Contemporary Mathematics 310
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alejandro Adem
Latinxs and Hispanics in Mathematical Sciences Alejandro Adem Dr. Alejandro Adem is a Professor of Mathematics at the University of British Colum- bia in Vancouver, Canada. Since 2015, he is also CEO and Scientific Director of Mitacs, a non-profit Canadian organization focused on developing university/indus- try connections through internships for graduate students. Dr. Adem received his BS from the National University of México in 1982, and his Ph.D from Princeton University in 1986. He held a Szegö Assistant Professorship at Stanford University (1986–89) and held a faculty position at the University of Wis- consin-Madison from 1989 to 2004, where he served as Chair of the Department of Mathematics from 1999 to 2002. He was appointed as a Canada Research Chair in “In my opinion this is a great AlgeBraic Topology at the University of British ColumBia in 2004 and served as Di- occasion to celebrate the rector of the Pacific Institute for the Mathematical Sciences from 2008 to 2015. wonderful mathematical Dr. Alejandro Adem has held visiting positions at the Institute for Advanced Study in contributions of the Hispanic Princeton, the ETH-Zurich, the Max Planck Institute in Bonn, the University of Paris community. Our challenge is VII and XIII, and Princeton University. He is a highly regarded researcher in mathe- to ensure that our students matics, with many publications in his name; he has delivered over 300 invited lec- get the best opportunities to tures aBout his research around the world and supervised a multitude of Ph.D. stu- fully engage in the beauty dents and postdocs. -
Curriculum Vitae
Curriculum Vitae Alejandro ADEM Mathematics Department, University of British Columbia Vancouver BC V6T 1Z2, Canada http://www.math.ubc.ca/∼adem https://orcid.org/0000-0002-9126-6546 Education: 1982{1986 Ph.D. Mathematics, Princeton University 1979{1982 B.Sc. Mathematics, National University of Mexico Awards: 2017 Corresponding Member, Mexican Academy of Sciences 2015 Jeffery–Williams Research Prize, Canadian Mathematical Society 2015 Ten Most Influential Hispanic{Canadians 2012 Fellow of the American Mathematical Society 2004 Canada Research Chair in Algebraic Topology 2003 Vilas Associate Award, University of Wisconsin{Madison 1995 H. I. Romnes Faculty Fellowship, Wisconsin Alumni Research Foundation 1992 U.S. National Science Foundation Young Investigator Award (NYI) 1985 Alfred P. Sloan Doctoral Dissertation Fellowship Employment: 2015- CEO and Scientific Director, Mitacs, Inc. 2005- Professor and Canada Research Chair, Mathematics Department, UBC 2008-2015 Director, Pacific Institute for the Mathematical Sciences 2005-2008 Deputy Director, Pacific Institute for the Mathematical Sciences 1999-2002 Chair, Department of Mathematics, University of Wisconsin{Madison 1996-2006 Professor, Department of Mathematics, University of Wisconsin{Madison 1992-1996 Associate Professor, Department of Mathematics, University of Wisconsin{Madison 1989-1992 Assistant Professor, Department of Mathematics, University of Wisconsin{Madison 1989-1990 Member, School of Mathematics, Institute for Advanced Study, Princeton NJ 1986-1989 Szeg¨o Assistant Professor, -
Introduction
Proceedings of Symposia in Pure Mathematics Volume 81, 2010 Introduction Jonathan Rosenberg Abstract. The papers in this volume are the outgrowth of an NSF-CBMS Regional Conference in the Mathematical Sciences, May 18–22, 2009, orga- nized by Robert Doran and Greg Friedman at Texas Christian University. This introduction explains the scientific rationale for the conference and some of the common themes in the papers. During the week of May 18–22, 2009, Robert Doran and Greg Friedman orga- nized a wonderfully successful NSF-CBMS Regional Research Conference at Texas Christian University. I was the primary lecturer, and my lectures have now been published in [29]. However, Doran and Friedman also invited many other mathe- maticians and physicists to speak on topics related to my lectures. The papers in this volume are the outgrowth of their talks. The subject of my lectures, and the general theme of the conference, was highly interdisciplinary, and had to do with the confluence of superstring theory, algebraic topology, and C∗-algebras. While with “20/20 hindsight” it seems clear that these subjects fit together in a natural way, the connections between them developed almost by accident. Part of the history of these connections is explained in the introductions to [11] and [17]. The authors of [11] begin as follows: Until recently the interplay between physics and mathematics fol- lowed a familiar pattern: physics provides problems and mathe- matics provides solutions to these problems. Of course at times this relationship has led to the development of new mathematics. But physicists did not traditionally attack problems of pure mathematics. -
Heterotic String Compactification with a View Towards Cosmology
