Chapter 2: Ocean Observations

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2: Ocean Observations Chapter 2. Ocean observations 2.1 Observational methods With the rapid advancement in technology, the instruments and methods for measuring oceanic circulation and properties have been quickly evolving. Nevertheless, it is useful to understand what types of instruments have been available at different points in oceanographic development and their resolution, precision, and accuracy. The majority of oceanographic measurements so far have been made from research vessels, with auxiliary measurements from merchant ships and coastal stations. Fig. 2.1 Research vessel. Accuracy: The difference between a result obtained and the true value. Precision: Ability to measure consistently within a given data set (variance in the measurement itself due to instrument noise). Generally the precision of oceanographic measurements is better than the accuracy. 2.1.1 Measurements of depth. Each oceanographic variable, such as temperature (T), salinity (S), density , and current , is a function of space and time, and therefore a function of depth. In order to determine to which depth an instrument has been deployed, we need to measure ``depth''. Depth measurements are often made with the measurements of other properties, such as temperature, salinity and current. Meter wheel. The wire is passed over a meter wheel, which is simply a pulley of known circumference with a counter attached to the pulley to count the number of turns, thus giving the depth the instrument is lowered. This method is accurate when the sea is calm with negligible currents. In reality, research vessels are moving and currents might be strong, and thus the wire is not straight. The real depth is shorter than the distance the wire paid out. Measure pressure. Derive depth from hydrostatic relation: where g=9.8m/s2 is acceleration of gravity and is depth. (i) Protected and unprotected reversing thermometer developed especially for oceanographic use. They are mercury-in-glass 1 thermometers which are attached to a water sampling bottle. The pressure was measured using the pair of reversing thermometers - one protected from seawater pressure by a vacuum and the other open to the seawater pressure. They were sent in a pair down to whatever depth, then flipped over, which cuts off the mercury in an ingenious small glass loop in the thermometer. They were brought back aboard and the difference between the mercury column length in the protected and unprotected thermometers was used to calculate the pressure. Pairs of reversing thermometers carried on Nansen bottles were the primary source of subsea measurements of temperature as a function of pressure from around 1900 to 1970. Depth accuracy 0.5% or 5m, whichever is the greater. (ii) Electrical strain-gauge pressure transducer which uses the change of electrical resistance of metals with mechanical tension. A resistance wire is firmly connected to a flexible diaphragm, to one side of which the in situ hydrostatic pressure is applied. As the diaphragm flexes with change of pressure, the tension in the wire changes and so does its resistance, which is measured to provide a value for the pressure and therefore depth. Accuracy 0.1%. (iii) Quartz crystal: Very accurate pressure measurements can be made using a quartz crystal, whose frequency of oscillation depends on pressure. This technology is used in modern CTDs. Temperature must be accurately measured for the best pressure accuracy. In CTDs, a thermistor is part of the quartz pressure transducer. The accuracy is _0.01% and precision is _0.0001% of full-scale values. (For more details: See chapter S16 of Talley textbook.) 2.1.2 Measurements of temperature. (a) Bathythermograph. A liquid-in-metal thermometer causes a metal point to move in one direction over a smoked or gold plated glass slide which is itself moved at right angle to this direction by a pressure sensitive bellows. The instrument is lowered to its permitted limit in the water (60, 140 or 270m) and then brought back. Since pressure is directly related to depth, the line scratched on the slide forms a graph of temperature against depth. It is read against a calibration grid to an accuracy of 0.2k and 2m if well calibrated. Advantage: continuous T(z). Less accurate. This is an old method. (b) Expendable Bathythermograph (XBT). Widely used. Uses a thermistor as temperature-sensitive element. The thermistor is in a small streamlined weighted casing which is simply dropped over the ship's side. It is connected by a fine wire to a recorder on the ship, which traces the temperature of the water in a graphical plot against depth. The latter is not sensed directly but is estimated from the time elapsed since release, using the known rate of sink of the freely falling thermistor casing. These XBTs are available for depth ranges from 200m to 1800m. Use aircraft: 300m--800m. This is an old method. (c) CTD--Conductivity, temperature, and depth (actually pressure). T is measured uses a thermistor mounted close to the conductivity sensor. This will be discussed a bit more in the next subsection. 