Overview of the Impacts of Anthropogenic Underwater Sound in the Marine Environment

Total Page:16

File Type:pdf, Size:1020Kb

Overview of the Impacts of Anthropogenic Underwater Sound in the Marine Environment Overview of the impacts of anthropogenic underwater sound in the marine environment Biodiversity Series 2009 Overview of the impacts of anthropogenic underwater sound in the marine environment OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. 2 OSPAR Commission, 2009 Acknowledgements Author list (in alphabetical order) Thomas Götz Scottish Oceans Institute, East Sands University of St Andrews St Andrews, Fife KY16 8LB [email protected] Module 2, 8 Gordon Hastie SMRU Limited New Technology Centre North Haugh St Andrews, Fife KY16 9SR [email protected] Module 2, 8 Leila T. Hatch Marine Ecologist Stellwagen Bank National Marine Sanctuary NOS-NOQQ 175 Edward Foster Road Scituate Massachusetts 02066 [email protected]. Module 5 Odd Raustein The Norwegian Petroleum Directorate P.O. Box 600, 4003 Stavanger, Norway [email protected] Module 7 Brandon L. Southall (Current affiliation): (Previous affiliation): Senior Scientist Director, NOAA Ocean Acoustics Program SEA, Inc. and National Marine Fisheries Service Associate Researcher Office of Science and Technology University of California 1315 East West Hwy, SSMC III #12539 Santa Cruz Silver Spring, MD 20910-6233 [email protected] [email protected] Module 5 Mark Tasker Head of Marine Advice Joint Nature Conservation Committee Dunnet House 7 Thistle Place Aberdeen AB10 1UZ [email protected] Module 6 3 Overview of the impacts of anthropogenic underwater sound in the marine environment Frank Thomsen Marine Scientific Advisor, Cefas Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK [email protected] Modules 1, 3, 4 and task manager Editorial comments and suggestion on module 7 John Campbell & Bjørge Fredheim International Association of Oil and Gas Producers (OGP) London SE1 8NL John.Campbell.ogp.org.uk The Intersessional correspondence group on underwater noise (2007 - 2009) Frank Thomsen, Javier Pantoja, Suzan van Lieshout, Thomas Merck, Herman Peters, Brigitte Lauwaert, Claudine Boucheron, Ralf Wasserthal, Eugene Nixon, Rona Vink, Jose Buceta, Adrian Judd, Placido Hernandez-Aguilar, John Campbell, Odd Raustein, Anne Langaas, Andy Greaves, Ann Govaerts, Martin Jasny, Zack Smith, Fotios Papoulias, Paulo Domingos-Paixao, Ana Tejedor, Tim Packeiser, Klaus Lucke, Reinier Goud, Sandra van der Graaf, Rene Dekeling, Alexander Liebschner, Natacha Aguilar, Niels Kinneging, Mark Tasker, Wolfgang Dinter, Jeff Adron, Cara Horowitz, Bjorge Fredheim. OSPAR Secretariat support Sebastian Unger, Sylvie Ashe, Barbara Middleton Photo credit Cover photo: beamreach.org 4 OSPAR Commission, 2009 In memory of our colleague Wolfgang DINTER who passed away too early and while this report was being compiled. His deep commitment resulted in increased general perception of the problems that human impacts such as underwater noise pose to marine life. 5 Overview of the impacts of anthropogenic underwater sound in the marine environment 6 OSPAR Commission, 2009 Contents Module 1: Introduction and Terms of Reference ............................................................................ 10 1.1 Introduction......................................................................................................................... 10 1.2 Terms of Reference............................................................................................................ 13 1.3 Structure of the Paper ........................................................................................................ 13 1.4 References ......................................................................................................................... 14 Module 2: Background on Underwater Sound ................................................................................ 16 2.1 Nature of sound and basic concepts.................................................................................. 16 2.2 Measurement of sound....................................................................................................... 17 2.3 Physical units...................................................................................................................... 17 2.3.1 Sound pressure level and the decibel ................................................................... 17 2.3.2 Sound exposure level ............................................................................................ 18 2.3.3 Spectrum of a sound.............................................................................................. 19 2.4 Biological units.................................................................................................................... 19 2.5 Sound versus noise............................................................................................................ 20 2.6 Source level measurements............................................................................................... 20 2.7 Sound propagation and transmission loss ......................................................................... 20 2.8 Background noise............................................................................................................... 21 2.9 References ......................................................................................................................... 21 Module 3: Background on General Aspects of Impacts of Sound on Marine Life ...................... 23 3.1 The Importance of Sound for Marine Organisms............................................................... 