Male Infertility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proteomic Profile of Human Spermatozoa in Healthy And
Cao et al. Reproductive Biology and Endocrinology (2018) 16:16 https://doi.org/10.1186/s12958-018-0334-1 REVIEW Open Access Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals Xiaodan Cao, Yun Cui, Xiaoxia Zhang, Jiangtao Lou, Jun Zhou, Huafeng Bei and Renxiong Wei* Abstract Asthenozoospermia is considered as a common cause of male infertility and characterized by reduced sperm motility. However, the molecular mechanism that impairs sperm motility remains unknown in most cases. In the present review, we briefly reviewed the proteome of spermatozoa and seminal plasma in asthenozoospermia and considered post-translational modifications in spermatozoa of asthenozoospermia. The reduction of sperm motility in asthenozoospermic patients had been attributed to factors, for instance, energy metabolism dysfunction or structural defects in the sperm-tail protein components and the differential proteins potentially involved in sperm motility such as COX6B, ODF, TUBB2B were described. Comparative proteomic analysis open a window to discover the potential pathogenic mechanisms of asthenozoospermia and the biomarkers with clinical significance. Keywords: Proteome, Spermatozoa, Sperm motility, Asthenozoospermia, Infertility Background fertilization failure [4] and it has become clear that iden- Infertility is defined as the lack of ability to achieve a tifying the precise proteins and the pathways involved in clinical pregnancy after one year or more of unprotected sperm motility is needed [5]. and well-timed intercourse with the same partner [1]. It is estimated that around 15% of couples of reproductive age present with infertility, and about half of the infertil- Application of proteomic techniques in male ity is associated with male partner [2, 3]. -
Spring 06 2 27.Qxp
University of California, Irvine School of Medicine Spring 2006 UCI Medical Center Department of Urology 101 THE CITY DRIVE SOUTH ORANGE, CA 92868-5395 N E W S L E T T E R Re-United: The facts about vasectomy reversal "When a man consents to undergo a vasectomy, he is usually instructed that the procedure should be considered Aaron Spitz, MD to be permanent and irreversible.... Nonetheless, even the Assistant Clinical Professor Male Reproductive Medicine most insightful, thoughtful decision can ultimately prove and Surgery wrong. When that decision is a vasectomy, a man may still change his mind." re you considering a vasec- tomy. Therefore, before undergoing a tomy reversal? Thousands vasectomy, a man should be as sure as A of men undergo vasectomy possible that he is finished having chil- each year as a permanent means of dren. Nonetheless, even the most birth control, yet for some of these men insightful, thoughtful decision can ulti- life brings unexpected turns, which mately prove wrong. When that deci- leads them to change their mind. For sion is a vasectomy, a man may still Epididymo-vasostomy some, there is a strong desire to have change his mind. sperm travel from the testicle to the another child a few years later. For urethra. It feels like a piece of under- others, there may be a tragic loss of a What is a vasectomy? cooked spaghetti in each side of the child. For many men, a new marriage To understand the vasectomy reversal, scrotum. The sperm are produced in brings a new opportunity for creating a it is important to understand the vasec- the testicle, and then they exit out the family. -
Testicular Dysgenesis Syndrome: from Human Disorders to Mechanistic Studies in an Animal Model
Conference abstracts. International Symposium on Animal Biology of Reproduction, Nov. 15-18, 2006, Belo Horizonte, Brazil. Testicular dysgenesis syndrome: from human disorders to mechanistic studies in an animal model R. Sharpe, K. Mahood, H. Scott, N. Hallmark, G. Hutchison, C. McKinnell, D. Ferrara MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, Edinburgh. Disorders of male reproductive development are fetal Leydig cells towards the centre of the testis and extremely common in humans. They may manifest this migration appears to interfere with the final phases either at birth (cryptorchidism, hypospadias) or in young of seminiferous cord formation and appropriate