2 (d) Protected reversing mercury thermometer. These were invented by Negretti and Zamba in 1874. Since it is protected from the seawater pressure, the length of mercury is determined from temperature. As described above, it is attached to a water sampling bottle. When the bottle is closed to collect the sample the thermometer is inverted. Then the mercury is cut off in an ingenious small glass loop in the thermometer. Accuracy is 0.004C and precision is 0.002C. (e) Thermistors chains consisting of a cable with a number of thermistor elements at intervals are sometimes moored along with current meters to record the temperature at number of points in the water column. A ``data logger'' samples each thermistor sequentially at intervals and records temperatures as a function of time. Quality varies significantly. The best thermistors commonly used in oceanographic instruments have an accuracy of 0.002C and precision of 0.0005-0.001C. [Thermistor can also be instrumented on drifting buoys.] (f) Satellite. Direct observations have space and time limitations. Satellite observations can provide large spatial and temporal scale data. Advanced Very High Resolution Radiometer (AVHRR) on board of NOAA satellite, can measure SST with accuracy of 0.1-0.3k. [Multi-channel: 0.58-0.68 (visible), 0.725-1.10 (near-infra-red), thermal infra-red (3.65-3.93 , 10.3-11.3 ,11.5-12.5 ). Problem: Cloud vapor absorption. Inaccurate when there are clouds. Tropical Rainfall Measuring Mission (TRMM)--Microwave Imager (TMI), measure SST, 0.2C difference compare with buoy data. Spatial and temporal resolutions: 25x25 km and daily since 1997. TMI can penetrate clouds and thus are not contaminated by clouds; but the data quality can be affected by strong rainfall. [Polar orbiting: 500-800km height. Geostationary: 36,000km.] (g) Acoustic Thermometry of Ocean Climate (ATOC): Acoustic thermometry maps changes in ocean temperature using changes in sound speed along paths between acoustic sources and receivers. It can be used to monitor changes in the average temperature along very long paths at basin or global scale. It has been applied to measure the thermal field in the North Pacific basin from 1996-2006. See http://staff.washington.edu/dushaw/atoc.html: “ATOC is directed at using the travel time data obtained from a few acoustic sources and receivers located throughout the North Pacific basin to study the climatic variability of the thermal field at the largest scale.” They concluded that “…the experiment was a success, with transmissions occurring between 1996 and 2006…The marine mammal/biology problem was formally determined based on extensive scientific studies to be not significant for the acoustic sources employed by ATOC.” 3 Fig. 2.2 Acoustic sources & receivers in the North Pacific. (h) Drifting buoys: Some Drifters are also instrumented to measure T. Pressure of the ocean increases greatly downward. A parcel of water moving from one pressure to another will be compressed or expanded. When a parcel of water is compressed adiabatically (i.e., without losing or gaining heat), its temperature increases. (This is true of any fluid or gas.) When a parcel is expanded adiabatically, its temperature decreases. The change in temperature solely due to compression or expansion is usually not of much interest to climate scientists, because it does not represent a change in heat content of the fluid. Therefore if we wish to compare the temperature of water at one pressure with water at another pressure, we should remove the effect of adiabatic compression/expansion. Definition:``Potential temperature'' is the temperature that a water parcel has when it moves adiabatically to a reference pressure. In the ocean, we commonly use the sea surface as our "reference" pressure for potential temperature - we compare the temperatures of parcels as if they have been moved to the sea surface adiabatically without mixing or diffusion. Since pressure is the lowest at the sea surface, potential temperature (computed at surface pressure) is ALWAYS lower than the actual temperature unless the water is lying at the sea surface. Note that when oceanic mixing occurs (without change of external heat flux, e.g. heat flux at air-sea interface), the temperature (or potential temperature) of the mixture of two water parcels with different T &S does not equal to the average temperature of the two original water parcels, while heat content remains the same. This is because heat capacity (specific heat) also varies with varying temperature and salinity values. For this reason, “conservative temperature” is defined in TEOS-10, which more precisely scales with heat content and insensitive to pressure (also see: https://www.nature.com/scitable/knowledge/library/key-physical-variables-in-the- ocean-temperature-102805293/). The difference between potential temperature and conservative temperature is usually well within ±0.05ºC for most ocean waters (although the difference can be large for warm fresh waters).
