Efficacy of Myo-Inositol in the Clinical Management of Patients with Asthenozoospermia

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy of Myo-Inositol in the Clinical Management of Patients with Asthenozoospermia European Review for Medical and Pharmacological Sciences 2017; 21 (2 Suppl): 62-65 Efficacy of myo-inositol in the clinical management of patients with asthenozoospermia A. DINKOVA, D. MARTINOV, E. KONOVA Clinical Institute for Reproductive Medicine, “St Elisaveta”, Pleven, Bulgaria Abstract. – OBJECTIVE: The aim of this that the number of male infertility factors will study was to analyze the effect of myo-inositol keep increasing in the future and this issue will in combination with minerals and vitamin on 2 sperm motility in patients affected by astheno- become more significant . zoospermia as index of Bulgarian population. An important impact of male infertility caused PATIENTS AND METHODS: One-hundred- by environmental factors such as bad habits (alco- nine men aged between 18 and 50 years with hol and smoking), body overload and mainly the reduced sperm motility identified by routine reluctance of men to conduct prevention is widely semen analysis were enrolled in this study. Af- reported3. ter excluding any urological problems, three A reduced fertility is often related to a low- months of treatment with a supplementation based on myo-inositol and other minerals and er sperm motility. Over the recent years, the vitamins (Andrositol, MLD trading, Bulgaria) was percentage of motile sperms in the ejaculate is prescribed. The sperm motility was evaluated by constantly reducing; indeed, the latest edition of statistical analysis. WHO indicated a percentage of sperms progres- RESULTS: A significant improvement in sperm sive motility less than 32% as a parameter of re- motility was reported in 85.32% of the patients. duced chance of getting pregnant spontaneously1. Furthermore, the average motility was improved from 20.31% (SD ± 8.5) to 27.98 (SD ± 9.69) after The etiopathogenesis of male infertility is ex- the treatment. In particular, 38 of these patients tremely complex, and the factors and processes restored a normal sperm motility (34.86% of the causing these disorders in the reproduction are patients) while 14 patients (12.84%) didn’t show different. A common cause of reduced sperms any beneficial effect and, even if any side ef- motility seems to be related to the toxic action of fects were reported, 2 patients (1.84%) showed reactive oxygen species (ROS)4. This is the rea- a worsened the motility. son why modern biology has been highly focused CONCLUSIONS: A treatment with Andrositol significantly improved sperm motility, increas- on studying the molecular mechanisms related to ing the likelihood of achieving a spontaneous stress response in fertility. pregnancy. The presence of ROS in the semen is an etio- logical factor of male infertility5. Pathological Key Words: effects of free radicals in male reproductive tract Myo-inositol, Asthenozoospermia, Sperm motility. are associated with DNA fragmentation, lipid peroxidation, and apoptosis, and these lead to reduced fertility and miscarriages6. Due to this Introduction evidence, antioxidant species were introduced in the management of male infertility. Between According to the World Health Organization these molecules, Selenium and L-Arginine had (WHO), the incidence of infertile couples is shown a strong impact in contrasting ROS gen- relatively high with a range from 15% to 20% eration and restoring the oxidative status of the in developed countries. According to the World seminal environment7-10. Health Organization, the disorders in spermato- Myo-inositol (MI) is an isomer of the inositol genesis in male infertility occur in almost 50% family. In nature are present 9 isomers of this of all the cases1. In recent decades there has been sugar-like and MI represents the most abundant an unexplained reduction, not only in sperm one. It plays a key role in more than one cellu- quality and quantity, but also in the volume of lar pathways as FSH, insulin and TSH second the ejaculate. This evidence allows to speculate intracellular messenger11. It has been also dem- 62 Corresponding Author: Albena Dinkova, MD; e-mail: [email protected] Efficacy of myo-inositol in the clinical management of patients with asthenozoospermia onstrated an important effect of MI in improving The control medical examinations of the sperm semen parameters such as motility, morphology, were made through the routine semen analysis and quality, both in vitro and in vivo11-16. From the described above. reported studies, the effect of this isomer seems to be related to an improvement in the membrane Statistical Analysis potential of spermatozoa’s mitochondria and in The results are presented as mean ± stan- the reduction of the semen amorphous material dard deviation (SD). The difference in sperm that frequently impairs the male fertility. motility between before and after treatment Based on this evidence, recent scientific re- were statistically analyzed through the Stu- searches have been focused on the clinical use of dent’s