adulthood (low sperm counts, testicular germ cell testicular cell segregation in the fetal testis. This then cancer). There is reasonable evidence that the incidence leads postnatally to the appearance of focal dysgenetic of most of these disorders has been increasing in recent areas that contain malformed seminiferous cords and decades and it has been hypothesised that they form a intratubular Leydig cells. Wherever the intratubular testicular dysgenesis syndrome (TDS), with a common Leydig cells occur, no germ cells survive and this may origin in fetal life. Each of these disorders is a partly explain the common occurrence of Sertoli cell- significant risk factor for each of the others and they all only tubules within the adult testis of rats exposed in share common, pregnancy-related risk factors. It is utero to DBP. DBP exposure in fetal life also results hypothesised that the disorders arise as a result of in a delay in the normal phases of germ cell maldevelopment of the testis which leads to malfunction development; this is first manifest by delayed entry of the developing Sertoli and Leydig cells in the fetal into quiescence coincident with prolongation of testis with the disorders resulting downstream from this expression of the pluripotency factor OCT4. -
This Document Was Released in November 2020. This Document Will Continue to Be Periodically Updated to Reflect the Growing Body of Literature Related to This Topic
MEDICAL STUDENT CURRICULUM This document was released in November 2020. This document will continue to be periodically updated to reflect the growing body of literature related to this topic. Help: Andrew Gusev - [email protected] MALE INFERTILITY KEYWORDS: infertility, azoospermia, oligospermia, semen analysis, varicocele LEARNING OBJECTIVES: At the end of medical school, the medical student will be able to… 1. Describe the hypothalamus-pituitary-gonadal (HPG) axis 2. Describe the workup for male infertility, including the importance of the physical exam 3. Restate the limitations of the semen analysis 4. List some common reversible causes of infertility and their treatments 5. Recognize when to refer a patient for ART Introduction Approximately 15% of couples will be unable to conceive after attempting unprotected intercourse for one year. Of these couples, about 50% of them will have some male factor to that is contributing to their infertility (a male factor is the sole reason in approximately 20% of infertile couples). (Thonneau P, 1991) Male infertility can be due to a variety of genetic, anatomic, and environmental conditions, many of which will be briefly discussed below. When a cause for an abnormal semen analysis cannot be found, it is termed idiopathic. When a man is infertile with a normal semen analysis and workup, the term unexplained infertility is used. As the word suggests, these men do not have a known cause for their infertility but it is thought to likely be due genetic defects that have not been described yet. The purpose of evaluation is to identify possible conditions causing infertility and treating reversible conditions which may improve a man’s fertility potential. -
Guidelines on Paediatric Urology S
Guidelines on Paediatric Urology S. Tekgül, H. Riedmiller, E. Gerharz, P. Hoebeke, R. Kocvara, R. Nijman, Chr. Radmayr, R. Stein European Society for Paediatric Urology © European Association of Urology 2011 TABLE OF CONTENTS PAGE 1. INTRODUCTION 6 1.1 Reference 6 2. PHIMOSIS 6 2.1 Background 6 2.2 Diagnosis 6 2.3 Treatment 7 2.4 References 7 3. CRYPTORCHIDISM 8 3.1 Background 8 3.2 Diagnosis 8 3.3 Treatment 9 3.3.1 Medical therapy 9 3.3.2 Surgery 9 3.4 Prognosis 9 3.5 Recommendations for crytorchidism 10 3.6 References 10 4. HYDROCELE 11 4.1 Background 11 4.2 Diagnosis 11 4.3 Treatment 11 4.4 References 11 5. ACUTE SCROTUM IN CHILDREN 12 5.1 Background 12 5.2 Diagnosis 12 5.3 Treatment 13 5.3.1 Epididymitis 13 5.3.2 Testicular torsion 13 5.3.3 Surgical treatment 13 5.4 Prognosis 13 5.4.1 Fertility 13 5.4.2 Subfertility 13 5.4.3 Androgen levels 14 5.4.4 Testicular cancer 14 5.4.5 Nitric oxide 14 5.5 Perinatal torsion 14 5.6 References 14 6. Hypospadias 17 6.1 Background 17 6.1.1 Risk factors 17 6.2 Diagnosis 18 6.3 Treatment 18 6.3.1 Age at surgery 18 6.3.2 Penile curvature 18 6.3.3 Preservation of the well-vascularised urethral plate 19 6.3.4 Re-do hypospadias repairs 19 6.3.5 Urethral reconstruction 20 6.3.6 Urine drainage and wound dressing 20 6.3.7 Outcome 20 6.4 References 21 7. -