Recommended publications
  • Meeting Report-V2.0 V1.0Report
    10th OceanSITES Steering Committee Meeting Report-V2.0 V1.0Report 10th OceanSITES Steering Team meeting Date: 03-05 November 2014 Location: Hotel Armação, Porto de Galinhas Beach, Pernambuco, Brazil Authors: Uwe Send (Scripps Institution of Oceanography) Champika Gallage (JCOMMOPS Project Office) Meeting information: http://www.jcomm.info/oceansites2014 1 10th OceanSITES Steering Committee Meeting Report-V2.0 V1.0Report Revision Information Date Prepared by Reviewed by Version 03 Dec 2014 C Gallage U. Send V1.0 01 May 2015 Steering team V2.0 2 10th OceanSITES Steering Committee Meeting Report-V2.0 V1.0Report Table of Contents 10TH OCEANSITES STEERING TEAM MEETING ......................................................................... 1 REVISION INFORMATION ............................................................................................................. 2 TABLE OF CONTENTS ................................................................................................................................3 1. INTRODUCTION ................................................................................................................. 4 2. SCOPE OF THE MEETING................................................................................................. 6 3. OCEANSITES MISSION ..................................................................................................... 7 4. OCEANSITES CHARTER ................................................................................................... 7 5. HOW TO BECOME AN OCEANSITE
    [Show full text]
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • Sustained Global Ocean Observing Systems
    Introduction Goal The ocean, which covers 71 percent of the Earth’s surface, The goal of the Climate Observation Division’s Ocean Climate exerts profound influence on the Earth’s climate system by Observation Program2 is to build and sustain the in situ moderating and modulating climate variability and altering ocean component of a global climate observing system that the rate of long-term climate change. The ocean’s enormous will respond to the long-term observational requirements of heat capacity and volume provide the potential to store 1,000 operational forecast centers, international research programs, times more heat than the atmosphere. The ocean also serves and major scientific assessments. The Division works toward as a large reservoir for carbon dioxide, currently storing 50 achieving this goal by providing funding to implementing times more carbon than the atmosphere. Eighty-five percent institutions across the nation, promoting cooperation of the rain and snow that water the Earth comes directly from with partner institutions in other countries, continuously the ocean, while prolonged drought is influenced by global monitoring the status and effectiveness of the observing patterns of ocean temperatures. Coupled ocean-atmosphere system, and providing overall programmatic oversight for interactions such as the El Niño-Southern Oscillation (ENSO) system development and sustained operations. influence weather and storm patterns around the globe. Sea level rise and coastal inundation are among the Importance of Ocean Observations most significant impacts of climate change, and abrupt Ocean observations are critical to climate and weather climate change may occur as a consequence of altered applications of societal value, including forecasts of droughts, ocean circulation.
    [Show full text]
  • National Institute of Oceanography Goa-India
    NATIONAL INSTITUTE OF OCEANOGRAPHY GOA-INDIA 1978 ANNUAL REPORT 14 1978 NATIONAL INSTITUTE OF OCEANOGRAPHY ( Council of Scientific &. Industrial Research ) DONA PAULA - 403 004 GOA, INDIA CONTENTS Page No 1. General Introduction 1 2. Research Activities 2.0 Oceanographic Cruises of R.V. Gaveshani 2 2..1 Physical Oceanography 8 2.2 Chemical Oceanography 15 2.3 Geological Oceanography 22 2.4 Biological Oceanography 26 2.5 Ocean Engineering 36 2.6 Oceanographic Instrumentation 38 2.7 Planning, Publications, Information and Data 41 2.8 Interdisciplinary Task Forces 45 2.9 Sponsored Projects 50 2.10 International Projects 56 3. Technical Services 57 4. Administrative Set-up 4.1 Cruise Planning and Programme Priorities Committee for R.V. Gaveshani 60 4.2 Executive Committee 62 4.3 Scientific Advisory Committee 62 4.4 Budget 64 4.5 Scientific and Technical Staff 64 5. Awards, honours and membership of various committees 73 6. Deputations 76 7. Meetings, exhibitions, seminars, symposia, talks and special lectures 77 8. Colloquia 80 9. Radio talks 82 10. Distinguished visitors 10.1 Visit of the Prime Minister of India 10.2 Visit of the Minister of Shipping and Transport 83 10.3 Visit of other VIP's and Scientists 11. Publications 11.1 Publications of the Institute 87 11.2 Papers published 87 11..3 Popular articles and books published 93 11.4 Reports published 94 1 General Introduction In 1978, emphasis on the utilization of technology available at the Institute by the user community was continued. The Institute's research and development programmes included 23 projects, of which 6 were star- ted during this year.