23 3.2 Sources of Sound in the Marine Environment.................................................................... 24 3.3 Assessing Impacts of Underwater Sound on Marine Life .................................................. 24 3.4 Regulation and Mitigation................................................................................................... 31 3.5 Conclusions........................................................................................................................ 32 3.6 References ......................................................................................................................... 32 Module 4: Marine Construction and Industrial Activities............................................................... 37 4.1 Noise Profiles of Marine Construction and Industrial Activities.......................................... 37 4.2 Effects on Marine Mammals............................................................................................... 39 4.2.1 Responsiveness .................................................................................................... 39 4.2.2 Hearing loss and injury .......................................................................................... 41 4.3 Effects on Fish.................................................................................................................... 42 4.4 Effects on other species ..................................................................................................... 43 4.5 Mitigation ............................................................................................................................ 44 4.6 Conclusions........................................................................................................................ 45 4.7 References ......................................................................................................................... 46 Module 5: Shipping ............................................................................................................................ 50 5.1 Noise profiles of marine vessels......................................................................................... 50 5.1.1 Small leisure craft and boats: ................................................................................ 50 5.1.2 Medium-size ships ................................................................................................. 51 5.1.3 Large vessels......................................................................................................... 51 5.2 Trends in marine ambient noise......................................................................................... 52 5.3 Effects of shipping noise on marine mammals................................................................... 53 5.3.1 Behaviour............................................................................................................... 54 5.3.2 Injury
Recommended publications
  • Undersea Park America's First
    KEY LARGO CORAL REEF America's First i~jl Undersea Park By CHARLES M. BROOKFIELD Photographs by JERRY GREENBERG ,I, ,.;;!' MO ST within sight of the oceanside ~Ii palaces of Miami Beach, a pencil-thin il- Achain of islands begins its 221-mile sweep southwest to the Dry Tortugas. Just offshore, paralleling the scimitar plor%E 6 II curve of these Florida Keys, lies an under­ qy-q sea rampart of exquisite beauty-a living coral reef, the only one of its kind in United States continental waters. Brilliant tropical ~". fish dart about its multicolored coral gardens. Part of the magnificent reef, a segment rough­ ly 21 nautical miles long by 4 wide, off Key Largo, has been .dedicated as America's first undersea park. I know this reef intimately. For more than 30 years I have sailed its warm, clear waters and probed its shifting sands and bizarre for­ mations in quest of sunken ships and their treasure of artifacts. ',." Snorkel diver (opposite, right) glides above brain coral into a fantastic underseascape of elkhorn and staghom in the new preserve off Key Largo, Florida 1~¥~-4 - ce il\ln ·ii Here is a graveyard of countless brave sail­ uncover this interesting fact until two 'years 'ti: ing ships, Spanish galleons, English men-ot­ ago, when I learned that the Willche~lel"s ~j~ war, pirate vessels, and privateers foundered log had been saved. Writing to the Public h~l on the reefs hidden fangs. In the 19th century Record Office in London, I obtained photo­ alone, several hundred vessels met death static-copies of the last few pages.
    [Show full text]
  • Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic ACCURACY ASSESSMENT OF UNDERWATER PHOTOGRAMMETRIC THREE DIMENSIONAL MODELLING FOR CORAL REEFS T. Guo a, *, A. Capra b, M. Troyer a, A. Gruen a, A. J. Brooks c, J. L. Hench d, R. J. Schmittc, S. J. Holbrook c, M. Dubbini e a Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland - (taguo, troyer)@phys.ethz.ch, [email protected] b Dept. of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Pietro Vivarelli 10/1, 41125 Modena, Italy – [email protected] c Marine Science Institute, University of California, Santa Barbara. Santa Barbara, California 93106-6150, USA – [email protected], (schmitt, holbrook)@lifesci.ucsb.edu d Nicholas School of the Environment, Duke University, Beaufort, NC, USA - [email protected] e Dept. of History Culture Civilization – Headquarters of Geography, University of Bologna, via Guerrazzi 20, 40125 Bologna, Italy [email protected] Commission V, WG V/5 KEY WORDS: Photogrammetry, Underwater 3D Modelling, Accuracy Assessment, Calibration, Point Clouds, Coral Reefs, Coral Growth, Moorea ABSTRACT: Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters.