paired t-test. The statistical data was MI in the management of male infertility caused performed by software package IBM SPSS by semen alterations. Statistics 20. A p-value of less than 0.05 was The aim of this study was to investigate the considered as significant. effect of MI and other nutrients on sperm param- eters in patients affected by asthenozoospermia. Results Patients and Methods The semen of 109 men, aged between 18 and 50 years, affected by asthenozoospermia In this prospective longitudinal study, 109 pa- was analyzed. Sperm motility was traced before tients with asthenozoospermia were enrolled. All and after 3 months of treatment with Andrositol the participants signed an informed consent form. (MLD trading, Bulgaria). The distribution of both A routine semen analysis was used to establish a samples was normal, and a statistical dependence reduced sperm motility, which was the inclusion between the two groups was found. criteria of the trial in object. Semen samples were The percentage of average motility before the collected via masturbation after 48 hours and up treatment with Andrositol was 20.31% (SD ± 8.5) to 72 hours of sexual abstinence. Samples were while after a percentage of 27.98 (SD ± 9.69) was subjected to complete liquefaction at 37°C for recognized after the treatment (p-value < 0.05) 20 minutes. The sperms number, motility, and (Table I). morphology were then assessed. Patients with This improvement confirmed the following established asthenozoospermia were directed to results where the 50.46% (55 patients) of the an urologist in order to exclude the presence of cohort showed an improvement in motility af- any urological problems. Other exclusion criteria ter the treatment and, in particular, the 34.86% were the presence of acute and chronic infections (38 patients) reported semen motility parameters and alcohol intake. comparable with the normal ones. On the other hand, 14 patients didn’t show a response to the Assessment of Motility treatment (12.84%), while 2 patients showed re- The sperm motility rate was carried out in two duced motility after treatment, making 1.84% replications via a wet preparation according to the of the sample (Table II). No side effects were latest WHO recommendations, 2010. reported during the treatment. To prepare the wet preparation - 10-μl semen were spotted and covered with 22 × 22 mm cover- slips, and all spermatozoa visible in the field were Discussion then assessed. Semen parameters were evaluated before (T0) Some authors reported an improvement of and after a 3 months-treatment (T1) with a dietary semen quality after 3 months of supplementa- supplement based on: 1 g of myo-inositol, 30 mg tion with MI in associations with antioxidant of L-carnitine, L-arginine and Vitamin E, 55 µg of selenium, and 200 µg of folic acid (Andrositol, Table I. Average sperm motility rate before and after the MLD Trading, Bulgaria), taken twice a day. treatment. The average from the counting was calculated and the results reported. When the difference T0 T1 p-value between the two counting was very large, a new 20.31 SD ± 8.5 27.98 SD ± 9.69 < 0.05 preparation was prepared and recounted. 63 A. Dinkova, D. Martinov, E. Konova Table II. Patients segmentation based on the semen motility outcome. No. patient % No. of patients with restored normozoospermia 38 34.86 No. of patients with improved motility 55 50.46 No. of patients with no response to the treatment 14 12.84 No. of patients with worsened motility 2 1.84 Tot patients 109 100 and other nutrients, in patients affected by epididymis level, improving the quality and mo- oligoasthenozoospermia17. MI seems to play tility of sperm. an important role in the maturation of sperms Some authors demonstrated an involvement during the migration from the epididymis. In of folic acid and zinc in the characteristics of fact, MI shows a gradient of concentration, seminal fluid22. According to them, a dosage of most abundant in the seminal plasma increas- 5 mg/day of folic acid and 66 mg/day of zinc ing along epididymis and deferent ducts18. sulfate show an improvement in number and Furthermore, a low concentration of MI in motility of sperm. The relationship between gen- this district was associated with a reduced etically determined defects in folate metabolism sperms production. Recent studies showed and conditions of subfertility in men were well MI playing a crucial role in spermatogen- established. Elevated levels of homocysteine were esis and spermatozoa migration through the retrieved in patients with oligozoospermia and/or testis compartments. In particular, Baht and asthenozoospermia, which directly worsen sper- Eisenbach reported the involvement of MI in matogenesis. spermatozoa chemotaxis and thermotaxis due The effect of antioxidants on sperm was widely to the activation of phospholipase C (PLC). reported in the literature22,23. In particular, this process seems to induce Selenium antioxidant activity, mediated by a higher production of inositol 3 phosphates several selenoproteins, is involved in crucial (IP3) at sperm mitochondrial level improving physiological pathways.