    [Show full text]
  • The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
    1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance.
    [Show full text]
  • Guidelines Towards an Integrated Ocean Observation System for Ecosystems and Biogeochemical Cycles
    GUIDELINES TOWARDS AN INTEGRATED OCEAN OBSERVATION SYSTEM FOR ECOSYSTEMS AND BIOGEOCHEMICAL CYCLES Hervé Claustre(1), David Antoine(1), Lars Boehme(2), Emmanuel Boss(3), Fabrizio D’Ortenzio(1), Odile Fanton D’Andon(4), Christophe Guinet(5), Nicolas Gruber(6), Nils Olav Handegard(7), Maria Hood(8), Ken Johnson(9), Arne Körtzinger(10), Richard Lampitt(11), Pierre-Yves LeTraon(12), Corinne Lequéré(13), Marlon Lewis(14), Mary-Jane Perry(15), Trevor Platt(16), Dean Roemmich(17), Shubha Sathyendranath(16), Uwe Send(17), Pierre Testor(18), Jim Yoder(19) (1) CNRS and University P. & M. Curie, Laboratoire d’Océanographie de Villefranche, 06230 Villefranche-sur-mer, France, Email: [email protected], [email protected], [email protected] (2) NERC Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, Scotland, UK, Email: [email protected] (3) University of Maine, School of Marine Science, Orono, ME 04469 USA, Email: [email protected] (4) ACRI-ST, 260, route du Pin Montard - B.P. 234, 06904 Sophia Antipolis Cedex, France, Email: [email protected] (5) CNRS, Centre d'Etudes Biologiques de Chizé, Villiers-en-Bois, 79360 Beauvoir-sur-niort , France, [email protected] (6) Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitatstrasse 16, 8092 Zurich, Switzerland, Email: [email protected] (7) Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway, Email: [email protected] (8) UNESCO-IOC, 1 Rue Miollis, 75732 Paris cedex 15, France, Email: [email protected] (9) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing, CA 95039, USA, Email: [email protected] (10) Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) Chemische Ozeanographie Düsternbrooker Weg 20, 24105 Kiel, Germany.
    [Show full text]
  • Sea Level Rise Workshop Rpt.Pdf
    SUMMARY REPORT FROM THE WORLD CLIMATE RESEARCH ROGRAMME WORKSHOP UNDERSTANDING SEA-LEVEL RISE AND VARIABILITY (Paris, France, 6-9 June 2006) SEPTEMBER 2006 WCRP Informal Report N° 20/2006 THE WORKSHOP. 163 scientists from 29 countries attended the Workshop on Understanding Sea-level 1 Rise and Variability, hosted by the Intergovernmental Oceanographic Commission of UNESCO in Paris Understanding Sea-level Rise and Variability World Climate Research Programme Workshop Summary Statement from the June 6-9, 2006. The Workshop was organized by the World Climate Research Programme (WCRP)2 to bring together all relevant scientific expertise with a view towards identifying the uncertainties associated with past and future sea-level rise and variability, as well as the research and observational activities needed for narrowing these uncertainties. The Workshop was also conducted in support of the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan;3 as such, it helped develop international and interdisciplinary scientific consensus for those observational requirements needed to address sea-level rise and its variability. The Issue – Since the beginning of high-accuracy satellite altimetry in the early 1990s, global mean sea-level has been observed by both tide gauges and altimeters to be rising at a rate of just above 3 mm/year, compared to a rate of less than 2 mm/year from tide gauges over the previous century. The extent to which this increase reflects natural variability versus anthropogenic climate change is unknown. About half of the sea-level rise during the first decade of the altimeter record can be attributed to thermal expansion due to a warming of the oceans; the other major contributions include the combined effects of melting glaciers and ice sheets.