    [Show full text]
  • Lagrangian Measurement of Subsurface Poleward Flow Between 38 Degrees N and 43 Degrees N Along the West Coast of the United States During Summer, 1993
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1996-09-01 Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and 43 degrees N along the West Coast of the United States during Summer, 1993 Collins, Curtis A. Geophysical Research Letters, Vol. 23, No. 18, pp. 2461-2464, September 1, 1996 http://hdl.handle.net/10945/45730 GEOPHYSICAL RESEARCH LETTERS, VOL. 23, NO. 18, PAGES 2461-2464, SEPTEMBER 1, 1996 Lagrangian Measurement of subsurface poleward Flow between 38øN and 43øN along the West Coast of the United States during Summer, 1993 CurtisA. Collins,Newell Garfield, Robert G. Paquette,and Everett Carter 1 Departmentof Oceanography,Naval Postgraduate School, Monterey, California Abstract. SubsurfaceLagrangian measurementsat about Undercurrentalong the coastsof California and Oregon. We 140 m showedthat the pathof the CaliforniaUndercurrent lay are using quasi-isobaric(float depth controlled primarily by next to the continentalslope betweenSan Francisco(37.80N) the pressureeffect on density)RAFOS floats (Rossby et al., and St. GeorgeReef (41.8øN) duringmid-summer 1993. The 1986) to make these measurements. A RAFOS float consists meanspeed along this 500 km pathwas 8 cms-1. Theflow at of a hydrophonemounted in a glasstube that is about2 meters this depth was not disturbedby upwelling centersat Point long. These hydrophonesreceive signals from three sound Reyesor CapeMendocino. Restfits also demonstratethe abil- sources that were moored 400 km offshore between 34.3øN and ity to acousticallytrack floats located well above the sound 40.4øN.The sound sources emit 15 W, 80 s signalsa•t 260 Hz channelaxis along the California coast.
    [Show full text]
  • Ecological and Socio-Economic Impacts of Dive
    ECOLOGICAL AND SOCIO-ECONOMIC IMPACTS OF DIVE AND SNORKEL TOURISM IN ST. LUCIA, WEST INDIES Nola H. L. Barker Thesis submittedfor the Degree of Doctor of Philosophy in Environmental Science Environment Department University of York August 2003 Abstract Coral reefsprovide many servicesand are a valuableresource, particularly for tourism, yet they are suffering significant degradationand pollution worldwide. To managereef tourism effectively a greaterunderstanding is neededof reef ecological processesand the impactsthat tourist activities haveon them. This study explores the impact of divers and snorkelerson the reefs of St. Lucia, West Indies, and how the reef environmentaffects tourists' perceptionsand experiencesof them. Observationsof divers and snorkelersrevealed that their impact on the reefs followed certainpatterns and could be predictedfrom individuals', site and dive characteristics.Camera use, night diving and shorediving were correlatedwith higher levels of diver damage.Briefings by dive leadersalone did not reducetourist contactswith the reef but interventiondid. Interviewswith tourists revealedthat many choseto visit St. Lucia becauseof its marineprotected area. Certain site attributes,especially marine life, affectedtourists' experiencesand overall enjoyment of reefs.Tourists were not alwaysable to correctly ascertainabundance of marine life or sedimentpollution but they were sensitiveto, and disliked seeingdamaged coral, poor underwatervisibility, garbageand other tourists damagingthe reef. Some tourists found sitesto be
    [Show full text]
  • Whale Tales: Cetacean Stranding Reponse and Medicine in the Pacific Northwest
