[ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan

[ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan

Books [ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan. Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics 171. Cambridge: Cambridge University Press, 2007. xii+149 pp. isbn: 978-0-521-87004-7. doi: 10.1017/CBO9780511543081. [Alu09] Paolo Aluffi. Algebra: Chapter 0. Second printing. Graduate Studies in Mathematics 104. Providence, Rhode Island: American Mathematical Society, 2009. xxi+713 pp. isbn: 978-0-8218-4781-7. doi: 10.1090/gsm/104. [AM69] Michael F. Atiyah and Ian G. Macdonald. An Introduction to Commutative Alge- bra. Addison-Wesley Series in Mathematics. Addison-Wesley Publishing Company, 1969. ix+128 pp. [Arv02] William Arveson. A Short Course on Spectral Theory. 1st ed. Graduate Studies in Mathematics 209. New York: Springer-Verlag, 2002. x+142 pp. isbn: 978-0-387- 95300-7. doi: 10.1007/b97227. [Bos09] Siegfried Bosch. Algebra. 7th ed. Berlin, Heidelberg: Springer-Verlag, 2009. viii+376 pp. isbn: 978-3-540-92811-9. doi: 10.1007/978-3-540-92812-6. [Bou07] Nicolas Bourbaki. Groupes et algèbres de Lie. Chapitre 1. Éléments de mathématique. Berlin, Heidelberg: Springer-Verlag, 2007. vi+146 pp. isbn: 978-3-540-35335-5. doi: 10.1007/978-3-540-35337-9. [Bou89] Nicolas Bourbaki. Algebra I. Chapters 1–3. 2nd printing. Elements of Mathemat- ics. Berlin, Heidelberg, New York: Springer-Verlag, 1989. xxiii+709 pp. isbn: 3-540- 64243-9. [Bra17] Martin Brandenburg. Einführung in die Kategorientheorie. Mit ausführlichen Erk- lärungen und zahlreichen Beispielen. 2nd ed. Springer Spektrum, 2017. x+345 pp. isbn: 978-3-662-53520-2. doi: 10.1007/978-3-662-53521-9. [Bre72] Glen Eugene Bredon. Introduction to Compact Transformation Groups. Pure and Applied Mathematics 46. New York, London: Academic Press, 1972. xiii+459 pp. isbn: 978-0-12-128850-1. doi: 10.1016/s0079-8169(08)x6007-6. [Bre93] Glen Eugene Bredon. Topology and Geometry. 1st ed. Graduate Texts in Mathemat- ics 139. New York: Springer-Verlag, 1993. xiv+557 pp. isbn: 978-0-387-97926-7. doi: 10.1007/978-1-4757-6848-0. [Bro06] Ronald Brown. Topology and Groupoids. 3rd ed. BookSurge Publishing, February 24, 2006. xxvi+512 pp. isbn: 978-1-4196-2722-4. url: https://groupoids.org.uk/topgpds. html (visited on May 8, 2021). [Car52] Élie Cartan. La théorie des groupes finis et continus et l’analysis situs. French. Mé- morial des sciences mathématiques 42. Paris: Gauthier-Villars, 1952. 61 pp. url: http://eudml.org/doc/192641 (visited on April 23, 2021). [CFS95] John Scott Carter, Daniel Evans Flath, and Masahico Saito. The Classical and Quan- tum 6푗-symbols. Mathematical Notes 43. Princeton University Press, 1995. x+164 pp. isbn: 9780691027302. 1 [CG10] Neil Chriss and Victor Ginzburg. Representation Theory and Complex Geometry. 1st ed. Birkhäuser Basel, 2010. x+495 pp. isbn: 978-0-8176-3792-7. doi: 10.1007/978- 0-8176-4938-8. [Cis19] Denis-Charles Cisinski. Higher categories and homotopical algebra. 1st ed. Cam- bridge Studies in Advanced Mathematics 180. Cambridge: Cambridge University Press, 2019. xviii+430 pp. isbn: 978-1-108-47320-0. doi: 10. 