Heterotic String Compactification with a View Towards Cosmology by Jørgen Olsen Lye Thesis for the degree Master of Science (Master i fysikk) Department of Physics Faculty of Mathematics and Natural Sciences University of Oslo May 2014 Abstract The goal is to look at what constraints there are for the internal manifold in phe- nomenologically viable Heterotic string compactification. Basic string theory, cosmology, and string compactification is sketched. I go through the require- ments imposed on the internal manifold in Heterotic string compactification when assuming vanishing 3-form flux, no warping, and maximally symmetric 4-dimensional spacetime with unbroken N = 1 supersymmetry. I review the current state of affairs in Heterotic moduli stabilisation and discuss merging cosmology and particle physics in this setup. In particular I ask what additional requirements this leads to for the internal manifold. I conclude that realistic manifolds on which to compactify in this setup are severely constrained. An extensive mathematics appendix is provided in an attempt to make the thesis more self-contained. Acknowledgements I would like to start by thanking my supervier Øyvind Grøn for condoning my hubris and for giving me free rein to delve into string theory as I saw fit. It has lead to a period of intense study and immense pleasure. Next up is my brother Kjetil, who has always been a good friend and who has been constantly looking out for me. It is a source of comfort knowing that I can always turn to him for help. Mentioning friends in such an acknowledgement is nearly mandatory. At least they try to give me that impression. -
Prospects in Topology
Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A. -
From the Editor
Department of Mathematics University of Wisconsin From the Editor. This year’s biggest news is the awarding of the National Medal of Science to Carl de Boor, professor emeritus of mathematics and computer science. Accompanied by his family, Professor de Boor received the medal at a White House ceremony on March 14, 2005. Carl was one of 14 new National Medal of Science Lau- reates, the only one in the category of mathematics. The award, administered by the National Science Foundation originated with the 1959 Congress. It honors individuals for pioneering research that has led to a better under- standing of the world, as well as to innovations and tech- nologies that give the USA a global economic edge. Carl is an authority on the theory and application of splines, which play a central role in, among others, computer- aided design and manufacturing, applications of com- puter graphics, and signal and image processing. The new dean of the College of Letters and Science, Gary Sandefur, said “Carl de Boor’s selection for the na- tion’s highest scientific award reflects the significance of his work and the tradition of excellence among our mathematics and computer science faculty.” We in the Department of Mathematics are extremely proud of Carl de Boor. Carl retired from the University in 2003 as Steen- bock Professor of Mathematical Sciences and now lives in Washington State, although he keeps a small condo- minium in Madison. Last year’s newsletter contains in- Carl de Boor formation about Carl’s distinguished career and a 65th birthday conference held in his honor in Germany. -
Mirror Symmetry Is a Phenomenon Arising in String Theory in Which Two Very Different Manifolds Give Rise to Equivalent Physics
Clay Mathematics Monographs 1 Volume 1 Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has Mirror Symmetry Mirror significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differ- ential equations obtained from a “mirror” geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar Vafa invariants. This book aims to give a single, cohesive treatment of mirror symmetry from both the mathematical and physical viewpoint. Parts 1 and 2 develop the neces- sary mathematical and physical background “from scratch,” and are intended for readers trying to learn across disciplines. The treatment is focussed, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a “pairing” of geometries. The proof involves applying R ↔ 1/R circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic MIRROR SYMMETRY setting, beginning with the moduli spaces of curves and maps, and uses localiza- tion techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. -
Is String Theory Holographic? 1 Introduction
Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5]. -
Curriculum Vitae Mark Alun Lewis FRSC
Curriculum vitae Mark Alun Lewis FRSC Address: Department of Mathematical and Statistical Sciences University of Alberta 545B CAB, Edmonton AB T6G 2G1 Canada Tel. (780) 492–0197 Fax: (780) 492–6836 e-mail: [email protected] Birth Date: December 7, 1962 Nationality: Canadian Degrees: University of Oxford D.Phil. in Mathematics (Mathematical Biology), November 1990. Thesis entitled “Analysis of Dynamic and Stationary Biological Pattern Formation.” Supervised by Professor J. D. Murray, FRS. University of Victoria, Canada B.Sc., Double Major in Biology and Combined Mathematics/Computer Science, May 1987, First Class. Positions: 7/01–now Professor and Senior Canada Research Chair in Mathematical Biology Department of Mathematical and Statistical Sciences and Department of Biological Sciences, University of Alberta. 1/02-8/17 Director, Centre for Mathematical Biology University of Alberta 7/12-6/14 Killam Research Fellow University of Alberta 9/11-12/11 Research Fellow Oxford Centre for Collaborative Applied Mathematics 10/11-12/11 Visiting Fellow Saint Catherine's College, Oxford 7/00–2/02 Professor Department of Mathematics, University of Utah. 7/95–7/00 Associate Professor Department of Mathematics, University of Utah. Curriculum Vitae, Mark Lewis Page 2 5/95–6/02 Adjunct Faculty Department of Biology, University of Utah. 7/93–now Affiliate Faculty Department of Applied Mathematics, University of Washington, Seattle. 4/99–7/99 Senior Visitor Institute for Industrial and Applied Mathematics, University of Minnesota. 9/98–12/98 Research Fellow Centre for Population Biology at Silwood Park, Imperial College, University of London. 95 winter Visiting Fellow Department of Ecology and Evolution, Princeton University (Sloan Research Fellow). -
