Bioavailability, Metabolism, and Bioefficacy of Tomato Carotenoids

Total Page:16

File Type:pdf, Size:1020Kb

Bioavailability, Metabolism, and Bioefficacy of Tomato Carotenoids BIOAVAILABILITY, METABOLISM, AND BIOEFFICACY OF TOMATO CAROTENOIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Rachel Elizabeth Kopec Graduate Program in Ohio State University Nutrition Program The Ohio State University 2012 Dissertation Committee: Steven J. Schwartz, Ph.D., Advisor Steven K. Clinton, M.D., Ph.D. Mark L. Failla, Ph.D. Earl H. Harrison, Ph.D. Copyrighted by Rachel Elizabeth Kopec 2012 Abstract Carotenoids are non-polar compounds which impart the yellow, orange, and red hues to a number of commonly consumed fruits and vegetables. Some carotenoids, like β-carotene, serve as an important source of provitamin A in the human diet. In contrast, consumption of the carotenoid lycopene has been associated with a reduced risk of developing cardiovascular disease and cancer. Finally, the consumption of lycopene, in addition to the carotenoids phytoene and phytofluene, has been associated with a reduced severity of erythema after ultraviolet light exposure. A better understanding of the absorption, metabolism, and bioefficacy of these compounds is important for making future nutritional recommendations to ensure adequate vitamin A status and reduce the risk of developing specific diseases. Tomatoes have the unique ability to synthesize a variety of carotenoids, and novel varieties which accumulate β-carotene, lycopene, phytoene, and phytofluene, were used in our studies. Our first aim was to determine if the consumption of a β-carotene-rich tomato sauce or carrots (containing both β-carotene and α-carotene) with lipid would enhance the delivery of greater quantities of vitamin A as compared to consuming the same carotene rich food without lipid. This objective was accomplished by first developing an HPLC-MS/MS method to separate and identify the carotenes and fat soluble vitamins in the test meal, and then quantitating the immediate post-prandial plasma concentrations of ii β-carotene and vitamin A metabolites after healthy subjects consumed a meal with or without lipid-rich avocado in combination with a serving of tomato sauce. Consumption of the sauce with lipid-rich avocado increased β-carotene levels by 2.3 fold and increased retinyl esters (i.e. vitamin A) by 4.5 fold as compared to the same sauce meal without avocado. An important step in elucidating the potential bioactivity of lycopene is a better understanding of its metabolism in the human body. One approach in determining if and how lycopene is metabolized is to identify the oxidative or enzymatic products of lycopene. Our second aim was to determine whether oxidative products of lycopene are present in raw and processed tomatoes and other lycopene containing foods, in addition to blood plasma of humans who have consumed processed tomato juice. Numerous lycopene metabolites were identified and quantified in raw foods and food products containing lycopene. In addition, these lycopene metabolites were also identified and quantified in the blood plasma of healthy humans who had consumed a high-lycopene tomato juice for 8 weeks. Finally, the consumption of tomato paste and tomato oleoresin containing lycopene, phytoene, and phytofluene has been associated with reduced severity of erythema after ultraviolet light exposure in humans. Our third aim was to determine if the consumption of tangerine tomatoes, containing higher levels of the ultraviolet light absorbing carotenoids phytoene and phytofluene, would: 1) result in the accumulation of lycopene, phytoene, and phytofluene in a mouse model, and 2) reduce the incidence or severity of acute ultraviolet B irradiation-induced skin damage. An immunocompetent, iii SKH-1 hairless mouse model was used for this study. Animals consumed a freeze-dried tangerine tomato powder diet for ten weeks, and a subset of animals was irradiated with an acute dose of UVB light. Carotenoids accumulated in the skin of the animals which had consumed the tangerine tomato diet, and lower levels of phytoene, phytofluene, and lycopene were observed in animals which had been irradiated with UVB. Female mice consuming the tangerine tomato diet had reduced levels of DNA damage as compared to female animals consuming the control diet. Male mice consuming the tangerine tomato diet had reduced levels of inflammation and DNA damage as compared to male animals consuming the control diet. Collectively, these results add to the body of knowledge of factors affecting carotenoid absorption and metabolism, and provide important information necessary for a further understanding of potential bioefficacy of carotenoids. In addition, this work demonstrates that novel tomato varieties may serve as a vehicle for delivering higher levels of specific carotenoids to humans and animals for future studies. iv Dedicated to my family v Acknowledgements First and foremost, I want to thank my thesis advisor, Dr. Steven J. Schwartz, to whom I will be eternally