Lecture Notes in Oceanography

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes in Oceanography Lecture Notes in Oceanography by Matthias Tomczak Flinders University, Adelaide, Australia School of Chemistry, Physics & Earth Sciences http://www.es.flinders.edu.au/~mattom/IntroOc/index.html 1996-2000 Contents Introduction: an opening lecture General aims and objectives Specific syllabus objectives Convection Eddies Waves Qualitative description and quantitative science The concept of cycles and budgets The Water Cycle The Water Budget The Water Flux Budget The Salt Cycle Elements of the Salt Flux Budget The Nutrient Cycle The Carbon Cycle Lecture 1. The place of physical oceanography in science; tools and prerequisites: projections, ocean topography The place of physical oceanography in science The study object of physical oceanography Tools and prerequisites for physical oceanography Projections Topographic features of the oceans Scales of graphs Lecture 2. Objects of study in Physical Oceanography The geographical and atmospheric framework Lecture 3. Properties of seawater The Concept of Salinity Electrical Conductivity Density Lecture 4. The Global Oceanic Heat Budget Heat Budget Inputs Solar radiation Heat Budget Outputs Back Radiation Direct (Sensible) Heat Transfer Between Ocean and Atmosphere Evaporative Heat Transfer The Oceanic Mass Budget Lecture 5. Distribution of temperature and salinity with depth; the density stratification Acoustic Properties Sound propagation Nutrients, oxygen and growth-limiting trace metals in the ocean Lecture 6. Aspects of Geophysical Fluid Dynamics Classification of forces for oceanography Newton's Second Law in oceanography ("Equation of Motion") Inertial motion Geostrophic flow The Ekman Layer Lecture Notes in Oceanography by Matthias Tomczak 2 Upwelling Lecture 7. Thermohaline processes; water mass formation; the seasonal thermocline Circulation in Mediterranean Seas Lecture 8. The ocean and climate El Niño and the Southern Oscillation (ENSO) Lecture 9. Waves Wave Classification Description of Waves Normal dispersion Nondispersive waves Anomalous dispersion Waves of finite amplitude Short waves (deep water waves) Statistical description of waves Lecture 10. Long Waves (shallow water waves) Tsunamis Seiches Internal Waves Lecture 11. Tides Description of tides The Tide-Generating Forces Main tidal periods Tidal Classification Shape of the Tidal Wave Co-oscillation tides Lecture 12. Estuaries Salt wedge estuary Highly stratified estuary Slightly stratified estuary Vertically mixed estuary Inverse estuaries Intermittent estuaries Lecture 13. Oceanographic instrumentation Platforms Research vessels Moorings Satellites Submersibles Towed vehicles Floats and drifters Measurements of hydrographic properties Reversing thermometers Nansen and Niskin bottles CTDs Multiple water sample devices Thermosalinographs Remote sensors Measurements of dynamic properties Current meters Lecture Notes in Oceanography by Matthias Tomczak 3 Wave measurements Tide gauges Remote sensors Shear probes Lecture Notes in Oceanography by Matthias Tomczak 4 Introduction: an opening lecture For many years the Flinders University of South Australia has offered a first year topic Earth Sciences in two parts. The first semester topic, Earth Sciences 1A, covered the place of the Earth in the universe, aspects of geology, and an introduction into geophysics and hydrology. Meteorology and oceanography were covered in the second semester topic Earth Sciences 1B. Beginning in 2000 the two topics are delivered as Earth Sciences 1, which continues as the first semester topic with identical content, and Marine Sciences 1 as the second semester topic. Marine Sciences 1 still contains extensive material on meteorology and physical oceanography but also contains an elementary introduction to aspects of marine biology. These notes represent the topic content for physical oceanography. In addition, two introductory lectures place the atmospheric and oceanographic aspects of the topic in the context of the exact sciences; they are an abbreviated version of the first two lectures given at the beginning of the semester. General aims and objectives To give students practical experience in general scientific methodology including laboratory and field-based experimentation and scientific report writing. To help students develop an understanding of the unifying principles and processes which are critical in understanding both the evolution and behaviour of the planet Earth, with a particular focus on aspects relating to the atmosphere and the ocean. To encourage critical thinking and assist in the development of both quantitative and qualitative problem solving skills. To assist in the development of communication and team work skills in a technical environment. Specific syllabus objectives To provide an overview of the processes which determine the state of the atmosphere and the ocean and their dynamics. To describe our planetary environment and the governing cycles and processes which control its behaviour. To describe the processes and phenomena which directly affect the nature and behaviour of the "fluid" Earth, namely, the composition of the atmosphere and of seawater, the balance of forces which controls winds, ocean currents and waves in both media, and their role in climate. To describe the natural atmospheric and oceanic processes which impact on use of the Earth's resources including industrial, commercial and recreational use and conservation. To let students appreciate the importance of scientific understanding of physical processes in ocean and atmosphere and the forces behind them for environmental pollution and management problems. What will we learn today? 