Recommended publications
  • Proteomic Profile of Human Spermatozoa in Healthy And
    Cao et al. Reproductive Biology and Endocrinology (2018) 16:16 https://doi.org/10.1186/s12958-018-0334-1 REVIEW Open Access Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals Xiaodan Cao, Yun Cui, Xiaoxia Zhang, Jiangtao Lou, Jun Zhou, Huafeng Bei and Renxiong Wei* Abstract Asthenozoospermia is considered as a common cause of male infertility and characterized by reduced sperm motility. However, the molecular mechanism that impairs sperm motility remains unknown in most cases. In the present review, we briefly reviewed the proteome of spermatozoa and seminal plasma in asthenozoospermia and considered post-translational modifications in spermatozoa of asthenozoospermia. The reduction of sperm motility in asthenozoospermic patients had been attributed to factors, for instance, energy metabolism dysfunction or structural defects in the sperm-tail protein components and the differential proteins potentially involved in sperm motility such as COX6B, ODF, TUBB2B were described. Comparative proteomic analysis open a window to discover the potential pathogenic mechanisms of asthenozoospermia and the biomarkers with clinical significance. Keywords: Proteome, Spermatozoa, Sperm motility, Asthenozoospermia, Infertility Background fertilization failure [4] and it has become clear that iden- Infertility is defined as the lack of ability to achieve a tifying the precise proteins and the pathways involved in clinical pregnancy after one year or more of unprotected sperm motility is needed [5]. and well-timed intercourse with the same partner [1]. It is estimated that around 15% of couples of reproductive age present with infertility, and about half of the infertil- Application of proteomic techniques in male ity is associated with male partner [2, 3].
    [Show full text]
  • Testicular Dysgenesis Syndrome: from Human Disorders to Mechanistic Studies in an Animal Model
    Conference abstracts. International Symposium on Animal Biology of Reproduction, Nov. 15-18, 2006, Belo Horizonte, Brazil. Testicular dysgenesis syndrome: from human disorders to mechanistic studies in an animal model R. Sharpe, K. Mahood, H. Scott, N. Hallmark, G. Hutchison, C. McKinnell, D. Ferrara MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, Edinburgh. Disorders of male reproductive development are fetal Leydig cells towards the centre of the testis and extremely common in humans. They may manifest this migration appears to interfere with the final phases either at birth (cryptorchidism, hypospadias) or in young of seminiferous cord formation and appropriate adulthood (low sperm counts, testicular germ cell testicular cell segregation in the fetal testis. This then cancer). There is reasonable evidence that the incidence leads postnatally to the appearance of focal dysgenetic of most of these disorders has been increasing in recent areas that contain malformed seminiferous cords and decades and it has been hypothesised that they form a intratubular Leydig cells. Wherever the intratubular testicular dysgenesis syndrome (TDS), with a common Leydig cells occur, no germ cells survive and this may origin in fetal life. Each of these disorders is a partly explain the common occurrence of Sertoli cell- significant risk factor for each of the others and they all only tubules within the adult testis of rats exposed in share common, pregnancy-related risk factors. It is utero to DBP. DBP exposure in fetal life also results hypothesised that the disorders arise as a result of in a delay in the normal phases of germ cell maldevelopment of the testis which leads to malfunction development; this is first manifest by delayed entry of the developing Sertoli and Leydig cells in the fetal into quiescence coincident with prolongation of testis with the disorders resulting downstream from this expression of the pluripotency factor OCT4.
