(12) Patent Application Publication (10) Pub. No.: US 2009/0324846A1 Tomaschke Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Regulation of Photosynthesis by a Potassium Transporter in the Diatom Phaeodactylum Tricornutum Claire Seydoux
Regulation of photosynthesis by a potassium transporter in the diatom Phaeodactylum tricornutum Claire Seydoux To cite this version: Claire Seydoux. Regulation of photosynthesis by a potassium transporter in the diatom Phaeo- dactylum tricornutum. Vegetal Biology. Université Grenoble Alpes [2020-..], 2020. English. NNT : 2020GRALV031. tel-03172222 HAL Id: tel-03172222 https://tel.archives-ouvertes.fr/tel-03172222 Submitted on 17 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Biologie Végétale Arrêté ministériel : 25 mai 2016 Présentée par Claire SEYDOUX Thèse dirigée par Florence COURTOIS, Maitre de conferences, Université Grenoble Alpes et codirigée par Giovanni FINAZZI, Université Grenoble Alpes préparée au sein du Laboratoire Laboratoire de Physiologie Cellulaire Végétale dans l'École Doctorale Chimie et Sciences du Vivant Régulation de la photosynthèse par un transporteur de potassium chez la diatomée Phaeodactylum tricornutum Regulation of photosynthesis -
Diverse Biosynthetic Pathways and Protective Functions Against Environmental Stress of Antioxidants in Microalgae
plants Review Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae Shun Tamaki 1,* , Keiichi Mochida 1,2,3,4 and Kengo Suzuki 1,5 1 Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; [email protected] (K.M.); [email protected] (K.S.) 2 RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan 3 Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan 4 School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan 5 euglena Co., Ltd., Tokyo 108-0014, Japan * Correspondence: [email protected]; Tel.: +81-45-503-9576 Abstract: Eukaryotic microalgae have been classified into several biological divisions and have evo- lutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that Citation: Tamaki, S.; Mochida, K.; Suzuki, K. Diverse Biosynthetic AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena Pathways and Protective Functions pathway in Euglenophyta, Heterokontophyta, and Haptophyta. -
Photosynthetic Pigments in Diatoms
Mar. Drugs 2015, 13, 5847-5881; doi:10.3390/md13095847 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Photosynthetic Pigments in Diatoms Paulina Kuczynska 1, Malgorzata Jemiola-Rzeminska 1,2 and Kazimierz Strzalka 1,2,* 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland; E-Mails: [email protected] (P.K.); [email protected] (M.J.-R.) 2 Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-126-646-509; Fax: +48-126-646-902. Academic Editor: Véronique Martin-Jézéquel Received: 10 July 2015 / Accepted: 7 September 2015 / Published: 16 September 2015 Abstract: Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. -
Ricinus Cell Cultures. I. Identification of Rhodoxanthin
Hormone Induced Changes in Carotenoid Composition in Ricinus Cell Cultures. I. Identification of Rhodoxanthin Hartmut Kayser Abteilung für Allgemeine Zoologie and Armin R. Gemmrich Abteilung für Allgemeine Botanik, Universität Ulm, Postfach 40 66. D-7900 Ulm/Donau Z. Naturforsch. 39c, 50-54 (1984); received November 10. 1983 Rhodoxanthin. Carotenoids, Plant Cell Cultures, Plant Hormones, Ricinus communis When cell cultures of Ricinus communis are grown in light and with kinetin as the sole growth factor red cells are formed. The red pigmentation is due to the accumulation o f rhodoxanthin which is the major carotenoid in these cultures. The identification of this retro-type carotenoid is based on electronic and mass spectra, on chemical transformation to zeaxanthin, and on comparison with an authentic sample. Rhodoxanthin is not present in any part of the intact plant. The major yellow carotenoid in the red cultures is lutein. Introduction Materials and Methods Chloroplasts of higher plants contain a fairly Plant material constant pattern of carotenoids which function as accessory pigments in photosynthesis and protect The callus cultures are derived from the endo the chlorophylls and chloroplast enzymes against sperm of the castor bean. Ricinus communis; only photodestruction [1]. In contrast to this type of strain A, as characterized elsewhere [5]H was used. plastids, chromoplasts contain a great variety of The cells were cultivated under fluorescent white carotenoids, some of which are not found in other light (Osram L65W/32, 5 W /m 2) at 20 °C On a solid types of plastids. These pigments are responsible for Gamborg B5 medium [7] supplemented with 2% the bright red. -
Biocolorants and Its Implications in Health and Food Industry - a Review