grateful. His concern for the wellbeing of his students, his ability to encourage others with confidence and support, his wisdom, and the numerous opportunities he provides for scientific and professional growth have made this a very positive and rewarding experience. I would like to collectively thank my thesis committee for the time and thoughtful discussions which have developed my skills as a scientist, and for their various contributions to both thesis and non-thesis studies in which I have been involved. In addition, I would like to thank them each for their unique contributions to my experience. Dr. Failla’s dedication to mentoring and to high quality science always inspires me to be more for myself and to do more for others. I would like to thank Dr. Harrison for regularly sharing his depth of knowledge and passion for all things vitamin A and carotenoid related. Finally, I would like to thank Dr. Clinton, whose enthusiasm and vision for the role nutrition and dietary factors can play in disease prevention continues to inspire me. I am truly indebted to a great number of people for all of acts of kindness and support I have received throughout this process. I would like thank Dr. Tatiana Oberyszyn and her research group for welcoming me with open arms and for sharing vi their research expertise. I would like to thank Dr. Yael Vodovotz and Dr. David Francis, who have been strong sources of support and have helped guide me at key points during my studies. I want to thank Dr. Ferhan Ozadali, Marjory Renita, and Casey Philbin who served as important mentors early on in the research process and were very influential in my selection of this area of study. I am especially thankful to Dr. Ken Riedl for his countless hours of training and passing of knowledge of all things mass spectrometry related. I would also like to thank all of the past and present Schwartz lab members - whose enthusiasm and friendship has made this educational experience very enjoyable, and who have always challenged me to be a better student and teacher. Finally, I would like to thank my parents and my grandparents, who encouraged me to follow my own path, and whose continuous love and guidance has been with me the entire way. vii Vita September 13, 1984 .......................................Born – Toledo, Ohio 1998-2002 ......................................................Eastwood High School 2002-2006 ......................................................B.S. Honors, Pharmaceutical Sciences, The Ohio State University 2002-2006 ......................................................B.S. Business Administration, Finance Specialization, The Ohio State University 2006 to present ..............................................Graduate Research Associate, Department of Human Nutrition, The Ohio State University Publications 1. Schweiggert, R.M., Kopec, R.E., Villalobos, M.G., Ramirez, L., Högel, J., Quesada, S., Esquivel, P.E., Schwartz, S.J., Carle, R. 2012. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans. In Preparation 2. Garzon, G.A., Narvaez C., Kopec, R.E., Riedl, K., Schwartz, S.J. 2012. Characterization and quantification of carotenoids in Arazá (Eugenia stipitata McVaugh) an Amazonian fruit. Journal of Agricultural and Food Chemistry. 60(18):4709-4717 3. Eroglu, A., Hruszkewycz, D.P., dela Sena, C., Narayanasamy, S., Riedl, K.M., Kopec, R.E., Schwartz, S.J., Curley, R.W.Jr., Harrison, E.H. 2012. Naturally- occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors. Journal of Biological Chemistry. 287(19):15886-15895 viii 4. Pickworth, C.L., Loerch, S.C., Kopec, R.E., Schwartz, S. J., Fluharty, F.L. 2012. Concentration of pro-vitamin A carotenoids in common beef cattle feedstuffs. Journal of Animal Science. 90(5):1553-1561 5. Barona, J., Jones, J.J., Kopec, R.E., Comperatore, M., Andersen, C., Schwartz, S.J., Lerman, R.H., Fernandez, M.L. 2012. A Mediterranean-style low-glycemic- load diet increases plasma carotenoids and decreases LDL oxidation in women with metabolic syndrome. Journal of Nutritional Biochemistry. 23(6):609-615 6. Kopec, R.E., Cooperstone, J.L., Cichon, M., Schwartz, S.J. Analysis Methods of Carotenoids. In: Analysis of Antioxidant-Rich Phytochemicals. Z. Xu and L. Howard, eds. Oxford, England: Wiley-Blackwell, 2012: 105-148 7. Gupta, R., Kopec R.E., Balasubramaniam, V.M., Schwartz, S.J. 2011. Combined pressure-temperature effects on carotenoid retention and bioaccessibility in tomato juice. Journal of Agricultural and Food Chemistry. 59(14):7808-7817 8. Fleshman M.K, Lester, G.E., Riedl, K.M., Kopec, R.E., Narayanasamy, S., Curley, R.W. Jr,, Schwartz, S.J., Harrison, E.H. 2011. Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. Journal of Agricultural and Food Chemistry. 59(9):4448-4454 9. Kopec, R.E., Schwartz, S.J., Hadley, C. Lycopene. In: Encyclopedia of Dietary Supplements. P. Coates and M. Blackman, eds. 2nd Ed. New York, NY: Informa Healthcare USA, Inc., 2010:504-517 10. Story, E.N., Kopec, R.E., Schwartz, S.J., Harris, G.K. An update on the health effects of tomato lycopene.