    [Show full text]
  • Sperm Motility, Oxidative Status, and Mitochondrial Activity: Exploring Correlation in Different Species
    antioxidants Article Sperm Motility, Oxidative Status, and Mitochondrial Activity: Exploring Correlation in Different Species Alessandra Gallo 1,* , Maria Consiglia Esposito 1 , Elisabetta Tosti 1 and Raffaele Boni 1,2,* 1 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; [email protected] (M.C.E.); [email protected] (E.T.) 2 Department of Sciences, University of Basilicata, 85100 Potenza, Italy * Correspondence: [email protected] (A.G.); [email protected] (R.B.); Tel.: +39-081-5833233 (A.G.); +39-0971-205017 (R.B.) Abstract: Sperm quality assessment is the first step for evaluating male fertility and includes the estimation of sperm concentration, motility, and morphology. Nevertheless, other parameters can be assessed providing additional information on the male reproductive potential. This study aimed to evaluate and correlate the oxidative status, mitochondrial functionality, and motility in sperma- tozoa of two marine invertebrate (Ciona robusta and Mytilus galloprovincialis) and one mammalian (Bos taurus) species. By combining fluorescent staining and spectrofluorometer, sperm oxidative status was evaluated through intracellular reactive oxygen species (ROS) and plasma membrane lipid peroxidation (LPO) analysis. Mitochondrial functionality was assessed through the mitochondrial membrane potential (MMP). In the three examined species, a negative correlation emerged between sperm motility vs ROS levels and LPO. Sperm motility positively correlated with MMP in bovine, whereas these parameters were not related in ascidian or even negatively related in mussel sper- matozoa. MMP was negatively related to ROS and LPO levels in ascidians, only to LPO in bovine, Citation: Gallo, A.; Esposito, M.C.; and positively related in mussel spermatozoa.
    [Show full text]
  • Cilia and Flagella of Eukaryotes
    Cilia and Flagella of Eukaryotes I . R . GIBBONS The simple description that cilia are "contractile protoplasm in Early Developments its simplest form" (Dellinger, 1909) has fallen away as a mean- Among the most notable steps in the history of early studies ingless phrase ... A cilium is manifestly a highly complex and Downloaded from http://rupress.org/jcb/article-pdf/91/3/107s/1075481/107s.pdf by guest on 26 September 2021 compound organ, and . morphological description is clearly on cilia and flagella were the initial light microscope observa- only a beginning . tions of beating cilia on ciliated protozoa by Anton van Leeu- Irene Manton, 1952 wenhoek in 1675 ; the hypothesis proposed by W . Sharpey in 1835 that cilia and flagella are active organelles moved by contractile material distributed along their length rather than As recognized by Irene Manton (1) at the time that the basic passive structures moved by cytoplasmic flow or other contrac- 9 + 2 structural uniformity of cilia and most eukaryotic flagella tile activity within the cell body; and the observation in 1888- was first becoming recognized, these organelles are sufficiently 1890 by E . Ballowitz (2) that sperm flagella contain a substruc- complex that knowledge of their structure, no matter how ture of about 9-11 fine fibrils which are continuous along the detailed, cannot provide an understanding of their mechanisms length of the flagellum (Fig . 1) . More detailed accounts with of growth and function . In our understanding of these mecha- full references to this early work and to other studies before nisms, the substantial advances of the intervening 28 years 1948 can be found in the monographs of Sir James Gray (3) have, for the most part, resulted from experiments in which it and Michael Sleigh (4) .