Role of Nutrition and Associated Factors in Oligospermia (Low Sperm
The Pharma Innovation Journal 2019; 8(3): 68-72 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Role of nutrition and associated factors in oligospermia TPI 2019; 8(3): 68-72 © 2019 TPI (Low sperm count) www.thepharmajournal.com Received: 09-01-2019 Accepted: 13-02-2019 Neelesh Kumar Maurya Neelesh Kumar Maurya Department of Home Science, Abstract Bundelkhand University, Jhansi, Prevalence of infertility gravitates to increase due to different factors. Causes of male infertility could be Uttar Pradesh, India varicocele, idiopathic infertility, testicular insufficiency, obstruction, ejaculation disorder, medicine- radiation effect, undescended testis, immunological mechanisms, endocrine dysfunction such as diabetes, excessive taking of alcohol, smoking and environmental toxins such as pesticides, mercury and lead. It is furthermore understood that person, obesity, be deficient in of nutrition and habits of utilizing time for example too much use of, laptop, mobile phones, computers and sauna, etc., as for women, age, smoking, too much consumption of alcohol, having a skinny or overweight body and having been exposed to physical or mental stress fruition in amenorrhea might be the causes of infertility. The progress in infertility prevalence draws attention to the effects of factors such as lifestyle, dietetic habits and environmental factors. Male infertility originates from mostly as a result of the association between oxidative stress and antioxidants. A review of these areas will provide researchers with a more noteworthy understanding of the compulsory participation of these nutrients in male reproductive processes. This review also caustic out gaps in recent studies which will require further investigations. Keywords: Nutrition; spermatogenesis, oligospermia, infertility, antioxidants, reproductive Introduction An approximately six per cent of adult males are thought to be infertile. -
Common and Uncommon Presentation of Fluid Within the Scrotal Spaces
THIEME E34 Review Common and Uncommon Presentation of Fluid within the Scrotal Spaces Authors V. Patil, S. M. C. Shetty, S. Das Affiliation Radiodiagnosis, JSS Medical College, Mysore, India Key words Abstract gin. US may suggest a specific diagnosis for a ●▶ US wide variety of intrascrotal cystic and fluid ▶ ▼ ● ultrasonography Ultrasonography(US) of the scrotum has been lesions and appropriately guide therapeutic ●▶ fluid demonstrated to be useful in the diagnosis of options. The paper reviews the current knowl- ●▶ testis ●▶ scrotum fluid in the scrotal sac. Grayscale US character- edge of ultrasound in conditions with fluid in the izes the lesions as testicular or extratesticular testis and scrotum. The review presents the and, with color Doppler, power Doppler and applications of ultrasonography in the diagnosis pulse Doppler, any perfusion can also be assessed. of hydrocele, testicular cysts, epididymal cysts, Cystic or encapsulated fluid collections are rela- spermatoceles, tubular ectasia, hernia and hema- tively common benign lesions that usually pre- toceles. The aim of this paper is to provide a pic- sent as palpable testicular lumps. Most cysts torial review of the common and uncommon arise in the epidydimis, but all anatomical struc- presentation of fluid within the scrotal spaces. tures of the scrotum can be the site of their ori- Introduction images with portions of each testis on the same ▼ image should be ideally acquired in grayscale and Scrotal conditions associated with fluid can be color Doppler modes. The structures within the received 21.01.2015 accepted 29.06.2015 broadly classified as fluid in scrotal sac, testicular scrotal sac are examined to detect extra testicu- cysts, epididymal cysts and inguinoscrotal hernia. -
Sperm Motility, Oxidative Status, and Mitochondrial Activity: Exploring Correlation in Different Species