Recommended publications
  • Biosynthesis of Abscisic Acid by the Direct Pathway Via Ionylideneethane in a Fungus, Cercospora Cruenta
    Biosci. Biotechnol. Biochem., 68 (12), 2571–2580, 2004 Biosynthesis of Abscisic Acid by the Direct Pathway via Ionylideneethane in a Fungus, Cercospora cruenta y Masahiro INOMATA,1 Nobuhiro HIRAI,2; Ryuji YOSHIDA,3 and Hajime OHIGASHI1 1Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 2International Innovation Center, Kyoto University, Kyoto 606-8501, Japan 3Department of Agriculture Technology, Toyama Prefectural University, Toyama 939-0311, Japan Received August 11, 2004; Accepted September 12, 2004 We examined the biosynthetic pathway of abscisic Key words: Cercospora cruenta; abscisic acid; allofar- acid (ABA) after isopentenyl diphosphate in a fungus, nesene; -ionylideneethane; all-E-7,8-dihy- Cercospora cruenta. All oxygen atoms at C-1, -1, -10, and dro- -carotene -40 of ABA produced by this fungus were labeled with 18 18 O from O2. The fungus did not produce the 9Z- A sesquiterpenoid, abscisic acid (ABA, 1), is a plant carotenoid possessing -ring that is likely a precursor hormone which regulates seed dormancy and induces for the carotenoid pathway, but produced new sesqui- dehydration tolerance by reducing the stomatal aper- terpenoids, 2E,4E- -ionylideneethane and 2Z,4E- -ion- ture.1) ABA is biosynthesized by some phytopathogenic ylideneethane, along with 2E,4E,6E-allofarnesene. The fungi in addition to plants,2) but the biosynthetic origin fungus converted these sesquiterpenoids labeled with of isopentenyl diphosphate (IDP) for fungal ABA is 13C to ABA, and the incorporation ratio of 2Z,4E- - different from that for plant ABA (Fig. 1). Fungi use ionylideneethane was higher than that of 2E,4E- - IDP derived from the mevalonate pathway for ABA, ionylideneethane.
    [Show full text]
  • Bioactive Compounds of Tomatoes As Health Promoters
    48 Natural Bioactive Compounds from Fruits and Vegetables, 2016, Ed. 2, 48-91 CHAPTER 3 Bioactive Compounds of Tomatoes as Health Promoters José Pinela1,2, M. Beatriz P. P Oliveira2, Isabel C.F.R. Ferreira1,* 1 Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal 2 REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal Abstract: Tomato (Lycopersicon esculentum Mill.) is one of the most consumed vegetables in the world and probably the most preferred garden crop. It is a key component of the Mediterranean diet, commonly associated with a reduced risk of chronic degenerative diseases. Currently there are a large number of tomato cultivars with different morphological and sensorial characteristics and tomato-based products, being major sources of nourishment for the world’s population. Its consumption brings health benefits, linked with its high levels of bioactive ingredients. The main compounds are carotenoids such as β-carotene, a precursor of vitamin A, and mostly lycopene, which is responsible for the red colour, vitamins in particular ascorbic acid and tocopherols, phenolic compounds including hydroxycinnamic acid derivatives and flavonoids, and lectins. The content of these compounds is variety dependent. Besides, unlike unripe tomatoes, which contain a high content of tomatine (glycoalkaloid) but no lycopene, ripe red tomatoes contain high amounts of lycopene and a lower quantity of glycoalkaloids. Current studies demonstrate the several benefits of these bioactive compounds, either isolated or in combined extracts, namely anticarcinogenic, cardioprotective and hepatoprotective effects among other health benefits, mainly due to its antioxidant and anti-inflammatory properties.