    Proceedings of the 2012 North American Veterinary Conference, Orlando, Florida WHALE TALES: CETACEAN STRANDING REPONSE AND MEDICINE IN THE PACIFIC NORTHWEST Joseph K. Gaydos, VMD, PhD UC Davis Wildlife Health Center – Orcas Island Office Eastsound, Washington MARINE MAMMAL STRANDINGS: Marine mammal strandings have long attracted the attention of the general public.1 Stranded marine mammal carcasses once were used as food and some of the first laws enacted in New England Colonies were to establish the ownership of beached whale carcasses. Later stranded marine mammals provided animals for museums, live displays and scientific information about little-known species. Today they still provide us with important data on marine mammals and marine mammal populations. Strandings help us to document range expansions for marine mammal species and provide details on marine mammal growth rates, age at maturity, gestation, reproductive season and longevity. Stranded marine mammals also help expand our understanding of marine mammal mortality factors including infectious diseases, toxins and human-caused mortality. In the United States, the Marine Mammal Protection Act (1972) gave the federal government jurisdiction over marine mammals, including stranded ones. An amendment in 1992 established a Marine Mammal Health and Stranding Response Program to (1) facilitate the collection and dissemination of reference data on the health of marine mammals and health trends of marine mammals in the wild; (2) correlate the health of marine mammals and marine mammal populations, in the wild, with available data on physical, chemical, and biological environmental parameters; and (3) coordinate effective responses to unusual mortality events by establishing a process in the Department of Commerce.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan the SYNTHESIS of POINT DATA
    This dissertation has been microfilmed exactly as received 68-16,949 JOHNSON, Rockne Hart, 1930- THE SYNTHESIS OF POINT DATA AND PATH DATA IN ESTIMATING SOFAR SPEED. University of Hawaii, Ph.D., 1968 Geophysics University Microfilms, Inc., Ann Arbor, Michigan THE SYNTHESIS OF POINT DATA AND PATH DATA IN ESTIMATING SOFAR SPEED A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOSCIENCES June 1968 By Rockne Hart Johnson Dissertation Committee: William M. Adams, Chairman Doak C. Cox George H. Sutton George P. Woollard Klaus Wyrtki ii P~F~E Geophysical interest in the deep ocean sound (sofar) channel centers on its use as a tool for the detection and location of remote events. Its potential application to oceanography may lie in the monitoring of variations of physical properties averaged over long paths by sofar travel-time measurements. As the accuracy of computed event locations is generally dependent on the accuracy of travel-time calculations, the spatial and temporal variation of sofar speed is a matter of fundamental interest. The author's interest in this problem has grown out of a practical need for such information for application to the problem of locating the sources of earthquake I waves and submarine volcanic sounds. Although an exten­ sive body of sound-speed data is available from hydrographic casts, considerably more precise measurements can be made of explosion travel times over long paths. This dissertation develops a novel procedure for analytically combining these two types of data to produce a functional description of the spatial variation of safar speed.
    [Show full text]
  • Acceleration in Acoustic Wave Propagation Modelling Using Openacc/Openmp and Its Hybrid for the Global Monitoring System
    Acceleration in Acoustic Wave Propagation Modelling using OpenACC/OpenMP and its hybrid for the Global Monitoring System Noriyuki Kushida*1, Ying-Tsong Lin*2, Peter Nielsen*1, and Ronan Le Bras*1 *1 CTBTO Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization Provisional Technical Secretariat *2 Woods Hole Oceanographic Institution, USA Disclaimer: The views expressed herein are those of the author(s) and do not necessarily reflect the views of the CTBT Preparatory Commission. Background (Who we are) The CTBT (Comprehensive Nuclear-Test-Ban Treaty) bans all types of nuclear explosions. CTBTO operates a worldwide monitoring system to catch the signs of nuclear explosions with four technologies: Seismic Infrasound Hydroacoustic Radionuclide Atmospheric explosion Underground explosion Underwater explosion 2 Background (Underwater event and Hydroacoustic observation) ● Hydroacoustic: acoustic waves through the Ocean Seismometer Hydrophone Phase conversion Underwater explosion ● A big explosion in the Ocean can generate a sound wave ● We can catch such sounds with ○ microphones in the Ocean (hydrophone) ○ seismometers on the coast Photo/Video from CTBTO Website Background (Hydroacoustic stations in CTBTO) ● “H” icone: Hydrophone (H-phase). 6 stations ● “T” icone: Seismometer (T-phase). 4 stations ● Hydroacoustic waves can travel very long distances ○ Complex phenomena can be involved ● Seismic stations; 170 (50 primary + 120 auxiliary) to cover the globe An example: Argentinian submarine ARA San Juan 1/3 Last Contact