antioxidants Article Sperm Motility, Oxidative Status, and Mitochondrial Activity: Exploring Correlation in Different Species Alessandra Gallo 1,* , Maria Consiglia Esposito 1 , Elisabetta Tosti 1 and Raffaele Boni 1,2,* 1 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; [email protected] (M.C.E.); [email protected] (E.T.) 2 Department of Sciences, University of Basilicata, 85100 Potenza, Italy * Correspondence: [email protected] (A.G.); [email protected] (R.B.); Tel.: +39-081-5833233 (A.G.); +39-0971-205017 (R.B.) Abstract: Sperm quality assessment is the first step for evaluating male fertility and includes the estimation of sperm concentration, motility, and morphology. Nevertheless, other parameters can be assessed providing additional information on the male reproductive potential. This study aimed to evaluate and correlate the oxidative status, mitochondrial functionality, and motility in sperma- tozoa of two marine invertebrate (Ciona robusta and Mytilus galloprovincialis) and one mammalian (Bos taurus) species. By combining fluorescent staining and spectrofluorometer, sperm oxidative status was evaluated through intracellular reactive oxygen species (ROS) and plasma membrane lipid peroxidation (LPO) analysis. Mitochondrial functionality was assessed through the mitochondrial membrane potential (MMP). In the three examined species, a negative correlation emerged between sperm motility vs ROS levels and LPO. Sperm motility positively correlated with MMP in bovine, whereas these parameters were not related in ascidian or even negatively related in mussel sper- matozoa. MMP was negatively related to ROS and LPO levels in ascidians, only to LPO in bovine, Citation: Gallo, A.; Esposito, M.C.; and positively related in mussel spermatozoa. -
Vasectomy Reversal (VR)
Vasectomy Reversal (VR) ! Need to know Please read this before your Vasectomy Reversal Preparing for the VR • Do not eat or drink after midnight if your operation is in the morning and not after 7.00am if it is in the afternoon. • Please shave the hair at the front and sides of the scrotum from the base of the penis down. You do not need to shave the pubic hair • Take supportive underpants (not your best) or a jockstrap into the hospital with you and to theatre to wear after the operation. • Arrange a week off work. • Avoid intercourse for two weeks after the operation and heavy lifting for four weeks. REF 0000.0 – 12/15 What to expect during the VR • An infection of the scrotum rarely occurs but if it does, • An incision is placed on each side of the scrotum that will present a few days after the surgery and is apparent are a little larger than those used for the vasectomy. because the pain becomes worse rather than better and the scrotum becomes red. • The vas is a very small muscular tube with a 2mm outer diameter and an inner diameter through which If you experience any of the above complications or sperm flow (the lumen), of less than 1/2mm. Since the have any other problem occur after your VR, please structure is so small, the stitches must be placed very call the Clinic or your Surgeon if outside clinic exactly so that there is minimal scarring. Too much hours. scarring can cause the lumen of the vas to close and the procedure to fail. -
Seminal Vesicles in Autosomal Dominant Polycystic Kidney Disease
Chapter 18 Seminal Vesicles in Autosomal Dominant Polycystic Kidney Disease Jin Ah Kim1, Jon D. Blumenfeld2,3, Martin R. Prince1 1Department of Radiology, Weill Cornell Medical College & New York Presbyterian Hospital, New York, USA; 2The Rogosin Institute, New York, USA; 3Department of Medicine, Weill Cornell Medical College, New York, USA Author for Correspondence: Jin Ah Kim MD, Department of Radiology, Weill Cornell Medical College & New York Presbyterian Hospital, New York, USA. Email: [email protected] Doi: http://dx.doi.org/10.15586/codon.pkd.2015.ch18 Copyright: The Authors. Licence: This open access article is licenced under Creative Commons Attribution 4.0 International (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Users are allowed to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially), as long as the author and the publisher are explicitly identified and properly acknowledged as the original source. Abstract Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD) have been known to involve male reproductive organs, including cysts in testis, epididymis, seminal vesicles, and prostate. The reported prevalence of seminal vesicle cysts in patients with ADPKD varies widely, from 6% by computed tomography (CT) to 21%–60% by transrectal ultrasonography. However, seminal vesicles in ADPKD that are dilated, with a diameter greater than 10 mm by magnetic resonance imaging (MRI), are In: Polycystic Kidney Disease. Xiaogang Li (Editor) ISBN: 978-0-9944381-0-2; Doi: http://dx.doi.org/10.15586/codon.pkd.2015 Codon Publications, Brisbane, Australia. -