1. The environment Earth is shaped by the presence of life. 2. Understanding the environment means understanding the interaction between biosphere, geosphere, hydrosphere and atmosphere. Lecture Notes in Oceanography by Matthias Tomczak 5 3. Earth sciences study the three non-living components of this interactive system. 4. Geosphere, hydrosphere and atmosphere are fluids in motion; their main difference is their viscosity. 5. As fluids in motion they exhibit some common features. Examples are convection, eddies, and energy transport through wave propagation. The sciences of meteorology and oceanography study the results of these processes in the atmosphere and in the ocean. The living and non-living components of the interactive system Earth are shaped through interaction - even the structure of its non-living components is determined by the presence of life. This is most pronounced for the atmosphere; its composition is determined by the presence of life. In the absence of life the most important gas in the atmosphere is carbon dioxyde (CO2) which makes the atmosphere toxic for higher life forms. Life on Earth evolved through the activity of bacteria which reduced CO2 levels to tolerable concentrations and produced oxygen (O2) in the process. Examples for this planetary state are Venus and Mars; both have an atmosphere with a CO2 content of 95%. The present make-up of Earth's atmosphere is maintained by continuous interplay between reduction of CO2 and production of O2 by plants and reduction of O2 and production of CO2 by animals and humans. Without the presence of life the atmosphere would not maintain its composition. The earth's atmosphere is therefore said to be in "dynamic equilibrium", while in the absence of life atmospheres are said to be in "dead equilibrium". In the 1960s the British chemist James Lovelock was engaged by the space agency NASA of the USA in its search for extra-terrestrial life, particularly on Mars and Venus. Noticing the large difference in atmospheric composition between Earth and the other two planets - and in particular the fact that the atmospheres of Venus and Mars are in a dead equilibrium while the atmosphere of Earth is in a dynamic equilibrium, which without life would immediately revert to the dead equilibrium - he and Lynn Margulis, a microbiologist from the USA, developed the gaea concept or hypothesis. They point out that the presence of life has far reaching consequences for the planet as a whole. The development of forest, for example, reduces the Lecture Notes in Oceanography by Matthias Tomczak 6 albedo (the reflectivity of the Earth's surface) considerably. As a result the Earth is several degrees warmer than it would be without the presence of life. The gaea hypothesis therefore states that the planet Earth is a living organism itself, and oceans, land, air and all lifeforms are different organs of a living body. Whether one accepts the gaea hypothesis in its extreme formulation or not, it is beyond doubt that the gaea hypothesis is a scientific hypothesis and can withstand the many attempts to turn it into a "new age religion". The fact remains that Earth as it is today is determined in its physical state (the distribution of water and ice, the composition of the atmosphere, the weathering processes of rocks, and much more) by the presence of life. Modern science has been extremely successful in explaining the Earth by dividing it into compartments which can be studied separately. Modern science divides the Earth into living and non-living compartments. In reality Earth is an interactive system in which all elements are related and influence each other. Not all cultures see the Earth that way; but the success of modern science shows that dividing the Earth into independent compartments can be one way of understanding many aspects of it. This topic will follow the tradition of modern science; but students
Recommended publications
  • Coastal Processes and Causes of Shoreline Erosion and Accretion Causes of Shoreline Erosion and Accretion
    Coastal Processes and Causes of Shoreline Erosion and Accretion and Accretion Erosion Causes of Shoreline Heather Weitzner, Great Lakes Coastal Processes and Hazards Specialist Photo by Brittney Rogers, New York Sea Grant York Photo by Brittney Rogers, New New York Sea Grant Waves breaking on the eastern Lake Ontario shore. Wayne County Cooperative Extension A shoreline is a dynamic environment that evolves under the effects of both natural 1581 Route 88 North and human influences. Many areas along New York’s shorelines are naturally subject Newark, NY 14513-9739 315.331.8415 to erosion. Although human actions can impact the erosion process, natural coastal processes, such as wind, waves or ice movement are constantly eroding and/or building www.nyseagrant.org up the shoreline. This constant change may seem alarming, but erosion and accretion (build up of sediment) are natural phenomena experienced by the shoreline in a sort of give and take relationship. This relationship is of particular interest due to its impact on human uses and development of the shore. This fact sheet aims to introduce these processes and causes of erosion and accretion that affect New York’s shorelines. Waves New York’s Sea Grant Extension Program Wind-driven waves are a primary source of coastal erosion along the Great provides Equal Program and Lakes shorelines. Factors affecting wave height, period and length include: Equal Employment Opportunities in 1. Fetch: the distance the wind blows over open water association with Cornell Cooperative 2. Length of time the wind blows Extension, U.S. Department 3. Speed of the wind of Agriculture and 4.
    [Show full text]
  • Understanding Eddy Field in the Arctic Ocean from High-Resolution Satellite Observations Igor Kozlov1, A
    Abstract ID: 21849 Understanding eddy field in the Arctic Ocean from high-resolution satellite observations Igor Kozlov1, A. Artamonova1, L. Petrenko1, E. Plotnikov1, G. Manucharyan2, A. Kubryakov1 1Marine Hydrophysical Institute of RAS, Russia; 2School of Oceanography, University of Washington, USA Highlights: - Eddies are ubiquitous in the Arctic Ocean even in the presence of sea ice; - Eddies range in size between 0.5 and 100 km and their orbital velocities can reach up to 0.75 m/s. - High-resolution SAR data resolve complex MIZ dynamics down to submesoscales [O(1 km)]. Fig 1. Eddy detection Fig 2. Spatial statistics Fig 3. Dynamics EGU2020 OS1.11: Changes in the Arctic Ocean, sea ice and subarctic seas systems: Observations, Models and Perspectives 1 Abstract ID: 21849 Motivation • The Arctic Ocean is a host to major ocean circulation systems, many of which generate eddies transporting water masses and tracers over long distances from their formation sites. • Comprehensive observations of eddy characteristics are currently not available and are limited to spatially and temporally sparse in situ observations. • Relatively small Rossby radii of just 2-10 km in the Arctic Ocean (Nurser and Bacon, 2014) also mean that most of the state-of-art hydrodynamic models are not eddy-resolving • The aim of this study is therefore to fill existing gaps in eddy observations in the Arctic Ocean. • To address it, we use high-resolution spaceborne SAR measurements to detect eddies over the ice-free regions and in the marginal ice zones (MIZ). EGU20 -OS1.11 – Kozlov et al., Understanding eddy field in the Arctic Ocean from high-resolution satellite observations 2 Abstract ID: 21849 Methods • We use multi-mission high-resolution spaceborne synthetic aperture radar (SAR) data to detect eddies over open ocean and marginal ice zones (MIZ) of Fram Strait and Beaufort Gyre regions.
    [Show full text]
  • Lecture 7. More on BL Wind Profiles and Turbulent Eddy Structures in This
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 7. More on BL wind profiles and turbulent eddy structures In this lecture… • Stability and baroclinicity effects on PBL wind and temperature profiles • Large-eddy structures and entrainment in shear-driven and convective BLs. Stability effects on overall boundary layer structure Above the surface layer, the wind profile is also affected by stability. As we mentioned previously, unstable BLs tend to have much more well-mixed wind profiles than stable BLs. Fig. 1 shows observations from the Wangara experiment on how the velocity defects and temperature profile are altered by BL stability (as measured by H/L). Within stability classes, the velocity profiles collapse when scaled with a velocity scale u* and the observed BL depth H, but there is a large difference between the stability classes. Baroclinicity We would expect baroclinicity (vertical shear of geostrophic wind) to also affect the observed wind profile. This is most easily seen for a laminar steady-state Ekman layer in a geostrophic wind with constant vertical shear ug(z) = (G + Mz, Nz), where M = -(g/fT0)∂T/∂y, N = (g/fT0)∂T/∂x. The momentum equations and BCs are: -f(v - Nz) = ν d2u/dz2 f(u - G - Mz) = ν d2v/dz2 u(0) = 0, u(z) ~ G + Mz as z → ∞. v(0) = 0, v(z) ~ Nz as z → ∞. The resultant BL velocity profile is the classical Ekman layer with the thermal wind added onto it. u(z) = G(1 - e-ζ cos ζ) + Mz, (7.1) 1/2 v(z) = G e- ζ sin ζ + Nz.
    [Show full text]
  • Preliminary Catalog of the Sedimentary Basins of the United States
    Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Analysis of Hydrometeorological Conditions in the South Baltic Sea During the Stormy Weather O N 2 7 Th November, 2016
    ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ SCIENTIFIC JOURNAL OF POLISH NAVAL ACADEMY 2017 (LVIII) 2 (209) DOI: 10.5604/01.3001.0010.4062 Czesław Dyrcz ANALYSIS OF HYDROMETEOROLOGICAL CONDITIONS IN THE SOUTH BALTIC SEA DURING THE STORMY WEATHER O N 2 7 TH NOVEMBER, 2016 ABSTRACT The paper presents results of research concerning hydrological and meteorological conditions during the stormy weather on 27th November, 2016 in the South Baltic Sea and over the Polish coast. The wind which occurred the South Baltic Sea at that time reached the force of 7 Beaufort degree and in gusts 8 to 9 Beaufort degree. The south part of the Baltic Sea was affected by the low pressure system (981 hPa) which the centre was situated in South Finland and Northwest Russia. Some destroys were observed on the Polish coast line and in ports of the Gdansk Bay. The analysis is concerned on the wind force, the wind direction, the atmospheric pressure and the sea water level in some places of the Polish coast line and especially in the Gdansk Bay. Key words: sea water level, weather conditions, the South Baltic Sea. INTRODUCTION Occurrence of strong winds in the area of the Baltic Sea and on the Polish coast is related mainly with active cyclones. This means that the strong winds zone is of the synoptic scale, i.e. it extends in an area of over 500 NM across and it lasts for a few days. Storms cause serious difficulties or they are even threats to safety of sea navigation and work in harbors. They often destroy hydrotechnical devices and coast facilities.
    [Show full text]
  • Hydrogeology of Near-Shore Submarine Groundwater Discharge
    Hydrogeology and Geochemistry of Near-shore Submarine Groundwater Discharge at Flamengo Bay, Ubatuba, Brazil June A. Oberdorfer (San Jose State University) Matthew Charette, Matthew Allen (Woods Hole Oceanographic Institution) Jonathan B. Martin (University of Florida) and Jaye E. Cable (Louisiana State University) Abstract: Near-shore discharge of fresh groundwater from the fractured granitic rock is strongly controlled by the local geology. Freshwater flows primarily through a zone of weathered granite to a distance of 24 m offshore. In the nearshore environment this weathered granite is covered by about 0.5 m of well-sorted, coarse sands with sea water salinity, with an abrupt transition to much lower salinity once the weathered granite is penetrated. Further offshore, low-permeability marine sediments contained saline porewater, marking the limit of offshore migration of freshwater. Freshwater flux rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge of 0.17 to 1.6 m3/d per m of shoreline. Dissolved inorganic nitrogen and silicate were elevated in the porewater relative to seawater, and appeared to be a net source of nutrients to the overlying water column. The major ion concentrations suggest that the freshwater within the aquifer has a short residence time. Major element concentrations do not reflect alteration of the granitic rocks, possibly because the alteration occurred prior to development of the current discharge zones, or from elevated water/rock ratios. Introduction While there has been a growing interest over the last two decades in quantifying the discharge of groundwater to the coastal zone, the majority of studies have been carried out in aquifers consisting of unlithified sediments or in karst environments.
    [Show full text]
  • Meeting Report-V2.0 V1.0Report
    10th OceanSITES Steering Committee Meeting Report-V2.0 V1.0Report 10th OceanSITES Steering Team meeting Date: 03-05 November 2014 Location: Hotel Armação, Porto de Galinhas Beach, Pernambuco, Brazil Authors: Uwe Send (Scripps Institution of Oceanography) Champika Gallage (JCOMMOPS Project Office) Meeting information: http://www.jcomm.info/oceansites2014 1 10th OceanSITES Steering Committee Meeting Report-V2.0 V1.0Report Revision Information Date Prepared by Reviewed by Version 03 Dec 2014 C Gallage U. Send V1.0 01 May 2015 Steering team V2.0 2 10th OceanSITES Steering Committee Meeting Report-V2.0 V1.0Report Table of Contents 10TH OCEANSITES STEERING TEAM MEETING ......................................................................... 1 REVISION INFORMATION ............................................................................................................. 2 TABLE OF CONTENTS ................................................................................................................................3 1. INTRODUCTION ................................................................................................................. 4 2. SCOPE OF THE MEETING................................................................................................. 6 3. OCEANSITES MISSION ..................................................................................................... 7 4. OCEANSITES CHARTER ................................................................................................... 7 5. HOW TO BECOME AN OCEANSITE
    [Show full text]
  • In Classical Fluid Dynamics, a Boundary Layer Is the Layer I
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 1 Scope of Boundary Layer (BL) Meteorology (Garratt, Ch. 1) In classical fluid dynamics, a boundary layer is the layer in a nearly inviscid fluid next to a surface in which frictional drag associated with that surface is significant (term introduced by Prandtl, 1905). Such boundary layers can be laminar or turbulent, and are often only mm thick. In atmospheric science, a similar definition is useful. The atmospheric boundary layer (ABL, sometimes called P[lanetary] BL) is the layer of fluid directly above the Earth’s surface in which significant fluxes of momentum, heat and/or moisture are carried by turbulent motions whose horizontal and vertical scales are on the order of the boundary layer depth, and whose circulation timescale is a few hours or less (Garratt, p. 1). A similar definition works for the ocean. The complexity of this definition is due to several complications compared to classical aerodynamics. i) Surface heat exchange can lead to thermal convection ii) Moisture and effects on convection iii) Earth’s rotation iv) Complex surface characteristics and topography. BL is assumed to encompass surface-driven dry convection. Most workers (but not all) include shallow cumulus in BL, but deep precipitating cumuli are usually excluded from scope of BLM due to longer time for most air to recirculate back from clouds into contact with surface. Air-surface exchange BLM also traditionally includes the study of fluxes of heat, moisture and momentum between the atmosphere and the underlying surface, and how to characterize surfaces so as to predict these fluxes (roughness, thermal and moisture fluxes, radiative characteristics).
    [Show full text]
  • Lagrangian Measurement of Subsurface Poleward Flow Between 38 Degrees N and 43 Degrees N Along the West Coast of the United States During Summer, 1993
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1996-09-01 Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and 43 degrees N along the West Coast of the United States during Summer, 1993 Collins, Curtis A. Geophysical Research Letters, Vol. 23, No. 18, pp. 2461-2464, September 1, 1996 http://hdl.handle.net/10945/45730 GEOPHYSICAL RESEARCH LETTERS, VOL. 23, NO. 18, PAGES 2461-2464, SEPTEMBER 1, 1996 Lagrangian Measurement of subsurface poleward Flow between 38øN and 43øN along the West Coast of the United States during Summer, 1993 CurtisA. Collins,Newell Garfield, Robert G. Paquette,and Everett Carter 1 Departmentof Oceanography,Naval Postgraduate School, Monterey, California Abstract. SubsurfaceLagrangian measurementsat about Undercurrentalong the coastsof California and Oregon. We 140 m showedthat the pathof the CaliforniaUndercurrent lay are using quasi-isobaric(float depth controlled primarily by next to the continentalslope betweenSan Francisco(37.80N) the pressureeffect on density)RAFOS floats (Rossby et al., and St. GeorgeReef (41.8øN) duringmid-summer 1993. The 1986) to make these measurements. A RAFOS float consists meanspeed along this 500 km pathwas 8 cms-1. Theflow at of a hydrophonemounted in a glasstube that is about2 meters this depth was not disturbedby upwelling centersat Point long. These hydrophonesreceive signals from three sound Reyesor CapeMendocino. Restfits also demonstratethe abil- sources that were moored 400 km offshore between 34.3øN and ity to acousticallytrack floats located well above the sound 40.4øN.The sound sources emit 15 W, 80 s signalsa•t 260 Hz channelaxis along the California coast.