    [Show full text]
  • Full Document (Pdf 2154
    White Paper Research Project T1803, Task 35 Overwater Whitepaper OVERWATER STRUCTURES: MARINE ISSUES by Barbara Nightingale Charles A. Simenstad Research Assistant Senior Fisheries Biologist School of Marine Affairs School of Aquatic and Fishery Sciences University of Washington Seattle, Washington 98195 Washington State Transportation Center (TRAC) University of Washington, Box 354802 University District Building 1107 NE 45th Street, Suite 535 Seattle, Washington 98105-4631 Washington State Department of Transportation Technical Monitor Patricia Lynch Regulatory and Compliance Program Manager, Environmental Affairs Prepared for Washington State Transportation Commission Department of Transportation and in cooperation with U.S. Department of Transportation Federal Highway Administration May 2001 WHITE PAPER Overwater Structures: Marine Issues Submitted to Washington Department of Fish and Wildlife Washington Department of Ecology Washington Department of Transportation Prepared by Barbara Nightingale and Charles Simenstad University of Washington Wetland Ecosystem Team School of Aquatic and Fishery Sciences May 9, 2001 Note: Some pages in this document have been purposefully skipped or blank pages inserted so that this document will copy correctly when duplexed. TECHNICAL REPORT STANDARD TITLE PAGE 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. WA-RD 508.1 4. TITLE AND SUBTITLE 5. REPORT DATE Overwater Structures: Marine Issues May 2001 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO. Barbara Nightingale, Charles Simenstad 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Washington State Transportation Center (TRAC) University of Washington, Box 354802 11. CONTRACT OR GRANT NO. University District Building; 1107 NE 45th Street, Suite 535 Agreement T1803, Task 35 Seattle, Washington 98105-4631 12.
    [Show full text]
  • Review of Human Physiology in the Underwater Environment
    Available online at www.ijmrhs.com cal R edi ese M ar of c l h a & n r H u e o a J l l t h International Journal of Medical Research & a S n ISSN No: 2319-5886 o c i t i Health Sciences, 2019, 8(8): 117-121 e a n n c r e e t s n I • • IJ M R H S Review of Human Physiology in the Underwater Environment Oktiyas Muzaky Luthfi1,2* 1 Marine Science University of Brawijaya, Malang, Indonesia 2 Fisheries Diving School, University of Brawijaya, Malang, Indonesia *Corresponding e-mail: [email protected] ABSTRACT Since before centuries, human tries hard to explore underwater and in 1940’s human-introduced an important and revolutionary gear i.e. scuba that allowed human-made long interaction in the underwater world. Since diving using pressure gas under pressure environment, it should be considered to remember gas law (Boyle’s law). The gas law gives a clear understanding of physiological consequences related to diving diseases such as barotrauma or condition in which tissue or organ is damage due to gas pressure. The organ which has direct effect related to compression and expansion of gas were lungs, ear, and sinus. These organs were common and potentially fatigue injury for a diver. In this article we shall review the history of scuba diving, physical stress caused underwater environment, physiology adaptation of lung, ear, and sinus, and diving disease. Keywords: Barotrauma, Boyle’s law, Scuba, Barine, Physical stress INTRODUCTION The underwater world is a place where many people dream to explore it.