    [Show full text]
  • Sperm Motility Index and Intrauterine Insemination Pregnancy Outcomes
    Original Research Sperm Motility Index and Intrauterine Insemination Pregnancy Outcomes Chanel L. Bonds, MD; William E. Roudebush, PhD; and Bruce A. Lessey, MD, PhD From the Department of OB/GYN, Greenville Health System, Greenville, SC, (C.L.B., B.A.L.); De- partment of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC (W.E.R.); and Department of Surgery, Division of Urology, Greenville Health System, Greenville, SC (W.E.R.) Abstract Background: This study determined if sperm motility index affects pregnancy outcome following intrauterine insemination between various ovulation induction protocols. Methods: Calculated sperm motility (determined via computer-assisted semen analyzer) indices were correlated with pregnancy outcomes following intrauterine insemination. Results: Pregnancy rates for different ranges of sperm motility index values showed a trend of in- creasing pregnancy success across increasing ranges of grouped sperm motility index values, but none of these differences between groups was statistically significant. Within the clomid/letrozole cycles, male age differed significantlyP ( = .022) between the pregnant and non-pregnant groups. The difference in sperm motility index between pregnant and non-pregnant groups approached significance P( = .066). Conclusions: A trend exists for an increased pregnancy rate as the sperm motility index approaches 200. Furthermore, our research suggests that as the male partner becomes advanced in age, the chance for getting his partner pregnant declines significantly. ntrauterine insemination (IUI) has been a first- Published pregnancy rates following IUI reveal line treatment for many infertile couples since wide variation. A review article of 18 IUI studies Ithe early 1980s.1 In theory, IUI is successful in revealed a pregnancy rate that ranged from 5% to establishing pregnancy because the procedure 62%.
    [Show full text]
  • RSPH6A Is Required for Sperm Flagellum Formation and Male
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs221648. doi:10.1242/jcs.221648 RESEARCH ARTICLE RSPH6A is required for sperm flagellum formation and male fertility in mice Ferheen Abbasi1,2,‡, Haruhiko Miyata1,‡, Keisuke Shimada1, Akane Morohoshi1,2, Kaori Nozawa1,2,*, Takafumi Matsumura1,3, Zoulan Xu1,3, Putri Pratiwi1 and Masahito Ikawa1,2,3,4,§ ABSTRACT (Carvalho-Santos et al., 2011) and is used for sensing and The flagellum is an evolutionarily conserved appendage used for locomotion. Mammalian spermatozoan flagella are highly sensing and locomotion. Its backbone is the axoneme and a specialized to carry male genetic material into the female component of the axoneme is the radial spoke (RS), a protein reproductive tract and fertilize the oocyte. Internal cross-sections ‘ ’ complex implicated in flagellar motility regulation. Numerous diseases show that the flagellum comprises a 9+2 microtubule structure: a occur if the axoneme is improperly formed, such as primary ciliary bundle of nine microtubule doublets that surround a central pair of dyskinesia (PCD) and infertility. Radial spoke head 6 homolog A single microtubules (Satir and Christensen, 2007). Called the (RSPH6A) is an ortholog of Chlamydomonas RSP6 in the RS head axoneme, this structure consists of macromolecular complexes such and is evolutionarily conserved. While some RS head proteins have as the outer and inner dynein arms and radial spokes (RSs) been linked to PCD, little is known about RSPH6A. Here, we show that (Fig. 1A). mouse RSPH6A is testis-enriched and localized in the flagellum. First characterized in sea urchins (Afzelius, 1959), the RS is a Rsph6a knockout (KO) male mice are infertile as a result of their short T-shaped protein complex that extends from the doublet immotile spermatozoa.