2014 Continuum.Indd
University of Michigan Department of Mathematics ContinuUM NEWSLETTER • 2014 Department Awarded for View from the Chair’s Offi ce Undergraduate Program Mel Hochster The Department of Mathematics has received the 2014 As I stated last year, this continues to be a time of many Departmental Award for Outstanding Contributions to Under- transitions at the University. The Department experienced a graduate Education from the College of LSA. The selection devastating loss when Curtis Huntington passed away last Oc- committee was impressed with the educational excellence, tober after more than three years of battling cancer. He con- spirit of innovation, and strong commitment to good advising tinued his service to the department until the last week of his in the Department, as well as the ability of the Department life, and it is hard to imagine how anyone might be more de- to create community among majors through sponsorship of voted than Curtis. Kristen Moore and Roger Natarajan stepped clubs, the Math T-shirts, publication of a weekly “missive,” in to assume Curtis’s responsibilities in connection with the and other activities. The Math Department has a strong com- Financial and Actuarial Mathematics Program. But Curtis was mitment to innovation for the sake of improved undergraduate also Associate Chair for Education. Joe Conlon took over that learning, and for the sake of giving undergraduates positive position, while Mattias Jonsson assumed Joe’s duties as As- experiences in a subject that is often looked at with dread sociate Chair for Term Faculty. People came from all over the rather than interest and excitement. -
Model Building and SUSY Breaking on D-Branes
Model building and SUSY breaking on D-branes Dmitry Malyshev a dissertation presented to the faculty of princeton university in candidacy for the degree of doctor of philosophy recommended for acceptance by the department of physics Adviser: Herman Verlinde September 2008 c Copyright by Dmitry Malyshev, 2008. All rights reserved. Abstract In the recent years there has been an increase of the interest in applying the String theory to construct viable extensions of the Standard Model and to find stringy analogs of the known field theory models for supersymmetry breaking. In my dissertation I will focus on the constructions involving the D-branes at the Calabi-Yau singularities in type IIB string theory. The main motivations for this choice are: the decoupling of the D-brane field theory from the supergravity, the well established tools for deriving the field theories from the configurations of the D-branes, and the possibility of using the gauge-gravity correspondence in solving some non-perturbative aspects in the field theory. A construction of an extended supersymmetric Standard Model on a D3-brane at the del Pezzo 8 singularity is presented in the first part of the dissertation. In the second part we discuss the possible representations of the SUSY breaking models in String Theory and obtain the metastable SUSY breaking vacuum in a system of D-branes on the suspended pinch point singularity. The gauge mediation of this SUSY breaking model is described in details. In the simplest model the spectrum of particles in the visible sector has a split SUSY breaking, the sfermions are one order of magnitude heavier than the gauginos. -
View This Volume's Front and Back Matter
CONTEMPORARY MATHEMATICS 407 Recent Developments in Algebraic Topology A Conference to Celebrate Sam Gitler' s 70th Birthday December 3-6, 2003 San Miguel de Allende, Mexico Alejandro Adem" Jesus Gonzalez Guillermo Pastor Editors http://dx.doi.org/10.1090/conm/407 Recent Developments in Algebraic Topology CoNTEMPORARY MATHEMATICS 407 Recent Developments in Algebraic Topology A Conference to Celebrate Sam Gitler' s 70th Birthday December 3-6,2003 San Miguel de Allende, Mexico Alejandro Adem Jesus Gonzalez Guillermo Pastor Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeThrck, managing editor George Andrews Carlos Berenstein Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 55-06. Library of Congress Cataloging-in-Publication Data Recent developments in algebraic topology : conference to celebrate Sam Gitler's 70th birthday, algebraic topology, December 3--6, 2003, San Miguel de Allende, Mexico / Alejandro Adem, Jesus GonzaJ.ez, Guillermo Pastor, editors. p. em. -(Contemporary mathematics, ISSN 0271-4132 ; 407) ISBN 0-8218-3676-5 (alk. paper) 1. Algebraic topology. I. Gitler, Samuel. II. Adem, Alejandro. III. GonzaJ.ez, Jesus, 1966- IV. Pastor, Guillermo, 1952- V. Series: Contemporary mathematics (American Mathematical Society) ; v. 407. QA612.R43 2006 514'.2--dc22 2006044458 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale.