Introduction to MRI

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to MRI Introduction to MRI Welcome to the exciting world of MRI! This is a tutorial that will cover the basic aspects of MRI. Copyright © 1994-1998 Ray Ballinger, All Rights Reserved. Send questions and comments to Ray Ballinger at mridoc@ ufl.edu URL: http://ballingerr.xray.ufl.edu/mritutor/index.html PDF Version Conversion done by Markus Busold of "The International NMR Resource site" URL: http://www.nmr.de Last Modified: September 22, 1998 Basics of MRI Instrumentation Image Characteristics Artifacts Pulse sequences Safety Contrast Agents MR Angiography MR Spectroscopy Special Topics Glossary References Basics of MRI The following topics will be discussed: Magnetism Resonance and RF Relaxation References Magnetism Magnetism is a property of matter that is a result of the orbiting electrons in atoms. The orbiting electrons cause the atoms to have a magnetic moment associated with an intrinsic angular momentum called 'spin'. Magnetic field strengths are measured in units of gauss (G) and Tesla (T). One Tesla is equal to 10,000 gauss. The earth's magnetic field is about 0.5 gauss. The strength of electromagnets used to pick up cars in junk yards is about the field strength of MRI machines (1.5-2.0T). You will run across four terms describing the magnetic properties of materials, such as contrast agents, used in MRI. These terms are ferromagnetism, paramagnetism, superparamagnetism, and diamagnetism Ferromagnetism Paramagnetism Superparamagnetism Diamagnetism Ferromagnetism Ferromagnetic materials generally contain iron, nickel, or cobalt. These materials include magnets, and various objects one might find in a patient, such as aneurysm clips, parts of pacemakers, shrapnel, etc. These materials have a large positive magnetic susceptibility, i.e., when placed in a magnet field, the field strength is much stronger inside the material than outside. Ferromagnetic materials are also characterized by being made up of clusters of 10^17 to 10^21 atoms called magnetic domains, that all have their magnetic moments pointing in the same direction. The moments of the domains is random in unmagnetized materials, and point in the same direction in magnetized materials. The figure to the above illustrates the effect of a ferromagnetic material (grey circle) on the magnetic field flux lines (blue). The ability to remain magnetized when an external magnetic field is removed is a distinguishing factor compared to paramagnetic, superparamagnetic, and diamagnetic materials. On MR images, these materials cause susceptibility artifacts characterized by loss of signal and spatial distortion. This can occur with even fragments to small to be seen on plain x-ray. This is a common finding in a cervical spine MRI post anterior fusion. Paramagnetism Paramagnetic materials include oxygen and ions of various metals like Fe, Mg, and Gd. These ions have unpaired electrons, resulting in a positive magnetic susceptibility. The magnitude of this susceptibility is less than one one-thousands of that of ferromagnetic materials. The effect on MRI is increase in the T1 and T2 relaxation rates (decrease in the T1 and T2 times). The figure above illustrates the effect of a paramagnetic material (grey circle) on the magnetic field flux lines (blue). Gd is used as a in MR contrast agents. At the proper concentration, Gd contrast agents cause preferential T1 relaxation enhancement, causing increase in signal on T1-weighted images. At high concentrations, as is sometimes seen in the urinary bladder, loss of signal is seen instead, a result of the T2 relaxation effects dominating. Superparamagnetism Superparamagnetic materials consist of individual domains of elements that have ferromagnetic properties in bulk. Their magnetic susceptibility is between that of ferromagnetic and paramagnetic materials. The figure to the left illustrates the effect of a superparamagnetic material (grey circle) on the magnetic field flux lines (blue). Examples of a superparamagnetic materials include iron containing contrast agents for bowel, liver, and lymph node imaging. Diamagnetism Diamagnetic materials have no intrinsic atomic magnetic moment, but when placed in a magnetic field weakly repel the field, resulting in a small negative magnetic susceptibility. Materials like water, copper, nitrogen, barium sulfate, and most tissues are diamagnetic.The figure above illustrates the effect of a diamagnetic material (grey circle) on the magnetic field flux lines (blue). The weak negative magnetic susceptibility contributes to the loss of signal seen in bowel on MRI after administration of barium sulfate suspensions. Resonance and RF Protons in a magnetic field have a microscopic magnetization and act like tiny toy tops that wobble as they spin.The rate of the wobbling or precession is the resonance or Larmor frequency. In the magnetic field of an MRI scanner at room temperature, there is approximately the same number of proton nuclei aligned