[ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan
Total Page:16
File Type:pdf, Size:1020Kb
Books [ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan. Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics 171. Cambridge: Cambridge University Press, 2007. xii+149 pp. isbn: 978-0-521-87004-7. doi: 10.1017/CBO9780511543081. [Alu09] Paolo Aluffi. Algebra: Chapter 0. Second printing. Graduate Studies in Mathematics 104. Providence, Rhode Island: American Mathematical Society, 2009. xxi+713 pp. isbn: 978-0-8218-4781-7. doi: 10.1090/gsm/104. [AM69] Michael F. Atiyah and Ian G. Macdonald. An Introduction to Commutative Alge- bra. Addison-Wesley Series in Mathematics. Addison-Wesley Publishing Company, 1969. ix+128 pp. [Arv02] William Arveson. A Short Course on Spectral Theory. 1st ed. Graduate Studies in Mathematics 209. New York: Springer-Verlag, 2002. x+142 pp. isbn: 978-0-387- 95300-7. doi: 10.1007/b97227. [Bos09] Siegfried Bosch. Algebra. 7th ed. Berlin, Heidelberg: Springer-Verlag, 2009. viii+376 pp. isbn: 978-3-540-92811-9. doi: 10.1007/978-3-540-92812-6. [Bou07] Nicolas Bourbaki. Groupes et algèbres de Lie. Chapitre 1. Éléments de mathématique. Berlin, Heidelberg: Springer-Verlag, 2007. vi+146 pp. isbn: 978-3-540-35335-5. doi: 10.1007/978-3-540-35337-9. [Bou89] Nicolas Bourbaki. Algebra I. Chapters 1–3. 2nd printing. Elements of Mathemat- ics. Berlin, Heidelberg, New York: Springer-Verlag, 1989. xxiii+709 pp. isbn: 3-540- 64243-9. [Bra17] Martin Brandenburg. Einführung in die Kategorientheorie. Mit ausführlichen Erk- lärungen und zahlreichen Beispielen. 2nd ed. Springer Spektrum, 2017. x+345 pp. isbn: 978-3-662-53520-2. doi: 10.1007/978-3-662-53521-9. [Bre72] Glen Eugene Bredon. Introduction to Compact Transformation Groups. Pure and Applied Mathematics 46. New York, London: Academic Press, 1972. xiii+459 pp. isbn: 978-0-12-128850-1. doi: 10.1016/s0079-8169(08)x6007-6. [Bre93] Glen Eugene Bredon. Topology and Geometry. 1st ed. Graduate Texts in Mathemat- ics 139. New York: Springer-Verlag, 1993. xiv+557 pp. isbn: 978-0-387-97926-7. doi: 10.1007/978-1-4757-6848-0. [Bro06] Ronald Brown. Topology and Groupoids. 3rd ed. BookSurge Publishing, February 24, 2006. xxvi+512 pp. isbn: 978-1-4196-2722-4. url: https://groupoids.org.uk/topgpds. html (visited on May 8, 2021). [Car52] Élie Cartan. La théorie des groupes finis et continus et l’analysis situs. French. Mé- morial des sciences mathématiques 42. Paris: Gauthier-Villars, 1952. 61 pp. url: http://eudml.org/doc/192641 (visited on April 23, 2021). [CFS95] John Scott Carter, Daniel Evans Flath, and Masahico Saito. The Classical and Quan- tum 6푗-symbols. Mathematical Notes 43. Princeton University Press, 1995. x+164 pp. isbn: 9780691027302. 1 [CG10] Neil Chriss and Victor Ginzburg. Representation Theory and Complex Geometry. 1st ed. Birkhäuser Basel, 2010. x+495 pp. isbn: 978-0-8176-3792-7. doi: 10.1007/978- 0-8176-4938-8. [Cis19] Denis-Charles Cisinski. Higher categories and homotopical algebra. 1st ed. Cam- bridge Studies in Advanced Mathematics 180. Cambridge: Cambridge University Press, 2019. xviii+430 pp. isbn: 978-1-108-47320-0. doi: 10. 