    [Show full text]
  • Male Infertility
    Guidelines on Male Infertility A. Jungwirth, T. Diemer, G.R. Dohle, A. Giwercman, Z. Kopa, C. Krausz, H. Tournaye © European Association of Urology 2012 TABLE OF CONTENTS PAGE 1. METHODOLOGY 6 1.1 Introduction 6 1.2 Data identification 6 1.3 Level of evidence and grade of recommendation 6 1.4 Publication history 7 1.5 Definition 7 1.6 Epidemiology and aetiology 7 1.7 Prognostic factors 8 1.8 Recommendations on epidemiology and aetiology 8 1.9 References 8 2. INVESTIGATIONS 9 2.1 Semen analysis 9 2.1.1 Frequency of semen analysis 9 2.2 Recommendations for investigations in male infertility 10 2.3 References 10 3. TESTICULAR DEFICIENCY (SPERMATOGENIC FAILURE) 10 3.1 Definition 10 3.2 Aetiology 10 3.3 Medical history and physical examination 11 3.4 Investigations 11 3.4.1 Semen analysis 11 3.4.2 Hormonal determinations 11 3.4.3 Testicular biopsy 11 3.5 Conclusions and recommendations for testicular deficiency 12 3.6 References 12 4. GENETIC DISORDERS IN INFERTILITY 14 4.1 Introduction 14 4.2 Chromosomal abnormalities 14 4.2.1 Sperm chromosomal abnormalities 14 4.2.2 Sex chromosome abnormalities 14 4.2.3 Autosomal abnormalities 15 4.3 Genetic defects 15 4.3.1 X-linked genetic disorders and male fertility 15 4.3.2 Kallmann syndrome 15 4.3.3 Mild androgen insensitivity syndrome 15 4.3.4 Other X-disorders 15 4.4 Y chromosome and male infertility 15 4.4.1 Introduction 15 4.4.2 Clinical implications of Y microdeletions 16 4.4.2.1 Testing for Y microdeletions 17 4.4.2.2 Y chromosome: ‘gr/gr’ deletion 17 4.4.2.3 Conclusions 17 4.4.3 Autosomal defects with severe phenotypic abnormalities and infertility 17 4.5 Cystic fibrosis mutations and male infertility 18 4.6 Unilateral or bilateral absence/abnormality of the vas and renal anomalies 18 4.7 Unknown genetic disorders 19 4.8 DNA fragmentation in spermatozoa 19 4.9 Genetic counselling and ICSI 19 4.10 Conclusions and recommendations for genetic disorders in male infertility 19 4.11 References 20 5.
    [Show full text]
  • The Egg and the Sperm: How Science Has Constructed a Romance Based on Stereotypical Male- Female Roles Author(S): Emily Martin Reviewed Work(S): Source: Signs, Vol
    The Egg and the Sperm: How Science Has Constructed a Romance Based on Stereotypical Male- Female Roles Author(s): Emily Martin Reviewed work(s): Source: Signs, Vol. 16, No. 3 (Spring, 1991), pp. 485-501 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/3174586 . Accessed: 06/04/2012 21:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Signs. http://www.jstor.org THE EGG AND THE SPERM:HOW SCIENCEHAS CONSTRUCTED A ROMANCEBASED ON STEREOTYPICAL MALE-FEMALEROLES EMILYMARTIN The theory of the human body is always a part of a world- picture.... The theory of the human body is always a part of a fantasy. [JAMESHILLMAN, The Myth of Analysis]' As an anthropologist, I am intrigued by the possibility that culture shapes how biological scientists describe what they discover about the naturalworld. If this were so, we would be learning about more than the natural world in high school biology class; we would be learning about cultural beliefs and practices as if they were part of nature.