with the main magnetic field Bo as counter aligned. The aligned position is slightly favored, as the nucleus is at a lower energy in this position. For every one-million nuclei, there is about one extra aligned with the Bo field as opposed to the field. This results in a net or macroscopic magnetization pointing in the direction of the main magnetic field. Exposure of individual nuclei to RF radiation (B1 field) at the Larmor frequency causes nuclei in the lower energy state to jump into the higher energy state. On a macroscopic level, exposure of an object or person to RF radiation at the Larmor frequency, causes the net magnetization to spiral away from the Bo field. In the rotating frame of reference, the net magnetization vector rotate from a longitudinal position a distance proportional to the time length of the RF pulse. After a certain length of time, the net magnetization vector rotates 90 degrees and lies in the transverse or x-y plane. It is in this position that the net magnetization can be detected on MRI. The angle that the net magnetization vector rotates is commonly called the 'flip' or 'tip' angle. At angles greater than or less than 90 degrees there will still be a small component of the magnetization that will be in the x-y plane, and therefore be detected. Relaxation T1 Relaxation The return of excited nuclei from the high energy state to the low energy or ground state is associated with loss of energy to the surrounding nuclei. Nuclear magnetic resonance was originally use to examine solids in the form of lattices, hence the name "spin-lattice" relaxation. Macroscopically, T1 relaxation is characterized by the longitudinal return of the net magnetization to its ground state of maximum length in the direction of the main magnetic field. The rate of return is an exponential process as is shown in the following figure. The T1 relaxation time is the time for the magnetization to return to 63% of its original length. After two T1 times, the magnetization is at 86% of its original length. Three T1 times gives 95%. Spins are considered completely relaxed after 3-5 T1 times. Another term that you may hear is the T1 relaxation rate. This is merely the reciprocal of the T1 time( 1/T1). T1 relaxation is fastest when the motion of the nucleus (rotations and translations or "tumbling rate") matches that of the Larmor frequency. As a result, T1 relaxation is dependent on the main magnetic field strength that specifies the Larmor frequency. Higher magnetic fields are associated with longer T1 times. T2 Relaxation Microscopically, T2 relaxation or spin-spin relaxation occurs when spins in the high and low energy state exchange energy but do not loose energy to the surrounding lattice. This results macroscopically in loss of the transverse magnetization. In pure water, The T2 and T1 times are approximately the same, 2-3 seconds. In biological materials, the T2 time is considerably shorter than the T1 time. For CSF, T1=1.9 seconds and T2=0.25 seconds. For brain white matter, T1=0.5 seconds and T2=0.07 seconds (70 msec). T2 relaxation occurs exponentially like T1 relaxation with 63% of the transverse magnetization gone after one T2 period as shown in the graph. T2* Relaxation T2* relaxation is the loss of signal seen with dephasing of individual magnetizations. It is characterized macroscopically by loss of transverse magnetization at a rate greater than T2. It is caused by magnetic field inhomogeneity an occurs in all magnets. The relationship between T2 and T2* can be illustrated by the multiecho spin echo sequence shown in the diagram below. The 180 degree RF pulses used to generate the echo are rephasing the spins that have undergone T2* decay. The gradual decline in signal from subsequent echos reflects T2 decay (See Figure). Unlike spin echo sequences, gradient echo sequences do not refocus T2* decay. Therefore, gradient echo sequences are more susceptible to ferromagnetic foreign bodies that distort the main magnetic field homogeneity. Instrumentation This section will cover the following topics: Magnets RF and Gradient Coils Electronics and Data Processing References RF and Gradient Coils I have grouped these two topics together, although they serve different purposes. RF Coils RF coils are the "antenna" of the MRI system that broadcasts the RF signal to the patient and/or receives the return signal. RF coils can be receive-only, in which case the body coil is used as a transmitter; or transmit and receive (transceiver). Surface coils are the simplest design of coil. They are simply a loop of wire, either circular or rectangular, that is placed over the region of interest. The depth of the image of a surface coil is generally limited to about one radius. Surface coils are commonly used for spines, shoulders, TMJ's, and other relatively small body parts. Paired saddle coils are commonly used for imaging of the knee. These coils provide better homogeneity of the RF in the area of interest and are used as volume coils, unlike surface coils.