    [Show full text]
  • 10 Ways Divers Can Help
    iver n Ways a D Can Protect Te the Underwater Environment 1. Dive carefully to protect fragile aquatic ecosystems 6. Be an ecotourist Many aquatic organisms are delicate and can be harmed by Make informed decisions when selecting a destination and the bump of a camera, the swipe of a fin or even the gentle choose Project AWARE Environmental Operators or other touch of a hand. Some aquatic organisms like corals grow facilities dedicated to sustainable business practices. Obey very slowly and breaking even a small piece can destroy all local laws and regulations and understand your effect on decades of growth. By being careful you can prevent long- the environment. Don’t collect souvenirs like corals or shells. term damage to magnificent dive sites. Instead, take underwater photos and follow Project AWARE’s 10 Tips for Underwater Photographers. 2. Be aware of your body and equipment placement when diving 7. Respect underwater cultural heritage Keep your gauges and alternate air source secured so they Divers are privileged to access dive sites that are part of our don’t drag over the reef or other vital habitat. Control your cultural heritage and maritime history. Wrecks can also serve buoyancy, taking care not to touch fragile organisms with as important habitats for fish and other aquatic life. Help your body or equipment. You can do your part and prevent preserve these sites for future generations by obeying local injury to aquatic life every time you dive. laws, diving responsibly and treating wrecks with respect. 3. Keep your dive skills sharp 8.
    [Show full text]
  • Reducing Impacts of Noise from Human Activities on Cetaceans Knowledge Gap Analysis and Recommendations
    2014 Reducing Impacts of Noise from Human Activities on Cetaceans Knowledge Gap Analysis and Recommendations Prepared by Andrew J. Wright, Ph.D. For WWF Published in February 2014 by WWF, Gland, Switzerland. Any reproduction in full or in part must mention the title and credit the above-mentioned publisher as copyright holder. Text © 2014 A. J. Wright / WWF Written by Andrew J. Wright, Department of Environmental Science & Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A. Cover image: © John Calambokidis, Cascadia Research Suggested citation Wright, A.J. 2014. Reducing Impacts of Human Ocean Noise on Cetaceans: Knowledge Gap Analysis and Recommendations. WWF International, Gland, Switzerland Prepared under contract for WWF International, Avenue du Mont-Blanc 27, 1196 Gland, Switzerland Authors Acknowledgements Thanks to WWF International for funding this report. Additionally, many thanks to Jakob Tougaard and Courtney Smith for extensive helpful discussions on a number of the topics and details contained within these pages. I am also grateful to Mikhail Babenko, Louise Blight and Aimée Leslie of WWF, as well as Thea Bechshøft, Chris Parsons and Leslie Walsh for their helpful comments on earlier versions of the report. Finally, thanks to Mark Simmonds and Naomi Rose for their help and advice with the overview and direc- tion of this report, and to Richard Greene and Michael Jasny for their assistance with tracking down various documents and publications. About WWF Since 1992, WWF’s Global Arctic Programme has been working with our partners across the Arctic to com- bat threats to the Arctic and to preserve its rich biodiversity in a sustainable way.
    [Show full text]
  • Oceanography
    Oceanography Course Outline Unit One Introduction to Oceanography 7 days Unit Two Structure of the Earth & Modern Navigational Techniques 7 days Unit Three Plate Tectonics 7 days Unit Four The Sea Floor and Its Sediments 9 days Unit Five Physical and Chemical Properties of Water 7 days Unit Six The Atmosphere and Circulation 5 days Unit Seven Ocean Structure and Currents 7 days Unit Eight Waves 5 days Unit Nine Tides 5 days Unit Ten Coasts, Beaches & Estuaries 12 days Unit Eleven Marine Biology 14 days School-wide Academic Expectations Addressed in Oceanography: Problem Solving Critical Thinking Collaboration Writing Skills School-wide Social and Civic Expectations Addressed in Oceanography: Honesty Responsibility Respect Safety Common Core Standards Addressed in Oceanography: Reading Standard for Science Literacy (RST): 2, 3, 4, 7, 8, 9 Writing Standards for Science Literacy (WHST): 1, 2, 4, 9 NGSS Standards Addressed in Oceanography: TBD Unit 1: Introduction to Oceanography Introduction: Oceanography is a multidisciplinary field in which geology, chemistry, physics, and biology are incorporated. This unit focuses on the historical perspective - the contributions of various individuals/groups and the advancement of technology in the development of our understanding of the oceans. CT State Standard(s): Energy in the Earth System. Common Core Standard(s): · Reading Standard for Science Literacy (RST): 2, 3, 4, 7, 8, 9 · Writing Standards for Science Literacy (WHST): 1, 2, 4, 9 School-wide Academic Expectations Addresses in this
    [Show full text]