    [Show full text]
  • The Future of Sea Surface Height Observations
    THE FUTURE OF SEA SURFACE HEIGHT OBSERVATIONS Gary T. Mitchum Department of Marine Science University of South Florida 140 Seventh Ave. South St. Petersburg, FL 33701 U.S.A. Robert Cheney NOAA/NESDIS Laboratory for Satellite Altimetry Lee-Lueng Fu Jet Propulsion Laboratory Christian Le Provost Laboratoire d'Etudes en Geophysique et Oceanographie Spatiales Yves Menard Centre Nationales d'Etudes Spatiales Philip Woodworth Permanent Service for Mean Sea Level ABSTRACT - A brief review of the use of sea surface height (SSH) data for climate- related research is given that serves to identify key constraints on a strategy for obtaining SSH observations in the future. The present status of the SSH observing system is reviewed, and a plan for the future observing system that builds on the present system is developed. We conclude that the technology for maintaining an effective SSH observing system is available now, and given resources, this system can make a significant contribution to CLIVAR. 1 - INTRODUCTION There are two primary goals that we wish to accomplish in this paper. First, we want to establish the scientific utility of sea surface height measurements for the study of low frequency variations in the oceans within CLIVAR, and thus to provide a rationale for an ongoing program of observing sea surface height from satellite altimeters and from tide gauges. Obviously, any significant observational effort, and particularly efforts that include large remote sensing components, must be based on solid evidence that the data obtained will be useful, even essential, for the science questions at hand. Second, we also want to use these justifications to provide a sensible set of requirements for how the sea surface height measurements need to be made.
    [Show full text]
  • Wind Sea Growth and Dissipation in the Open Ocean
    VOLUME 29 JOURNAL OF PHYSICAL OCEANOGRAPHY AUGUST 1999 Wind Sea Growth and Dissipation in the Open Ocean JEFFREY L. HANSON The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland OWEN M. PHILLIPS The Johns Hopkins University, Baltimore, Maryland (Manuscript received 12 December 1997, in ®nal form 17 June 1998) ABSTRACT Wind sea growth and dissipation in a swell-dominated, open ocean environment is investigated to explore the use of wave parameters in air±sea process modeling. Wind, wave, and whitecap observations are used from the Gulf of Alaska surface scatter and air±sea interaction experiment (Critical Sea Test-7, Phase 2), conducted 24 February through 1 March 1992. Wind sea components are extracted from buoy directional wave spectra using an inverted catchment area approach for peak isolation with both wave age criteria and an equilibrium range threshold used to classify the wind sea spectral domain. Dimensionless wind sea energy is found to scale with inverse wave age independently of swell. However, wind trend causes signi®cant variations, such as underde- veloped seas during rising winds. These important effects are neglected in wind-forced air±sea process models. The total rate of wave energy dissipation is conveniently estimated using concepts from the Phillips equilibrium range theory. Replacing wind speed with wave dissipation rate in the standard power-law description of oceanic whitecap fraction decreases the range of data scatter by two to three orders of magnitude. The improved modeling of whitecaps demonstrates that wave spectral parameters can be used to enhance air±sea process models. 1. Introduction lationships, Donelan et al.