Gynecological-DBQ
INTERNAL VETERANS AFFAIRS USE GYNECOLOGICAL CONDITIONS DISABILITY BENEFITS QUESTIONNAIRE IMPORTANT - THE DEPARTMENT OF VETERANS AFFAIRS (VA) WILL NOT PAY OR REIMBURSE ANY EXPENSES OR COST INCURRED IN THE PROCESS OF COMPLETING AND/OR SUBMITTING THIS FORM. PLEASE READ THE PRIVACY ACT AND RESPONDENT BURDEN INFORMATION ON REVERSE BEFORE COMPLETING FORM. NAME OF PATIENT/VETERAN PATIENT/VETERAN'S SOCIAL SECURITY NUMBER NOTE TO PHYSICIAN - Your patient is applying to the U.S. Department of Veterans Affairs (VA) for disability benefits. VA will consider the information you provide on this questionnaire as part of their evaluation in processing the claim. VA reserves the right to confirm the authenticity of ALL DBQs completed by private health care providers. IS THIS DBQ BEING COMPLETED IN CONJUNCTION WITH A VA21-2507, C&P EXAMINATION REQUEST? YES NO If no, how was the examination completed (check all that apply)? In-person examination Records reviewed Other, please specify: Comments: ACCEPTABLE CLINICAL EVIDENCE (ACE) INDICATE METHOD USED TO OBTAIN MEDICAL INFORMATION TO COMPLETE THIS DOCUMENT: Review of available records (without in-person or video telehealth examination) using the Acceptable Clinical Evidence (ACE) process because the existing medical evidence provided sufficient information on which to prepare the DBQ and such an examination will likely provide no additional relevant evidence. Review of available records in conjunction with a telephone interview with the Veteran (without in-person or telehealth examination) using the ACE process because the existing medical evidence supplemented with a telephone interview provided sufficient information on which to prepare the DBQ and such an examination would likely provide no additional relevant evidence. -
Surgical Management of Male Infertility
6 Surgical Management of Male Infertility Sandro C Esteves, Alaa Hamada, Ashok Agarwal (Sandro C Esteves) tertiary center for male reproduction, CHAPTER CONTENTS potentially surgical correctable conditions were identi- fied in 34.4% of the male partners. Azoospermia is iden- ♦ Surgical Treatment to Improve Sperm Production tified in about one-third of the individuals. Despite the ♦ Reconstructive Surgeries of Ductal System feasibility of reconstructive surgery in only about 30% of ♦ Ejaculatory Duct the azoospermic subgroup, most of the remaining would ♦ Sperm Retrieval Techniques be candidates for sperm retrieval techniques, if enrolled ♦ Preoperative Planning in assisted reproduction programs. These figures are ♦ Operative Procedure clearly shown in Table 1. ♦ Postoperative Care and Results Two major advances have recently occurred in the surgical management of male infertility. The first was the implementation of microsurgery which increased success rates for reconstruction of the reproductive tract. The second was the development of intracytoplasmic INTRODUCTION sperm injection (ICSI) and the demonstration that sper- matozoa retrieved from either the epididymis or the testis nfertility is a common problem in the urologic prac- were capable of fertilization and pregnancy.2,3 Thereafter, Itice. Approximately, 8% of men in reproductive age several sperm retrieval methods have been developed may ask for medical consultation for fertility problems. to collect epididymal and testicular sperm for ICSI in Of these, 1–10% carries conditions that compromise the azoospermic men. Microsurgery was incorporated to this reproductive potential.1 The essential roles of the urolo- armamentarium, either for collection of sperm from the gist in this context are to diagnose, to counsel, to provide epididymis in men with obstructive azoospermia or from medical or surgical treatment whenever possible or to the testicle in those with nonobstructive azoospermia correctly refer the male patient for assisted conception.