International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.3, No.4, pp 2228-2244, Oct-Dec 2011 Biocolorants and its implications in Health and Food Industry - A Review H. Rymbai1*, R.R. Sharma2, Manish Srivastav1 1Division of Fruits & Horticultural Technology, 2Division of Post Harvest Technology, Indian Agricultural Research Institute, New Delhi, 110012, India *Corres.author: [email protected] Mobile No. 09582155637 Abstract: Color is the main feature of any food item as it enhances the appeal and acceptability of food. During processing, substantial amount of color is lost, and make any food commodity attractive to the consumers, synthetic or natural colours are added. Several types of dyes are available in the market as colouring agents to food commodities but biocolorants are now gaining popularity and considerable significance due to consumer awareness because synthetic dyes cause severe health problems. Biocolorants are prepared from renewable sources and majority are of plant origin. The main food biocolorants are carotenoids, flavanoids, anthocyanidins, chlorophyll, betalain and crocin, which are extracted from several horticultural plants. In addition to food coloring, biocolorants also act as antimicrobials, antioxygens and thereby prevent several diseases and disorders in human beings. Although, biocolorants have several potential benefits, yet tedious extraction procedures, low colour value, higher cost than synthetic dyes, instability during processing etc., hinder their popularity. Although, it is presumed that with the use of modern techniques of biotechnology, these problems in extraction procedures will be reduced, yet to meet the growing demand, more detailed studies on the production and stability of biocolorants are necessary while ensuring biosafety and proper legislation. -
Algal Pigments As Biomarkers Linking Fish and Benthic Organisms with Type E Botulism
Algal pigments in benthic organisms and fish: development of biomarkers to trace food-web relationships Katherine T. Alben, Maxime Bridoux, Monika Sobiechowska Wadsworth Center, New York State Department of Health Dept. Environmental Health Sciences, SUNY-Albany National Water Quality Monitoring Conference May 9, 2006 San Jose, CA U at ALBANY From R. Ruffin, with permission Type E botulism: what are the food-web pathways? loon grebe gull Hypothesis: algal scud pigments goby yellow orange red can be used to trace food-web connections http://www.combat-fishing.com/lakepondbalance.htm#coldwaterlglake http://www.dnr.state.mn.us/exotics/aquaticanimals/roundgoby/index.html http://www.vancouverisland.com/021wildl&cons/wildlife/birds/cw/cw_herringgull.html http://www.admiraltyaudubon.org/ [email protected] U at ALBANY Algal carotenoids found in the food web diatoms & fucoxanthin C42H60O6 55 chrysophytes diatoxanthin C40H54O2 55 cryptophytes alloxanthin C40H52O2 55 chlorophytes lutein C40H56O2 (5) 55 5 cyanobacteria zeaxanthin C40H56O2 55 5 5 cantha- C40H52O2 55 β-crypto- C40H56O 55 echinenone C40H54O 555 euglenophytes neoxanthin C40H56O4 5 dinoflagellates peridinin C39H52O7 NF NF NF NF crustacean astaxanthin C40H52O4 55 5 5 metabolism U at ALBANY Method Development Standards – high resolution separations Quantitation – NIST, reference materials, MDLs Sample prep – microanalytical procedures, SPE, enzymatic hydrolysis Applications – Phytoplankton Gastropods Dreissenids Fish – round gobies, drum, perch, bass Standards - chlorophyll & carotenoids -
Pigment Palette by Dr
Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression. -
Pigmentation and Spectral Absorbance in the Deep-Sea Arctic Amphipods Eurythenes Gryllus and Anonyx Sp
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225537390 Pigmentation and spectral absorbance in the deep-sea arctic amphipods Eurythenes gryllus and Anonyx sp. Article in Polar Biology · January 2011 Impact Factor: 1.59 · DOI: 10.1007/s00300-010-0861-5 CITATIONS READS 4 29 3 authors, including: Jørgen Berge University of Tromsoe 134 PUBLICATIONS 1,565 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Jørgen Berge letting you access and read them immediately. Retrieved on: 13 July 2016 Polar Biol (2011) 34:83–93 DOI 10.1007/s00300-010-0861-5 ORIGINAL PAPER Pigmentation and spectral absorbance in the deep-sea arctic amphipods Eurythenes gryllus and Anonyx sp. Hanne H. Thoen • Geir Johnsen • Jørgen Berge Received: 12 February 2010 / Revised: 28 June 2010 / Accepted: 29 June 2010 / Published online: 14 July 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract As for many deep-sea animals, the red colour- the in vivo and in vitro pigment raw extracts in general, ation of the two amphipods Eurythenes gryllus and Anonyx most likely caused by pigment-binding proteins. The dif- sp. has an important function providing camouflage, as the ferences in pigment composition and wavelength shifts attenuation of the red wavelengths in seawater is higher suggest large intra- and inter-specific differences between than other colours within the visible range. Variation in the two species. Probable reasons for changes in pigment colouration between different stages of colour intensity composition could be related to diet, season, moulting (related to size) is evident in both species. -