    [Show full text]
  • Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico)
    Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico) by Stephen Alexander Daire A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2019 Copyright © 2019 by Stephen Daire “History is just a 25,000-year dash from the trees to the starship; and while it’s going on its wild and woolly but it’s only like that, and then you’re in the starship.” – Terence McKenna. Table of Contents List of Figures ................................................................................................................................ iv List of Tables ................................................................................................................................. xi Acknowledgements ....................................................................................................................... xii List of Abbreviations ................................................................................................................... xiii Abstract ........................................................................................................................................ xvi Chapter 1 Planetary Sciences, Cave Survey, & Human Evolution................................................. 1 1.1. Topic & Area of Interest: Exploration & Survey ....................................................................12
    [Show full text]
  • Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics
    CHAPTER SEVEN Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics Frans J. JorissenÃ, Christophe Fontanier and Ellen Thomas Contents 1. Introduction 263 1.1. General introduction 263 1.2. Historical overview of the use of benthic foraminiferal assemblages 266 1.3. Recent advances in benthic foraminiferal ecology 267 2. Benthic Foraminiferal Proxies: A State of the Art 271 2.1. Overview of proxy methods based on benthic foraminiferal assemblage data 271 2.2. Proxies of bottom water oxygenation 273 2.3. Paleoproductivity proxies 285 2.4. The water mass concept 301 2.5. Benthic foraminiferal faunas as indicators of current velocity 304 3. Conclusions 306 Acknowledgements 308 4. Appendix 1 308 References 313 1. Introduction 1.1. General Introduction The most popular proxies based on microfossil assemblage data produce a quanti- tative estimate of a physico-chemical target parameter, usually by applying a transfer function, calibrated on the basis of a large dataset of recent or core-top samples. Examples are planktonic foraminiferal estimates of sea surface temperature (Imbrie & Kipp, 1971) and reconstructions of sea ice coverage based on radiolarian (Lozano & Hays, 1976) or diatom assemblages (Crosta, Pichon, & Burckle, 1998). These à Corresponding author. Developments in Marine Geology, Volume 1 r 2007 Elsevier B.V. ISSN 1572-5480, DOI 10.1016/S1572-5480(07)01012-3 All rights reserved. 263 264 Frans J. Jorissen et al. methods are easy to use, apply empirical relationships that do not require a precise knowledge of the ecology of the organisms, and produce quantitative estimates that can be directly applied to reconstruct paleo-environments, and to test and tune global climate models.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan the SYNTHESIS of POINT DATA
    This dissertation has been microfilmed exactly as received 68-16,949 JOHNSON, Rockne Hart, 1930- THE SYNTHESIS OF POINT DATA AND PATH DATA IN ESTIMATING SOFAR SPEED. University of Hawaii, Ph.D., 1968 Geophysics University Microfilms, Inc., Ann Arbor, Michigan THE SYNTHESIS OF POINT DATA AND PATH DATA IN ESTIMATING SOFAR SPEED A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOSCIENCES June 1968 By Rockne Hart Johnson Dissertation Committee: William M. Adams, Chairman Doak C. Cox George H. Sutton George P. Woollard Klaus Wyrtki ii P~F~E Geophysical interest in the deep ocean sound (sofar) channel centers on its use as a tool for the detection and location of remote events. Its potential application to oceanography may lie in the monitoring of variations of physical properties averaged over long paths by sofar travel-time measurements. As the accuracy of computed event locations is generally dependent on the accuracy of travel-time calculations, the spatial and temporal variation of sofar speed is a matter of fundamental interest. The author's interest in this problem has grown out of a practical need for such information for application to the problem of locating the sources of earthquake I waves and submarine volcanic sounds. Although an exten­ sive body of sound-speed data is available from hydrographic casts, considerably more precise measurements can be made of explosion travel times over long paths. This dissertation develops a novel procedure for analytically combining these two types of data to produce a functional description of the spatial variation of safar speed.
    [Show full text]