    [Show full text]
  • Biocolorants and Its Implications in Health and Food Industry - a Review
    International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.3, No.4, pp 2228-2244, Oct-Dec 2011 Biocolorants and its implications in Health and Food Industry - A Review H. Rymbai1*, R.R. Sharma2, Manish Srivastav1 1Division of Fruits & Horticultural Technology, 2Division of Post Harvest Technology, Indian Agricultural Research Institute, New Delhi, 110012, India *Corres.author: [email protected] Mobile No. 09582155637 Abstract: Color is the main feature of any food item as it enhances the appeal and acceptability of food. During processing, substantial amount of color is lost, and make any food commodity attractive to the consumers, synthetic or natural colours are added. Several types of dyes are available in the market as colouring agents to food commodities but biocolorants are now gaining popularity and considerable significance due to consumer awareness because synthetic dyes cause severe health problems. Biocolorants are prepared from renewable sources and majority are of plant origin. The main food biocolorants are carotenoids, flavanoids, anthocyanidins, chlorophyll, betalain and crocin, which are extracted from several horticultural plants. In addition to food coloring, biocolorants also act as antimicrobials, antioxygens and thereby prevent several diseases and disorders in human beings. Although, biocolorants have several potential benefits, yet tedious extraction procedures, low colour value, higher cost than synthetic dyes, instability during processing etc., hinder their popularity. Although, it is presumed that with the use of modern techniques of biotechnology, these problems in extraction procedures will be reduced, yet to meet the growing demand, more detailed studies on the production and stability of biocolorants are necessary while ensuring biosafety and proper legislation.
    [Show full text]
  • Pigment Palette by Dr
    Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression.
    [Show full text]
  • Multiplicity of Carotene Patterns Derives from Competition Between
    www.nature.com/scientificreports OPEN Multiplicity of carotene patterns derives from competition between phytoene desaturase diversifcation and biological environments Mathieu Fournié1,2,3 & Gilles Truan1* Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many diferent carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from diferent clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of fve purifed enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modifed the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classifcation but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps. Carotenoids are organic pigments produced by plants, algae, fungi, and bacteria and can be subdivided into two families of molecules, carotenes and their oxidised counterparts, xanthophylls 1.
    [Show full text]
  • Free Radicals in Biology and Medicine Page 0
    77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. S. Jetawattana Lycopene, a powerful antioxidant 1 Lycopene, a powerful antioxidant by Suwimol Jetawattana Department of Radiation Oncology Free Radical and Radiation Biology The University
    [Show full text]
  • Transcriptional Analysis of Carotenoids Accumulation and Metabolism in a Pink-Fleshed Lemon Mutant
    G C A T T A C G G C A T genes Article Transcriptional Analysis of Carotenoids Accumulation and Metabolism in a Pink-Fleshed Lemon Mutant Giuseppe Lana 1 , Jaime Zacarias-Garcia 2 , Gaetano Distefano 1 , Alessandra Gentile 1, María J. Rodrigo 2 and Lorenzo Zacarias 2,* 1 Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; [email protected] (G.L.); [email protected] (G.D.); [email protected] (A.G.) 2 Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Paterna, 46980 Valencia, Spain; [email protected] (J.Z.-G.); [email protected] (M.J.R.) * Correspondence: [email protected]; Tel.: +34-963-900-022; Fax: +34-963-636-301 Received: 8 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Pink lemon is a spontaneous bud mutation of lemon (Citrus limon, L. Burm. f) characterized by the production of pink-fleshed fruits due to an unusual accumulation of lycopene. To elucidate the genetic determinism of the altered pigmentation, comparative carotenoid profiling and transcriptional analysis of both the genes involved in carotenoid precursors and metabolism, and the proteins related to carotenoid-sequestering structures were performed in pink-fleshed lemon and its wild-type. The carotenoid profile of pink lemon pulp is characterized by an increased accumulation of linear carotenoids, such as lycopene, phytoene and phytofluene, from the early stages of development, reaching their maximum in mature green fruits. The distinctive phenotype of pink lemon is associated with an up-regulation and down-regulation of the genes upstream and downstream the lycopene cyclase, respectively.
