Forces and Motion Notes.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Forces and Motion Notes.Pdf Forces & Motion Motion: • A change in the position of an object • Caused by force (a push or pull) Force: • A push or pull on an object • Measured in units called Newtons (N) • Measured with a spring scale • Forces act in pairs Types of Force: – gravity – electric – magnetic – friction – centripetal Inertia: • An object at rest will remain at rest until acted upon by an unbalanced force. • An object in motion will remain in motion until acted upon by an unbalanced force. • When all forces acting on an object are equal (balanced) Balanced Forces: • When all the forces acting on an object are equal (net force is zero) • Balanced forces do not cause a change in motion. • Balanced forces can change the physical properties of an object without changing its motion. How Can Balanced Forces Affect Objects? • Cause the shape of an object to change without changing its motion • Cause an object at rest to stay at rest or an object in motion to stay in motion (inertia) • Cause an object moving at a constant speed to continue at a constant speed Unbalanced Forces: • When all the forces acting on an object are not equal • The forces can be in the same direction or in opposite directions. • Unbalanced forces cause a change in motion Acceleration: • Acceleration is caused by unbalanced forces: – slow down – speed up – stop – start – change direction – change shape Net Force; • The total of all forces acting on an object: – Forces in the same direction are added. • The object will move in the direction of the force. Object will move 7N to the right 4N 3N N N – Forces in opposite directions are subtracted. • An object will move in the direction of the greater force. 8N 3N Object will move 5N to the left N N Calculating Net Force: A child was playing with a jack in the box. The lid pushed down with 10 N of force, while the spring pushed up with 30 N of force. What is the net force applied by the spring? 30 N upward - 10 N downward = 20 N upward Two competitors are playing tug of war. What is the net force? Which direction will the rope move? Tug of War Game 50N to the right – 30N to the left = 20N to the right Mass and Weight: • Mass is the amount of stuff (matter) in an object. – The mass of an object will remain the same anywhere in the universe. – Mass is measured in grams or kilograms. • Weight is the mass (kg) of an object multiplied by the acceleration of gravity (9.8 m/s2). – The weight of an object depends on the gravitational pull of the location in the universe. – The gravitational pull on the Moon is only 1/6 of Earth’s gravitational pull. – Weight is measured in Newtons (N). Example: F=ma A person with a mass of 25 kg x 9.8 m/s2 gravitational acceleration is equal to 245 N of weight force. F= 25 kg x 9.8 m/s2 F = 245 N The person exerts 245 N of force on the ground. If the person went to the Moon, they would only weigh 1/6 of 245 N. F m a Force (N) = mass (kg) x acceleration (m/s2) Acceleration (m/s2) = force (N) ÷ mass (kg) Mass (kg) = force (N) ÷ acceleration (m/s2) Practice: 1. The acceleration of a sprinter is 10 m/s2. The force exerted on the starting blocks is 650 N. What is the mass of the sprinter? Force = 650 N Mass = ? Acceleration = 10 m/s2 Mass = force ÷ acceleration Mass = 650 ÷ 10 Mass = 65 2. A 56 kg cart is accelerating at 15 m/s2. Calculate the force exerted on the cart? Force = ? Mass = 56 kg Acceleration = 15 m/s2 Force (N) = mass (kg) x acceleration (m/s2) Force = 56 x 15 Force = 840 N 3. A boat is pulling a 54 kg wake boarder. The force the boat is exerting on her is 108 N. Calculate her acceleration. Force = 108 N Mass = 54 kg Acceleration = ? Acceleration = force ÷ mass Acceleration = 108 ÷ 54 Acceleration = 2 .
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
    GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P.
    [Show full text]
  • Unit 1: Motion
    Macomb Intermediate School District High School Science Power Standards Document Physics The Michigan High School Science Content Expectations establish what every student is expected to know and be able to do by the end of high school. They also outline the parameters for receiving high school credit as dictated by state law. To aid teachers and administrators in meeting these expectations the Macomb ISD has undertaken the task of identifying those content expectations which can be considered power standards. The critical characteristics1 for selecting a power standard are: • Endurance – knowledge and skills of value beyond a single test date. • Leverage - knowledge and skills that will be of value in multiple disciplines. • Readiness - knowledge and skills necessary for the next level of learning. The selection of power standards is not intended to relieve teachers of the responsibility for teaching all content expectations. Rather, it gives the school district a common focus and acts as a safety net of standards that all students must learn prior to leaving their current level. The following document utilizes the unit design including the big ideas and real world contexts, as developed in the science companion documents for the Michigan High School Science Content Expectations. 1 Dr. Douglas Reeves, Center for Performance Assessment Unit 1: Motion Big Ideas The motion of an object may be described using a) motion diagrams, b) data, c) graphs, and d) mathematical functions. Conceptual Understandings A comparison can be made of the motion of a person attempting to walk at a constant velocity down a sidewalk to the motion of a person attempting to walk in a straight line with a constant acceleration.