    [Show full text]
  • Chapter 3 IPCC WGI Fifth Assessment Report
    Second Order Draft Chapter 3 IPCC WGI Fifth Assessment Report 1 2 Chapter 3: Observations: Ocean 3 4 Coordinating Lead Authors: Monika Rhein (Germany), Stephen R. Rintoul (Australia) 5 6 Lead Authors: Shigeru Aoki (Japan), Edmo Campos (Brazil), Don Chambers (USA), Richard Feely (USA), 7 Sergey Gulev (Russia), Gregory C. Johnson (USA), Simon A. Josey (UK), Andrey Kostianoy (Russia), 8 Cecilie Mauritzen (Norway), Dean Roemmich (USA), Lynne Talley (USA), Fan Wang (China) 9 10 Contributing Authors: Michio Aoyama, Molly Baringer, Nicholas R. Bates, Timothy Boyer, Robert Byrne, 11 Sarah Cooley, Stuart Cunningham, Thierry Delcroix, Catia M. Domingues, John Dore, Scott Doney, Paul 12 Durack, Rana Fine, Melchor González-Dávila, Simon Good, Nicolas Gruber, Mark Hemer, David Hydes, 13 Masayoshi Ishii, Stanley Jacobs, Torsten Kanzow, David Karl, Alexander Kazmin, Samar Khatiwala, Joan 14 Kleypas, Kitack Lee, Eric Leuliette, Calvin Mordy, Jon Olafsson, James Orr, Alejandro Orsi, Geun-Ha Park, 15 Igor Polyakov, Sarah G. Purkey, Bo Qiu, Gilles Reverdin, Anastasia Romanou, Raymond Schmitt, Koji 16 Shimada, Lothar Stramma, Toshio Suga, Taro Takahashi, Toste Tanhua, Sunke Schmidtko, Karina von 17 Schuckmann, Doug Smith, Hans von Storch, Xiaolan Wang, Rik Wanninkhof, Susan Wijffels, Philip 18 Woodworth, Igor Yashayaev, Lisan Yu 19 20 Review Editors: Howard Freeland (Canada), Silvia Garzoli (USA), Yukihiro Nojiri (Japan) 21 22 Date of Draft: 5 October 2012 23 24 Notes: TSU Compiled Version 25 26 27 Table of Contents 28 29 Executive Summary..........................................................................................................................................3
    [Show full text]
  • A Paradigm for Ocean Observations in the 21St Century
    A Paradigm for Ocean Observations in the 21st Century Dean Roemmich, Scripps Institution of Oceanography, USA, Susan Wijffels, CSIRO/Centre for Australian Weather and Climate Research, Australia and the Argo Steering Team December 2012 Outline • The roots of Argo: From 20th century global-scale oceanography to 21st century global oceanography. • What has Argo achieved relative to its initial objectives? • What are the next challenges for Argo? Argo’s 1,000,000th profile was collected a month ago! Global Oceanography Argo Global-scale Oceanography All years, Non-Argo T,S Argo has transformed global-scale oceanography into global oceanography. Argo: 1,000,000 T/S profiles. 5 years of August Argo T,S profiles (2007-2011). All August T/S profiles (> 1000 m, 1951 - 2000). The 21st century paradigm is systematic global ocean observations: a subsurface 20th Century: 534,905 T/S profiles > 1000 m observing system having “satellite-like” space-time coverage. Global-scale oceanography began with the Challenger Expedition (1872 – 1876) Challenger 1872-1876 ``One of the objects of the Expedition was to collect information as to the distribution of temperature in the waters of the ocean . not only at the surface, but at the bottom, and at intermediate depths'‘ (Wyville Thomson and Murray, 1885) Charles Wyville Thomson Progress in oceanography is synonymous with advances in technology Basic tools of mid-20th century physical oceanography: Nansen bottles and DSRTs Clamping Nansen bottle on the wire. A pressure- protected Deep- Sea Reversing thermometer Nansen bottles came into use around 1910. DSRT’s were accurate to a few thousandths of a °C Depth, from protected/unprotected pairs of thermometers, to ~5 m.
    [Show full text]
  • Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales
    water Article Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales Andrea Storto 1,*, Antonio Bonaduce 2, Xiangbo Feng 3,4 and Chunxue Yang 5 1 Centre for Maritime Research and Experimentation, 19126 La Spezia SP, Italy 2 Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research (HZG), 21502 Geesthacht, Germany; [email protected] 3 National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading RG6 6AH, UK; [email protected] 4 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China 5 Institute of Marine Sciences, National Research Council of Italy, 00133 Rome, Italy; [email protected] * Correspondence: [email protected] Received: 31 July 2019; Accepted: 10 September 2019; Published: 24 September 2019 Abstract: Sea level has risen significantly in the recent decades and is expected to rise further based on recent climate projections. Ocean reanalyses that synthetize information from observing networks, dynamical ocean general circulation models, and atmospheric forcing data offer an attractive way to evaluate sea level trend and variability and partition the causes of such sea level changes at both global and regional scales. Here, we review recent utilization of reanalyses for steric sea level trend investigations. State-of-the-science ocean reanalysis products are then used to further infer steric sea level changes. In particular, we used an ensemble of centennial reanalyses at moderate spatial resolution (between 0.5 0.5 and 1 1 degree) and an ensemble of eddy-permitting reanalyses to × × quantify the trends and their uncertainty over the last century and the last two decades, respectively.
    [Show full text]