelus. The 14 species those Macrognathus treated in my revision of these two genera found in Burma and Thailand (Roberts, 1980) are quite brief; more detailed are reviewed in this paper. accounts are given of the two new species and of This study began when Sven Kullander of the poorly known species such as Mastacembelus dayi Naturhistoriska Riksmuseet in Stockholm sent 17 and M.
    [Show full text]
  • Checklist of the Inland Fishes of Louisiana
    Southeastern Fishes Council Proceedings Volume 1 Number 61 2021 Article 3 March 2021 Checklist of the Inland Fishes of Louisiana Michael H. Doosey University of New Orelans, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Kyle R. Piller Southeastern Louisiana Univeristy, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Aquaculture and Fisheries Commons, and the Biodiversity Commons Recommended Citation Doosey, Michael H.; Bart, Henry L. Jr.; and Piller, Kyle R. (2021) "Checklist of the Inland Fishes of Louisiana," Southeastern Fishes Council Proceedings: No. 61. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss61/3 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Checklist of the Inland Fishes of Louisiana Abstract Since the publication of Freshwater Fishes of Louisiana (Douglas, 1974) and a revised checklist (Douglas and Jordan, 2002), much has changed regarding knowledge of inland fishes in the state. An updated reference on Louisiana’s inland and coastal fishes is long overdue. Inland waters of Louisiana are home to at least 224 species (165 primarily freshwater, 28 primarily marine, and 31 euryhaline or diadromous) in 45 families. This checklist is based on a compilation of fish collections records in Louisiana from 19 data providers in the Fishnet2 network (www.fishnet2.net).
    [Show full text]
  • Salinity Tolerances for the Major Biotic Components Within the Anclote River and Anchorage and Nearby Coastal Waters
    Salinity Tolerances for the Major Biotic Components within the Anclote River and Anchorage and Nearby Coastal Waters October 2003 Prepared for: Tampa Bay Water 2535 Landmark Drive, Suite 211 Clearwater, Florida 33761 Prepared by: Janicki Environmental, Inc. 1155 Eden Isle Dr. N.E. St. Petersburg, Florida 33704 For Information Regarding this Document Please Contact Tampa Bay Water - 2535 Landmark Drive - Clearwater, Florida Anclote Salinity Tolerances October 2003 FOREWORD This report was completed under a subcontract to PB Water and funded by Tampa Bay Water. i Anclote Salinity Tolerances October 2003 ACKNOWLEDGEMENTS The comments and direction of Mike Coates, Tampa Bay Water, and Donna Hoke, PB Water, were vital to the completion of this effort. The authors would like to acknowledge the following persons who contributed to this work: Anthony J. Janicki, Raymond Pribble, and Heidi L. Crevison, Janicki Environmental, Inc. ii Anclote Salinity Tolerances October 2003 EXECUTIVE SUMMARY Seawater desalination plays a major role in Tampa Bay Water’s Master Water Plan. At this time, two seawater desalination plants are envisioned. One is currently in operation producing up to 25 MGD near Big Bend on Tampa Bay. A second plant is conceptualized near the mouth of the Anclote River in Pasco County, with a 9 to 25 MGD capacity, and is currently in the design phase. The Tampa Bay Water desalination plant at Big Bend on Tampa Bay utilizes a reverse osmosis process to remove salt from seawater, yielding drinking water. That same process is under consideration for the facilities Tampa Bay Water has under design near the Anclote River.
    [Show full text]