minerals Article Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock-Forming Minerals as Monitors for Magmatic Differentiation, Volatile-Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems Hans G.M. Eggenkamp 1,* , Michael A.W. Marks 1, Petya Atanasova 1,2, Thomas Wenzel 1 and Gregor Markl 1 1 Department of Geosciences, Eberhard-Karls-Universität Tübingen, Schnarrenbergstraße 94-96, D-72076 Tübingen, Germany;
[email protected] (M.A.W.M.);
[email protected] (P.A.);
[email protected] (T.W.);
[email protected] (G.M.) 2 Helmholtz-Zentrum Dresden—Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany * Correspondence:
[email protected] Received: 23 October 2020; Accepted: 5 November 2020; Published: 10 November 2020 Abstract: We determined the halogen (F, Cl, Br, and I) and sulfur (S) concentrations in Cl-rich rock-forming minerals from five peralkaline complexes. We investigated sodalite (N = 42), eudialyte-group minerals (N = 84), and tugtupite (N = 8) from representative rock samples derived from Ilímaussaq (South Greenland), Norra Kärr (Sweden), Tamazeght (Morocco), Lovozero, and Khibina (Russian Federation). Taken together, sodalite and eudialyte-group minerals dominate the Cl and Br budget of the investigated rocks. For F, however, several other phases (e.g., amphibole, fluorite, villiaumite, and minerals of the rinkite group and the apatite supergroup) are additional sinks, and parts of the S may be scavenged in generally rare sulfides. The investigated minerals contain Cl at the wt.% level, F and S concentrations are in the hundreds to thousands of µg/g-range, Br is less common (0.2–200 µg/g) and I is rare (mostly well below 1 µg/g).