Recommended publications
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Antioxidant, Anti-Inflammatory, Anti-Radiation, Metal Chelating Compounds and Uses Thereof
    (19) TZZ¥_ ___T (11) EP 3 121 189 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 25.01.2017 Bulletin 2017/04 C07K 5/023 (2006.01) A61K 38/07 (2006.01) A61P 17/00 (2006.01) A61P 25/00 (2006.01) (21) Application number: 16162206.3 (22) Date of filing: 19.01.2012 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • MOGRABI, Josef GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 69379 Tel Aviv (IL) PL PT RO RS SE SI SK SM TR • ATLAS, Daphne 93714 Jerusalem (IL) (30) Priority: 20.01.2011 US 201161434454 P • KEYNAN, Shoshana 30.03.2011 US 201161469138 P 71702 Modiine (IL) (62) Document number(s) of the earlier application(s) in (74) Representative: Becker Kurig Straus accordance with Art. 76 EPC: Patentanwälte 12705459.1 / 2 665 742 Bavariastrasse 7 80336 München (DE) (27) Previously filed application: 19.01.2012 PCT/IL2012/000032 Remarks: This application was filed on 24-03-2016 as a (71) Applicants: divisional application to the application mentioned • Oneday - Biotech And Pharma Ltd. under INID code 62. 6789717 Tel Aviv (IL) • Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Jerusalem 91390 (IL) (54) ANTIOXIDANT, ANTI-INFLAMMATORY, ANTI-RADIATION, METAL CHELATING COMPOUNDS AND USES THEREOF (57) The present invention relates to potent compounds having combined antioxidant, antiinflammatory, anti-radiation and metal chelating properties. Specifically, the present invention relates to short peptides having said properties, and to methods and uses of such short peptides in clinical and cosmetic applications.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Not for Distribution
    MRI for Technologists Contrast Agent Safety MRI for Technologists is a training program designed to meet the needs of radiologic technologists entering and/or working in the field Release Date of magnetic resonance imaging (MRI). These June 2012 units are designed to augment classroom instruction and on-site training for radiologic Expiration Date technology students and professionals planning June 1, 2020 to take the review board examinations, as well as to provide a review for those looking to refresh their knowledge base in MR imaging. This material will be reviewed for continued accuracy and relevance. Please go to www.icpme.us for up-to-date information regarding current expiration dates. OVERVIEW The skill of the technologist is the single most important factor in obtaining good quality diagnostic images. A successful MRI examination is the culmination of many factors under the direct control of the technologist. MRI for Technologists: MRI Contrast Safety introduces the learner to the different types of MRI contrast media, visualization of normal anatomy and pathology, exam-specific agents, and how to recognize and respond to the most common adverse patient reactions. After completing this educational material, the reader will be able to: • Define the different types of MRI contrast media NOT FOR DISTRIBUTION • Determine specific contrast media appropriate for different types of MRI examinations • Recognize and respond to the most common adverse patient reactions to MRI contrast media administration EDUCATIONAL CREDIT This program has been approved by the American Society of Radiologic Technologists (ASRT) for 1.0 hour ARRT Category A continuing education credit. Note: Terms in bold throughout this material can be found in the glossary.
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Pharmacy Data Management Drug Exception List
    Pharmacy Data Management Drug Exception List Patch PSS*1*127 updated the following drugs with the listed NCPDP Multiplier and NCPDP Dispense Unit. These two fields were added as part of this patch to the DRUG file (#50). Please refer to the Release notes for ePharmacy/ECME Enhancements for Pharmacy Release Notes (BPS_1_5_EPHARMACY_RN_0907.PDF) on the VistA Documentation Library (VDL). The IEN column reflects the IEN for the VA PRODUCT file (#50.68). The ePharmacy Change Control Board provided the following list of drugs with the specified NCPDP Multiplier and NCPDP Dispense Unit values. This listing was used to update the DRUG file (#50) with a post install routine in the PSS*1*127 patch. NCPDP File 50.68 NCPDP Dispense IEN Product Name Multiplier Unit 2 ATROPINE SO4 0.4MG/ML INJ 