1017/ 9781108588737. url: http://www.mathematik.uni- regensburg.de/cisinski/publikationen.html (visited on October 8, 2019). [CP95] Vyjayanthi Chari and Andrew N. Pressley. A Guide to Quantum Groups. First paper- back edition (with corrections). Cambridge University Press, July 1995. xvi+651 pp. isbn: 978-0-521-55884-6. [CST10] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Representation Theory of the Symmetric Groups. The Okounkov-Vershik Approach, Character For- mulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics 121. Cambridge University Press, 2010. xvi+412 pp. isbn: 978-0-521-11817-0. doi: 10. 1017/CBO9781139192361. [CW12] Shun-Jen Cheng and Weiqiang Wang. Dualities and Representations of Lie Superal- gebras. Graduate Studies in Mathematics 144. Providence, Rhode Island: American Mathematical Society, 2012. xvii+302 pp. isbn: 978-0-8218-9118-6. doi: 10.1090/ gsm/144. [DB86] Robert S. Doran and Victor A. Belfi. Characterizations of C*-Algebras. The Gelfand– Naimark Theorems. 1st ed. Pure and Applied Mathematics 101. New York: Marcel Dekker, 1986. xiv+426 pp. isbn: 0-8247-7569-4. doi: 10.1201/9781315139043. [Die08] Tammo tom Dieck. Algebraic Topology. Corrected 2nd printing. EMS Textbooks in Mathematics. Zürich: European Mathematical Society Publishing House, Septem- ber 2008. xii+567 pp. isbn: 978-3-03719-048-7. doi: 10.4171/048. [Die79] Tammo tom Dieck. Transformation Groups and Representation Theory. Lecture Notes in Mathematics 766. Berlin, Heidelberg: Springer-Verlag, 1979. viii+316 pp. isbn: 978-3-540-09720-4. doi: 10.1007/BFb0085965. [EFT18] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Einführung in die mathematische Logik. 6th ed. Springer Spektrum, 2018. ix+367 pp. isbn: 978-3-662- 58028-8. doi: 10.1007/978-3-662-58029-5. [EG15] Lawrence Craig Evans and Ronald F. Gariepy. Measure Theory and Fine Properties of Functions. Revised Edition. Textbooks in Mathematics. New York: Chapman and Hall/CRC, April 19, 2015. xiv+296 pp. isbn: 978-1-482-24238-6. doi: https://doi. org/10.1201/b18333. [Eis95] David Eisenbud. Commutative Algebra. With a View Towards Algebraic Geometry. Graduate Texts in Mathematics 150. New York: Springer-Verlag, 1995. isbn: 978-0- 387-94268-1. doi: 10.1007/978-1-4612-5350-1. 2 [Eti+11] Pavel Etingof et al. Introduction to representation theory. Student Mathematical Li- brary 59. With historical interludes by Slava Gerovitch. Providence, Rhode Island: American Mathematical Society, 2011. viii+228 pp. isbn: 978-0-8218-5351-1. doi: 10.1090/stml/059. [EW06] Karin Erdmann and Mark J. Wildon. Introduction to Lie Algebras. 1st ed. Springer Undergraduate Mathematics Series. London: Springer-Verlag, 2006. xii+251 pp. isbn: 978-1-84628-040-5. doi: 10.1007/1-84628-490-2. [FH04] William Fulton and Joe Harris. Representation Theory. A First Course. Graduate Texts in Mathematics 129. New York: Springer-Verlag, 2004. xv+551 pp. isbn: 978- 0-387-97527-6. doi: 10.1007/978-1-4612-0979-9. [FHT01] Yves Félix, Stephen Halperin, and Jean-Claude Thomas. Rational Homotopy Theory. Graduate Texts in Mathematics 205. New York: Springer-Verlag, 2001. xxxiii+539 pp. isbn: 978-0-387-95068-6. doi: 10.1007/978-1-4613-0105-9. [Ful97] William Fulton. Young Tableaux. With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35. Cambridge University Press, 1997. x+260 pp. isbn: 978-0-521-56724-4. doi: 10.1017/CBO9780511626241. [GJ09] Paul G. Goerss and John Jardine. Simplicial Homotopy Theory. Modern Birkhäuser Classics. Basel: Birkhäuser, 2009. xvi+510 pp. isbn: 978-3-0346-0188-7. doi: 10.1007/ 978-3-0346-0189-4. [Hap88] Dieter Happel. Triangulated Categories in the Representation of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series 119. Cambridge Uni- versity Press, 1988. x+208 pp. doi: 10.1017/CBO9780511629228. [HK02] Jin Hong and Seok-Jin Kang. Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics 42. American Mathematical Society, 2002. xviii+307 pp. isbn: 978-0-8218-2874-8. doi: 10.1090/gsm/042. [Hov99] Mark Hovey. Model Categories. Mathematical Surveys and Monographs 63. Ameri- can Mathematical Society, 1999. xii+213 pp. isbn: 978-0-8218-4361-1. doi: 10.1090/ surv/063. [HS94] Peter J. Hilton and Urs Stammbach. A Course in Homological Algebra. 2nd ed. Grad- uate Texts in Mathematics 4. New York: Springer-Verlag, 1994. xii+366 pp. isbn: 978-0-387-94823-2. doi: 10.1007/978-1-4419-8566-8. [Hum72] James Humphreys. Introduction to Lie Algebras and Representation Theory. Grad- uate Texts in Mathematics 9. New York: Springer Verlag, 1972. xiii+173 pp. isbn: 978-0-387-90053-7. doi: 10.1007/978-1-4612-6398-2. [Jan96] Jens Carsten Jantzen. Lectures on Quantum Groups. Graduate Studies in Mathemat- ics 6. American Mathematical Society, 1996. viii+266 pp. isbn: 978-0-8218-0478-0. doi: 10.1090/gsm/006. [Kas95] Christian Kassel. Quantum Groups. Graduate Texts in Mathematics 155. New York: Springer Verlag, 1995. xii+534 pp. isbn: 978-0-387-94370-1. doi: 10.1007/978- 1- 4612-0783-2. 3 [KL94] Louis Hirsch Kauffman and Sóstenes Luiz Soares Lins. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies 134. Prince- ton University Press, 1994. x+296 pp. doi: 10.1515/9781400882533. [Lam01] Tsit-Yuen Lam. A First Course in Noncommutative Rings. 2nd ed. Graduate Texts in Mathematics 131. New York: Springer Verlag, 2001. xix+388 pp. isbn: 978-0-387- 95183-6. doi: 10.1007/978-1-4419-8616-0. [Lan02] Serge Lang. Algebra. Revised Third Edition. Graduate Texts in Mathematics 211. New York: Springer Verlag, 2002. xv+914 pp. isbn: 978-0-387-95385-4. doi: 10.1007/ 978-1-4613-0041-0. [LB18] Venkatraman Lakshmibai and Justin Brown. Flag Varieties. An Interplay of Geome- try, Combinatorics, and Representation Theory. 2nd ed. Texts and Readings in Math- ematics 53. Springer Singapore, 2018. xiv+312 pp. isbn: 978-93-86279-70-5. doi: 10.1007/978-981-13-1393-6. [Lee12] John Marshall Lee. Introduction to Smooth Manifolds. 2nd ed. Graduate Texts in Mathematics 218. New York: Springer-Verlag, 2012. xvi+708 pp. isbn: 978-1-4419- 9981-8. doi: 10.1007/978-1-4419-9982-5. [Lee18] John Marshall Lee. Introduction to Riemannian Manifolds. 2nd ed. Graduate Texts in Mathematics 176. Springer International Publishing, 2018. xiii+437 pp. isbn: 978- 3-319-91754-2. doi: 10.1007/978-3-319-91755-9. [Lei14] Tom Leinster. Basic Category Theory. Cambridge Studies in Advanced Mathematics 143. Cambridge: Cambridge University Press, 2014. viii+183 pp. isbn: 978-1-107- 04424-1. doi: 10.1017/CBO9781107360068. arXiv: 1612.09375 [math.CT]. [Lod92] Jean-Lois Loday. Cyclic Homology. Grundlagen der mathematischen Wissenschaf- ten 301.