    [Show full text]
  • Functional Complementation in Escherichia Coli of Different
    Functional Complementation in Escherichia coli of Different Phytoene Desaturase Genes and Analysis of Accumulated Carotenes Hartmut Linden3, Norihiko Misawa3*, Daniel Chamovitzb, Iris Pecker*5, Joseph Hirschberg*5, and Gerhard Sandmann3 a Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, P.O. Box 5560, D-7750 Konstanz, Bundesrepublik Deutschland b Department of Genetics, The Hebrew University, Jerusalem 91904, Israel Z. Naturforsch. 46c, 1045-1051 (1991); received September 13, 1991 Bisdehydrolycopene, ^-Carotene, c rtl Gene, Genetic Complementation, Lycopene Three different phytoene desaturase genes, from Rhodobacter capsulatus, Erwinia uredovora, and Synechococcus PCC 7942, have been functionally complemented with a gene construct from E. uredovora which encodes all enzymes responsible for formation of 1 5-cis phytoene in Escherichia coli. As indicated by the contrasting reaction products detected in the pigmented E. coli cells after co-transformation, a wide functional diversity of these three different types of phytoene desaturases can be concluded. The carotenes formed by the phytoene desaturase from R. capsulatus were /ra/i.s-neurosporene with three additional double bonds and two cis isomers. Furthermore, small amounts of three ^-carotene isomers (2 double bonds more than phytoene) and phytofluene (15-cw and all -trans with + 1 double bond) were detected as inter­ mediates. When the subsequent genes from E. uredovora which encode for lycopene cyclase and ß-carotene hydroxylase were present, neurosporene, the phytoene desaturase product of R. capsulatus, was subsequently converted to the monocyclic ß-zeacarotene and its mono- hydroxylation product. The most abundant carotene resulting from phytoene desaturation by the E. uredovora enzyme was frarts-lycopene together with a cis isomer.
    [Show full text]
  • Enzymatic Synthesis of Carotenes and Related Compounds
    ENZYMATIC SYNTHESIS OF CAROTENES AND RELATED COMPOUNDS JOHN W. PORTER Lipid Metabolism Laboratory, Veterans Administration Hospital and the Department of Physiological Chemistry, University of Wisconsin, Madison, Wisconsin 53705, U.S.A. ABSTRACT Data are presented in this paper which establish many of the reactions involved in the biosynthesis of carotenes. Studies have shown that all of the enzymes required for the synthesis of acyclic and cyclic carotenes from mevalonic acid are present in plastids of tomato fruits. Thus, it has been demonstrated that a soluble extract of an acetone powder of tomato fruits converts mevalonic acid to geranylgeranyl pyrophosphate, and isopentenyl pyrophosphate to phytoene, phytofluene, neurosporene and lycopene. Finally, it has been demonstrated that lycopene is converted into mono- and dicyclic carotenes by soluble extracts of plastids of tomato fruits. Whether the enzymes for the conversion of acetyl-CoA to mevalonic acid are also present in tomato fruit plastids has not yet been determined. INTRODUCTION Studies on the enzymatic synthesis of carotenes were, until very recently, plagued by a number of problems. One of these was the fact that the enzymes for the synthesis of carotenes are located in a particulate body, namely chromoplasts or chloroplasts. Hence, a method of solubilization of the enzymes without appreciable loss of enzyme activity was needed. A second problem was concerned with the commercial unavailability of labelled substrate other than mevalonic acid. Thus it became necessary to synthesize other substrates either chemically or enzymatically and then to purify these compounds. Thirdly, the reactions in the synthesis of carotenes appear to proceed much more slowly than many other biochemical reactions.
    [Show full text]
  • Carotenoids and Their Metabolites in Human Serum, Breast Milk, Major Organs, and Ocular Tissues
    Carotenoids and Their Metabolites in Human Serum, Breast Milk, Major Organs, and Ocular Tissues Frederick Khachik, Ph.D. Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA 20742 ([email protected]) 1. Carotenoids in Human Serum and Breast Milk Carotenoids in human serum and breast milk originate from consumption of fruits and vegetables that are one the major dietary sources of these compounds. Carotenoids in fruits and vegetables can be classified as: 1) hydrocarbon carotenoids or carotenes, 2) monohydroxycarotenoids, 3) dihydroxycarotenoids, 4) carotenol acyl esters, and 5) carotenoid epoxides. Among these classes, only carotenes, monohydroxy- and dihydroxycarotenoids are found in the human serum/plasma and milk [1, 2]. Carotenol acyl esters apparently undergo hydrolysis in the presence of pancreatic secretions to regenerate their parent hydroxycarotenoids that are then absorbed. Although carotenoid epoxides have not been detected in human serum/plasma or tissues and their fate is uncertain at present, an in vivo bioavailability study with lycopene involving rats indicates that this class of carotenoids may be handled and modified by the liver [3]. Detailed isolation and identification of carotenoids in human plasma and serum has been previously published [1, 2]. This has been accomplished by simultaneously monitoring the separation of carotenoids by HPLC-UV/Vis-MS as well as comparison of the HPLC-UV/Vis– MS profiles of unknowns with those of known synthetic or isolated carotenoids. As shown in Table 1, as many as 21 carotenoids are typically found in human serum. 2 Table 1. A list of human serum carotenoids originating from foods as well their metabolites identified in human serum and breast milk.