1.00 ML 3 ATROPINE SO4 1% OINT,OPH 3.50 GM 6 ATROPINE SO4 1% SOLN,OPH 1.00 ML 7 ATROPINE SO4 0.5% OINT,OPH 3.50 GM 8 ATROPINE SO4 0.5% SOLN,OPH 1.00 ML 9 ATROPINE SO4 3% SOLN,OPH 1.00 ML 10 ATROPINE SO4 2% SOLN,OPH 1.00 ML 11 ATROPINE SO4 0.1MG/ML INJ 1.00 ML 12 ATROPINE SO4 0.05MG/ML INJ 1.00 ML 13 ATROPINE SO4 0.4MG/0.5ML INJ 1.00 ML 14 ATROPINE SO4 0.5MG/ML INJ 1.00 ML 15 ATROPINE SO4 1MG/ML INJ 1.00 ML 16 ATROPINE SO4 2MG/ML INJ 1.00 ML 18 ATROPINE SO4 2MG/0.7ML INJ 0.70 ML 21 ATROPINE SO4 0.3MG/ML INJ 1.00 ML 22 ATROPINE SO4 0.8MG/ML INJ 1.00 ML 23 ATROPINE SO4 0.1MG/ML INJ,SYRINGE,5ML 5.00 ML 24 ATROPINE SO4 0.1MG/ML INJ,SYRINGE,10ML 10.00 ML 25 ATROPINE SO4 1MG/ML INJ,AMP,1ML 1.00 ML 26 ATROPINE SO4 0.2MG/0.5ML INJ,AMP,0.5ML 0.50 ML 30 CODEINE PO4 30MG/ML
    [Show full text]
  • CUSTOMS TARIFF - SCHEDULE 99 - I
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2016 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • I (Acts Whose Publication Is Obligatory) COMMISSION
    13.4.2002 EN Official Journal of the European Communities L 97/1 I (Acts whose publication is obligatory) COMMISSION REGULATION (EC) No 578/2002 of 20 March 2002 amending Annex I to Council Regulation (EEC) No 2658/87 on the tariff and statistical nomenclature and on the Common Customs Tariff THE COMMISSION OF THE EUROPEAN COMMUNITIES, Nomenclature in order to take into account the new scope of that heading. Having regard to the Treaty establishing the European Commu- nity, (4) Since more than 100 substances of Annex 3 to the Com- bined Nomenclature, currently classified elsewhere than within heading 2937, are transferred to heading 2937, it is appropriate to replace the said Annex with a new Annex. Having regard to Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Com- mon Customs Tariff (1), as last amended by Regulation (EC) No 2433/2001 (2), and in particular Article 9 thereof, (5) Annex I to Council regulation (EEC) No 2658/87 should therefore be amended accordingly. Whereas: (6) This measure does not involve any adjustment of duty rates. Furthermore, it does not involve either the deletion of sub- stances or addition of new substances to Annex 3 to the (1) Regulation (EEC) No 2658/87 established a goods nomen- Combined Nomenclature. clature, hereinafter called the ‘Combined Nomenclature’, to meet, at one and the same time, the requirements of the Common Customs Tariff, the external trade statistics of the Community and other Community policies concerning the (7) The measures provided for in this Regulation are in accor- importation or exportation of goods.
    [Show full text]
  • Liquid Perfluorocarbons As Contrast Agents for Ultrasonography And19f
    Pharmaceutical Research, Vol. 27, No. 1, January 2010 ( # 2009) DOI: 10.1007/s11095-009-0001-5 Expert Review Liquid Perfluorocarbons as Contrast Agents for Ultrasonography and 19F-MRI Raquel Díaz-López,1,2 Nicolas Tsapis,1,2 and Elias Fattal1,2,3 Received September 20, 2009; accepted October 22, 2009; published online November 10, 2009 Abstract. Perfluorocarbons (PFCs) are fluorinated compounds that have been used for many years in clinics mainly as gas/oxygen carriers and for liquid ventilation. Besides this main application, PFCs have also been tested as contrast agents for ultrasonography and magnetic resonance imaging since the end of the 1970s. However, most of the PFCs applied as contrast agents for imaging were gaseous. This class of PFCs has been recently substituted by liquid PFCs as ultrasound contrast agents. Additionally, liquid PFCs are being tested as contrast agents for 19F magnetic resonance imaging (MRI), to yield dual contrast agents for both ultrasonography and 19F MRI. This review focuses on the development and applications of the different contrast agents containing liquid perfluorocarbons for ultrasonography and/ or MRI: large and small size emulsions (i.e. nanoemulsions) and nanocapsules. KEY WORDS: emulsions; liquid perfluorocarbons; MRI; nanocapsules; nanoemulsions; ultrasonography; ultrasound contrast agents. INTRODUCTION as well as for liquid ventilation (3,10–12). Only tiny amounts can be systemically given because of their low solubility in Perfluorocarbons (PFCs) are fluorinated aliphatic com- water, in biological fats and in lipids, whereas large amounts pounds, wherein all hydrogen atoms in the molecule are are administered as a PFC-in-water emulsion. This is the case replaced by fluorine.
    [Show full text]