1017/ 9781108588737. url: http://www.mathematik.uni- regensburg.de/cisinski/publikationen.html (visited on October 8, 2019). [CP95] Vyjayanthi Chari and Andrew N. Pressley. A Guide to Quantum Groups. First paper- back edition (with corrections). Cambridge University Press, July 1995. xvi+651 pp. isbn: 978-0-521-55884-6. [CST10] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Representation Theory of the Symmetric Groups. The Okounkov-Vershik Approach, Character For- mulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics 121. Cambridge University Press, 2010. xvi+412 pp. isbn: 978-0-521-11817-0. doi: 10. 1017/CBO9781139192361. [CW12] Shun-Jen Cheng and Weiqiang Wang. Dualities and Representations of Lie Superal- gebras. Graduate Studies in Mathematics 144. Providence, Rhode Island: American Mathematical Society, 2012. xvii+302 pp. isbn: 978-0-8218-9118-6. doi: 10.1090/ gsm/144. [DB86] Robert S. Doran and Victor A. Belfi. Characterizations of C*-Algebras. The Gelfand– Naimark Theorems. 1st ed. Pure and Applied Mathematics 101. New York: Marcel Dekker, 1986. xiv+426 pp. isbn: 0-8247-7569-4. doi: 10.1201/9781315139043. [Die08] Tammo tom Dieck. Algebraic Topology. Corrected 2nd printing. EMS Textbooks in Mathematics. Zürich: European Mathematical Society Publishing House, Septem- ber 2008. xii+567 pp. isbn: 978-3-03719-048-7. doi: 10.4171/048. [Die79] Tammo tom Dieck. Transformation Groups and Representation Theory. Lecture Notes in Mathematics 766. Berlin, Heidelberg: Springer-Verlag, 1979. viii+316 pp. isbn: 978-3-540-09720-4. doi: 10.1007/BFb0085965. [EFT18] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Einführung in die mathematische Logik. 6th ed. Springer Spektrum, 2018. ix+367 pp. isbn: 978-3-662- 58028-8. doi: 10.1007/978-3-662-58029-5. [EG15] Lawrence Craig Evans and Ronald F. Gariepy. Measure Theory and Fine Properties of Functions. Revised Edition. Textbooks in Mathematics. New York: Chapman and Hall/CRC, April 19, 2015. xiv+296 pp. isbn: 978-1-482-24238-6. doi: https://doi. org/10.1201/b18333. [Eis95] David Eisenbud. Commutative Algebra. With a View Towards Algebraic Geometry. Graduate Texts in Mathematics 150. New York: Springer-Verlag, 1995. isbn: 978-0- 387-94268-1. doi: 10.1007/978-1-4612-5350-1. 2 [Eti+11] Pavel Etingof et al. Introduction to representation theory. Student Mathematical Li- brary 59. With historical interludes by Slava Gerovitch. Providence, Rhode Island: American Mathematical Society, 2011. viii+228 pp. isbn: 978-0-8218-5351-1. doi: 10.1090/stml/059. [EW06] Karin Erdmann and Mark J. Wildon. Introduction to Lie Algebras. 1st ed. Springer Undergraduate Mathematics Series. London: Springer-Verlag, 2006. xii+251 pp. isbn: 978-1-84628-040-5. doi: 10.1007/1-84628-490-2. [FH04] William Fulton and Joe Harris. Representation Theory. A First Course. Graduate Texts in Mathematics 129. New York: Springer-Verlag, 2004. xv+551 pp. isbn: 978- 0-387-97527-6. doi: 10.1007/978-1-4612-0979-9. [FHT01] Yves Félix, Stephen Halperin, and Jean-Claude Thomas. Rational Homotopy Theory. Graduate Texts in Mathematics 205. New York: Springer-Verlag, 2001. xxxiii+539 pp. isbn: 978-0-387-95068-6. doi: 10.1007/978-1-4613-0105-9. [Ful97] William Fulton. Young Tableaux. With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35. Cambridge University Press, 1997. x+260 pp. isbn: 978-0-521-56724-4. doi: 10.1017/CBO9780511626241. [GJ09] Paul G. Goerss and John Jardine. Simplicial Homotopy Theory. Modern Birkhäuser Classics. Basel: Birkhäuser, 2009. xvi+510 pp. isbn: 978-3-0346-0188-7. doi: 10.1007/ 978-3-0346-0189-4. [Hap88] Dieter Happel. Triangulated Categories in the Representation of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series 119. Cambridge Uni- versity Press, 1988. x+208 pp. doi: 10.1017/CBO9780511629228. [HK02] Jin Hong and Seok-Jin Kang. Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics 42. American Mathematical Society, 2002. xviii+307 pp. isbn: 978-0-8218-2874-8. doi: 10.1090/gsm/042. [Hov99] Mark Hovey. Model Categories. Mathematical Surveys and Monographs 63. Ameri- can Mathematical Society, 1999. xii+213 pp. isbn: 978-0-8218-4361-1. doi: 10.1090/ surv/063. [HS94] Peter J. Hilton and Urs Stammbach. A Course in Homological Algebra. 2nd ed. Grad- uate Texts in Mathematics 4. New York: Springer-Verlag, 1994. xii+366 pp. isbn: 978-0-387-94823-2. doi: 10.1007/978-1-4419-8566-8. [Hum72] James Humphreys. Introduction to Lie Algebras and Representation Theory. Grad- uate Texts in Mathematics 9. New York: Springer Verlag, 1972. xiii+173 pp. isbn: 978-0-387-90053-7. doi: 10.1007/978-1-4612-6398-2. [Jan96] Jens Carsten Jantzen. Lectures on Quantum Groups. Graduate Studies in Mathemat- ics 6. American Mathematical Society, 1996. viii+266 pp. isbn: 978-0-8218-0478-0. doi: 10.1090/gsm/006. [Kas95] Christian Kassel. Quantum Groups. Graduate Texts in Mathematics 155. New York: Springer Verlag, 1995. xii+534 pp. isbn: 978-0-387-94370-1. doi: 10.1007/978- 1- 4612-0783-2. 3 [KL94] Louis Hirsch Kauffman and Sóstenes Luiz Soares Lins. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies 134. Prince- ton University Press, 1994. x+296 pp. doi: 10.1515/9781400882533. [Lam01] Tsit-Yuen Lam. A First Course in Noncommutative Rings. 2nd ed. Graduate Texts in Mathematics 131. New York: Springer Verlag, 2001. xix+388 pp. isbn: 978-0-387- 95183-6. doi: 10.1007/978-1-4419-8616-0. [Lan02] Serge Lang. Algebra. Revised Third Edition. Graduate Texts in Mathematics 211. New York: Springer Verlag, 2002. xv+914 pp. isbn: 978-0-387-95385-4. doi: 10.1007/ 978-1-4613-0041-0. [LB18] Venkatraman Lakshmibai and Justin Brown. Flag Varieties. An Interplay of Geome- try, Combinatorics, and Representation Theory. 2nd ed. Texts and Readings in Math- ematics 53. Springer Singapore, 2018. xiv+312 pp. isbn: 978-93-86279-70-5. doi: 10.1007/978-981-13-1393-6. [Lee12] John Marshall Lee. Introduction to Smooth Manifolds. 2nd ed. Graduate Texts in Mathematics 218. New York: Springer-Verlag, 2012. xvi+708 pp. isbn: 978-1-4419- 9981-8. doi: 10.1007/978-1-4419-9982-5. [Lee18] John Marshall Lee. Introduction to Riemannian Manifolds. 2nd ed. Graduate Texts in Mathematics 176. Springer International Publishing, 2018. xiii+437 pp. isbn: 978- 3-319-91754-2. doi: 10.1007/978-3-319-91755-9. [Lei14] Tom Leinster. Basic Category Theory. Cambridge Studies in Advanced Mathematics 143. Cambridge: Cambridge University Press, 2014. viii+183 pp. isbn: 978-1-107- 04424-1. doi: 10.1017/CBO9781107360068. arXiv: 1612.09375 [math.CT]. [Lod92] Jean-Lois Loday. Cyclic Homology. Grundlagen der mathematischen Wissenschaf- ten 301.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us