OXIDATIVE STRESS in ALGAE: METHOD DEVELOPMENT and EFFECTS of TEMPERATURE on ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Spring 2014 OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Fresh Water Studies Commons Recommended Citation Siddiqui, Md Noman, "OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS" (2014). Open Access Theses. 256. https://docs.lib.purdue.edu/open_access_theses/256 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised/) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By MD NOMAN SIDDIQUI Entitled OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIADANT NUCLEAR SIGNALING COMPOUNDS Master of Science For the degree of Is approved by the final examining committee: PAUL BROWN REUBEN GOFORTH THOMAS HOOK To the best of my knowledge and as understood by the student in the 7KHVLV'LVVHUWDWLRQ$JUHHPHQW 3XEOLFDWLRQ'HOD\DQGCHUWLILFDWLRQDisclaimer (Graduate School Form ), this thesis/dissertation DGKHUHVWRWKHSURYLVLRQVRIPurdue University’s “Policy on Integrity in Research” and the use of copyrighted material. PAUL BROWN Approved by Major Professor(s): ____________________________________ -
STB046 1939 the Carotenoid Pigments
THE CAROTENOID PIGMENTS Occurrence, Properties, Methods of Determination, and Metabolism by the Hen FOREWORD This bulletin has been written as a brief review of the carotenoid pigments. The occurrence, properties, and methods of determina- tion of this interesting class of compounds are considered, and special consideration is given to their utilization by the hen. The work has been done in the departments of Chemistry and Poultry Husbandry, cooperating, on Project No. 193. The project was started in 1932 and several workers have aided in the accumulation of information. The following should be men- tioned for their contributions: Mr. Wilbor Owens Wilson, Mr. C. L. Gish, Mr. H. F. Freeman, Mr. Ben Kropp, and Mr. William Proudfit. We are also greatly indebted to Dr. H. D. Branion of the Depart- ment of Animal Nutrition, Ontario Agricultural College, Guelph, Canada, for his fine coöperative studies on the vitamin A potency of corn. A number of unpublished observations from these laboratories and others have been organized and included in this bulletin. Extensive use has also been made of the material presented in Zechmeister’s “Carotenoide,” and “Leaf Xanthophylls” by Strain. It is hoped that this work be considered in no way a complete story of the metab- olism of carotenoid pigments in the fowl, but rather an interpreta- tion of the information which is available at this time. The wide range of distribution of the carotenoid pigments in such a wide variety of organisms points strongly to the importance of these materials biologically. In recent years chemical and physio- logical studies of the carotenoids have revealed numerous relation- ships to other classes of substances in the plant and animal world. -
Ocean Drilling Program Scientific Results Volume
Suess, E., von Huene, R., et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 112 37. CAROTENOID DIAGENESIS IN PLEISTOCENE TO MIOCENE SEDIMENTS FROM THE PERU MARGIN1 Daniel J. Repeta2 ABSTRACT The quantitative distribution of carotenoids in sediments of Pleistocene to Miocene age from the Peru upwelling area is reported. Major pigments include /3-carotene, diatoxanthin, caroteno-3,3'-diols from phytoplankton, astaxanthin and canthaxanthin from crustaceans, and spheroidenone from bacteria. /3-carotene epoxides are major consituents, representing transformation products in the degradation of /3-carotene to low molecular weight compounds. The absolute abundance of carotenoids reflects bottom-water oxicity at the time of deposition; highest concentrations of carotenoids were observed in laminated muds deposited within the oxygen-minimum zone, with reduced or negligible concentrations of pigments observed in bioturbated sequences deposited during periods of well-oxygenated bottom water. 0-carotene, the most abundant pigment in recently deposited sediments, slowly degrades through a sequence of transformation reactions initiated by epoxidation. The 4,4' dioxo-carotenoids, which are unable to form 5,6-epoxides, have been preferentially preserved in these sediments. INTRODUCTION that would yield the fully saturated carotenes reported in ancient sediments (Murphy et al., 1967; Kimble et al., 1974). Carotenoids are highly unsaturated tetraterpenoids that Baker and Louda (1982) observed the post-depositional for• function as photosynthetic accessory pigments in all species mation of /3-carotene epoxides, which is confirmed by the of marine algae. The structures of more than 400 carotenoids results presented here. have been reported; however, the distribution of specific Repeta (1989) proposed a diagenetic pathway for most pigments is often restricted to one or only a few classes of major phytoplankton carotenoids, which offered a quantita• organisms. -
Carotenoids from Marine Organisms: Biological Functions and Industrial Applications
antioxidants Review Carotenoids from Marine Organisms: Biological Functions and Industrial Applications Christian Galasso 1, Cinzia Corinaldesi 2,* and Clementina Sansone 1,* 1 Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; [email protected] 2 Department of Sciences and Engineering of Materials, Environment and Urbanistics, Università Politecnica delle Marche, 60121 Ancona, Italy * Correspondence: [email protected] (C.C.); [email protected] (C.S.); Tel.: +39-071-2204-294 (C.C.); +39-081-5833-221 (C.S.) Received: 27 September 2017; Accepted: 17 November 2017; Published: 23 November 2017 Abstract: As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.