    [Show full text]
  • Identifying Anatomical Sites of Carotenoid Metabolism in Birds
    Naturwissenschaften (2009) 96:987–988 DOI 10.1007/s00114-009-0544-7 COMMENTS & REPLIES Identifying anatomical sites of carotenoid metabolism in birds Kevin J. McGraw Received: 8 April 2009 /Accepted: 9 April 2009 /Published online: 20 May 2009 # Springer-Verlag 2009 Carotenoid metabolism has long interested plant and animal identification (Wyss 2004), isotope labeling of precursors biochemists (Goodwin 1986; Lu and Li 2008). Identifying (Burri and Clifford 2004), and by inference from ex vivo tissue sites and enzymes responsible for carotenoid trans- chemical reactions (Khachik et al. 1998) or where caroten- formations (e.g., β-carotene to vitamin A) has been oid types exist in no other tissue type (McGraw 2004). challenging. Colorful birds have recently become a model del Val et al. (2009) undertook none of these types of for studying carotenoid nutrition and metabolism, in the investigation. The first step in such research is to rule out a context of sexual selection and honest signaling (McGraw dietary source to the pigment, but the authors did not study 2006). In a recent paper published in Naturwissenschaften, food carotenoids in crossbills; they sampled only liver, del Val et al. (2009) described carotenoid profiles in tissues skin, and feathers from accidentally field-killed animals and of male common crossbills (Loxia curvirostra), with the drew blood from molting birds. While red carotenoids are aim of localizing metabolic site(s) for a ketocarotenoid not currently thought to be common in diets of herbivorous pigment—3-hydroxy-echinenone (3HE)—present in red land birds (e.g., rubixanthin in rose hips, rhodoxanthin in feathers. They found 3HE in blood and liver, unlike Taxus berries), this is a key assumption to biochemically previous studies of colorful songbirds where metabolized validate for any species, given the paucity of information integumentary carotenoids were found only at peripheral on avian food carotenoids.
    [Show full text]
  • 1 Carotenoids, Health Benefits and Bioavailability Carotenoids
    Carotenoids, Health Benefits and Bioavailability Steven J. Schwartz, Ph.D. Food Science & Interdisciplinary Graduate Program in Nutrition The Ohio State University Phytochemicals in Fruits and Vegetables for Health October 2, 2013 Carotenoids 1 Lycopene Biosynthesis Phytoene Phytofluene -Carotene Neurosporene Lycopene Biosynthesis of common β and ε cyclic carotenes Lycopene -Carotene -Carotene -Carotene -Carotene -Carotene Adapted from Britton, 1983 and Gross, 1991. Tomatoes Varieties with Unique Carotenoid Profile RED OR1 OR2 YEL GRE 2 Common Carotenoids Xanthophylls Hydrocarbons Lutein -Carotene Zeaxanthin -Carotene -Cryptoxanthin Lycopene Biological Functions of Carotenoids . Provitamin A Activity . Non-provitamin A Activity: • Singlet Oxygen Quenching Activity • Antioxidant Activity (Trap Free Radicals) • Enhancement of Immune Response • Potential Chemopreventive Properties Conversion to Vitamin A -carotene O2 15,15’-oxygenase H+ reductase OH OH retinol retinol 3 World Health Organization Vitamin A - WHO Facts and Figures • An estimated 250 million preschool children are vitamin A deficient – It is likely that in vitamin A deficient areas, a substantial proportion of pregnant women are vitamin A deficient • An estimated 250 000 to 500 000 vitamin A- deficient children become blind every year, – Half of these die within 12 months of losing their sight Carotenoids and Health Benefits . Epidemiological . Cell culture . Animal (experimental) . Human (clinical) 4 Dietary carotenoids, vitamin-A, vitamin-C, and vitamin-E, and advanced Age-related Macular Degeneration Seddon et al. J. Am. Med. Assoc. 272: (18) 1413-1420, 1994 “Conclusion.-Increasing the consumption of foods rich in certain carotenoids, in particular dark green, leafy vegetables, may decrease the risk of developing advanced or exudative AMD, the most visually disabling form of macular degeneration among older people.” Lutein & Zeaxanthin in the Macula • Macula is the Region Lutein & Directly Behind the Lens, Zeaxanthin Receiving the Most Light.
    [Show full text]