    [Show full text]
  • Successful Selection of Mouse Sperm with High Viability and Fertility Using
    www.nature.com/scientificreports OPEN Successful selection of mouse sperm with high viability and fertility using microfuidics chip cell sorter Satohiro Nakao1, Toru Takeo1 ✉ , Hitomi Watanabe2, Gen Kondoh2 & Naomi Nakagata1 Cell sorting via fow cytometry is a powerful tool to select subpopulations of cells in many biological felds. Selection of fertilisation-prone sperm is a critical step to ensure a stable and high fertilisation rate in in vitro fertilisation (IVF). However, a combination of conventional cell sorting and IVF system has not been established because of severe mechanical damages to the sperm during the sorting process. A cell sorter with microfuidics chip technology that lessens cell damage during cell sorting may address this problem. We evaluated the efects of microfuidics chip cell sorting on the sperm using the parameters, such as motility and fertility, and found this cell sorting method had minimal harmful efect on the sperm. Then, sperm were selected by a marker for acrosome reaction and showed higher fertilisation rate than that of the population of acrosome-intact sperm. Embryo derived from these sperm developed normally. These results indicated that microfuidics chip cell sorting can select fertile sperm to improve IVF technique. Selection of fertile sperm is a key step in obtaining a stable and high fertilisation rate in in vitro fertilisation (IVF). Sperm selection is generally performed according to motility, morphological integrity and specifc gravity, using the swim-up method and density gradient centrifugation1–4. Terefore, with the aim of improving the IVF tech- nology, we wanted to employ other methods such as sperm sorting as well as conventional methods.
    [Show full text]
  • Examination and Processing of Human Semen
    WHO laboratory manual for the Examination and processing of human semen FIFTH EDITION WHO laboratory manual for the Examination and processing of human semen FIFTH EDITION WHO Library Cataloguing-in-Publication Data WHO laboratory manual for the examination and processing of human semen - 5th ed. Previous editions had different title : WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 1.Semen - chemistry. 2.Semen - laboratory manuals. 3.Spermatozoa - laboratory manuals. 4.Sperm count. 5.Sperm-ovum interactions - laboratory manuals. 6.Laboratory techniques and procedures - standards. 7.Quality control. I.World Health Organization. ISBN 978 92 4 154778 9 (NLM classifi cation: QY 190) © World Health Organization 2010 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications— whether for sale or for noncommercial distribution—should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expres- sion of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specifi c companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Head Tracking and Flagellum Tracing for Sperm Motility Analysis
    Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 10591 To cite this version : Yang, Hue-Fang and Descombes, Xavier and Prigent, Sylvain and Malandain, Grégoire and Druart, Xavier and Plouraboué, Franck Head tracking and flagellum tracing for sperm motility analysis. (2014) In: International Symposium on Biomedical Imaging, 29 April 2014 - 02 May 2014 (Beijing, China) Any correspondance concerning this service should be sent to the repository administrator: [email protected] HEAD TRACKING AND FLAGELLUM TRACING FOR SPERM MOTILITY ANALYSIS H.-F. Yangy, X. Descombesz, S. Prigentx, G. Malandain{, X. Druartk, F. Plouraboue´∗∗ ABSTRACT Sperm quality assessment plays an essential role in human fertility θ and animal breeding. Manual analysis is time-consuming and sub- r 1 2 3 ject to intra- and inter-observer variability. To automate the analysis process, as well as to offer a means of statistical analysis that may Ns not be achieved by visual inspection, we present a computational head flagellum framework that tracks the heads and traces the tails for analyzing sperm motility, one of the most important attributes in semen quality (a) (b) evaluation. Our framework consists of 3 modules: head detection, head tracking, and flagellum tracing. The head detection module de- Fig. 1. Representation of a spermatozoon. (a) A spermatozoon con- tects the sperm heads from the image data, and the detected heads sists of a head and a flagellum.
    [Show full text]
  • The Role of Zinc in Male Fertility
    International Journal of Molecular Sciences Review The Role of Zinc in Male Fertility Deborah Allouche-Fitoussi and Haim Breitbart * The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; [email protected] * Correspondence: [email protected] Received: 7 October 2020; Accepted: 20 October 2020; Published: 21 October 2020 Abstract: Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting 2+ in an increase in [Ca ]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC).
    [Show full text]