    [Show full text]
  • Force and Motion
    Force and motion Science teaching unit Disclaimer The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility for the actual content of any materials suggested as information sources in this publication, whether these are in the form of printed publications or on a website. In these materials icons, logos, software products and websites are used for contextual and practical reasons. Their use should not be interpreted as an endorsement of particular companies or their products. The websites referred to in these materials existed at the time of going to print. Please check all website references carefully to see if they have changed and substitute other references where appropriate. Force and motion First published in 2008 Ref: 00094-2008DVD-EN The National Strategies | Secondary 1 Force and motion Contents Force and motion 3 Lift-off activity: Remember forces? 7 Lesson 1: Identifying and representing forces 12 Lesson 2: Representing motion – distance/time/speed 18 Lesson 3: Representing motion – speed and acceleration 27 Lesson 4: Linking force and motion 49 Lesson 5: Investigating motion 66 © Crown copyright 2008 00094-2008DVD-EN The National Strategies | Secondary 3 Force and motion Force and motion Background This teaching sequence bridges from Key Stage 3 to Key Stage 4. It links to the Secondary National Strategy Framework for science yearly learning objectives and provides coverage of parts of the QCA Programme of Study for science. The overall aim of the sequence is for pupils to review and refine their ideas about forces from Key Stage 3, to develop a meaningful understanding of ways of representing motion (graphically and through calculation) and to make the links between different kinds of motion and forces acting.
    [Show full text]
  • Newton's Second
    Newton's Second Law INTRODUCTION Sir Isaac Newton1 put forth many important ideas in his famous book The Principia. His three laws of motion are the best known of these. The first law seems to be at odds with our everyday experience. Newton's first law states that any object at rest that is not acted upon by outside forces will remain at rest, and that any object in motion not acted upon by outside forces will continue its motion in a straight line at a constant velocity. If we roll a ball across the floor, we know that it will eventually come to a stop, seemingly contradicting the First Law. Our experience seems to agree with Aristotle's2 idea, that the \impetus"3 given to the ball is used up as it rolls. But Aristotle was wrong, as is our first impression of the ball's motion. The key is that the ball does experience an outside force, i.e., friction, as it rolls across the floor. This force causes the ball to decelerate (that is, it has a \negative" acceleration). According to Newton's second law an object will accelerate in the direction of the net force. Since the force of friction is opposite to the direction of travel, this acceleration causes the object to slow its forward motion, and eventually stop. The purpose of this laboratory exercise is to verify Newton's second law. DISCUSSION OF PRINCIPLES Newton's second law in vector form is X F~ = m~a or F~net = m~a (1) This force causes the ball rolling on the floor to decelerate (that is, it has a \negative" accelera- tion).
    [Show full text]
  • Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
    CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.
    [Show full text]
  • Physical Science Forces and Motion Vocabulary
    Physical Science -Forces and Motion Vocabulary 1. scientific method - The way we learn and study the world around us through a process of steps. ( Six Giant Hippos Eat Red & Orange Candy) 2. position – the exact location of an object. 3. direction – the line or course along which something moves. 4. speed – measures how fast an object is moving in a given amount of time. 5. motion – the change in position of an object. 6. constant – remaining steady and unchanged (stays the same.) 7. force – push or pull 8. interaction – the action or influence of people, groups or things on one another. 9. exert – to put forth as strength (exert a force) 10. friction - a force that opposes (goes against) motion. Friction is created when two surfaces rub together. Effects of friction: slowing down or stopping an object, producing heat, or wearing away an object. 11. Newton’s 1 st Law of Motion : an object at rest will stay at rest and an object in motion will stay in motion until a force acts upon it. 12. inertia – the tendency for an object to keep doing what it is doing (resting or moving) 13. mass – the amount of matter (“stuff”) - in an object. 14. weight - the amount of force (pull) that gravity has on an object's mass. Your weight depends on the gravitational pull of your location. 15. gravity – a force that attracts (pulls) all objects to the center of the Earth 16. acceleration – the changes in an object’s motion. This can be speeding up, slowing down or changing direction.
    [Show full text]
  • Glossary of Materials Engineering Terminology
    Glossary of Materials Engineering Terminology Adapted from: Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010. McCrum, N. G.; Buckley, C. P.; Bucknall, C. B. Principles of Polymer Engineering, 2nd ed.; Oxford University Press: New York, NY, 1997. Brittle fracture: fracture that occurs by rapid crack formation and propagation through the material, without any appreciable deformation prior to failure. Crazing: a common response of plastics to an applied load, typically involving the formation of an opaque banded region within transparent plastic; at the microscale, the craze region is a collection of nanoscale, stress-induced voids and load-bearing fibrils within the material’s structure; craze regions commonly occur at or near a propagating crack in the material. Ductile fracture: a mode of material failure that is accompanied by extensive permanent deformation of the material. Ductility: a measure of a material’s ability to undergo appreciable permanent deformation before fracture; ductile materials (including many metals and plastics) typically display a greater amount of strain or total elongation before fracture compared to non-ductile materials (such as most ceramics). Elastic modulus: a measure of a material’s stiffness; quantified as a ratio of stress to strain prior to the yield point and reported in units of Pascals (Pa); for a material deformed in tension, this is referred to as a Young’s modulus. Engineering strain: the change in gauge length of a specimen in the direction of the applied load divided by its original gauge length; strain is typically unit-less and frequently reported as a percentage.
    [Show full text]
  • Rolling Rolling Condition for Rolling Without Slipping
    Rolling Rolling simulation We can view rolling motion as a superposition of pure rotation and pure translation. Pure rotation Pure translation Rolling +rω +rω v Rolling ω ω v -rω +=v -rω v For rolling without slipping, the net instantaneous velocity at the bottom of the wheel is zero. To achieve this condition, 0 = vnet = translational velocity + tangential velocity due to rotation. In other wards, v – rω = 0. When v = rω (i.e., rolling without slipping applies), the tangential velocity at the top of the wheel is twice the 1 translational velocity of the wheel (= v + rω = 2v). 2 Condition for Rolling Without Big yo-yo Slipping A large yo-yo stands on a table. A rope wrapped around the yo-yo's axle, which has a radius that’s half that of When a disc is rolling without slipping, the bottom the yo-yo, is pulled horizontally to the right, with the of the wheel is always at rest instantaneously. rope coming off the yo-yo above the axle. In which This leads to ω = v/r and α = a/r direction does the yo-yo move? There is friction between the table and the yo-yo. Suppose the yo-yo where v is the translational velocity and a is is pulled slowly enough that the yo-yo does not slip acceleration of the center of mass of the disc. on the table as it rolls. rω 1. to the right ω 2. to the left v 3. it won't move -rω X 3 4 Vnet at this point = v – rω Big yo-yo Big yo-yo, again Since the yo-yo rolls without slipping, the center of mass The situation is repeated but with the rope coming off the velocity of the yo-yo must satisfy, vcm = rω.
    [Show full text]
  • Net Force Is Zero)
    Force & Motion Motion Motion is a change in the position of an object • Caused by force (a push or pull) Force A force is a a push or pull on an object • Measured in units called newtons (N) • Forces act in pairs Examples of Force: Ø Gravity Ø Magnetic Ø Friction Ø Centripetal Inertia Inertia is the tendency of an object to keep doing what it is doing • An object at rest will remain at rest until acted upon by an unbalanced force. • An object in motion will remain in motion until acted upon by an unbalanced force. Balanced Forces A balanced force is when all the forces acting on an object are equal (net force is zero) • Balanced forces do not cause a change in motion. How Can Balanced Forces Affect Objects? • Cause the shape of an object to change without changing its motion • Cause an object at rest to stay at rest or an object in motion to stay in motion (inertia) • Cause an object moving at a constant speed to continue at a constant speed What is an example of a balanced force? Unbalanced Forces An unbalanced force is when all the forces acting on an object are not equal • The forces can be in the same direction or in opposite directions. • Unbalanced forces cause a change in motion. How Can Unbalanced Forces Affect Objects? • Acceleration is caused by unbalanced forces: – slow down – speed up – stop – start – change direction – change shape What is an example of a unbalanced force? Net Force The Net force is he total of all forces acting on an object: – Forces in the same direction are added.
    [Show full text]
  • PHYS 419: Classical Mechanics Lecture Notes NEWTON's
    PHYS 419: Classical Mechanics Lecture Notes NEWTON's LAW I. INTRODUCTION Classical mechanics is the most axiomatic branch of physics. It is based on only a very few fundamental concepts (quantities, \primitive" terms) that cannot be de¯ned and virtually just one law, i.e., one statement based on experimental observations. All the subsequent development uses only logical reasoning. Thus, classical mechanics is nowadays sometimes considered to be a part of mathematics and indeed some research in this ¯eld is conducted at departments of mathematics. However, the outcome of the classical mechanics developments are predictions which can be veri¯ed by performing observations and measurements. One spectacular example can be predictions of solar eclipses for virtually any time in the future. Various textbooks introduce di®erent numbers of fundamental concepts. We will use the minimal possible set, just the concepts of space and time. These two are well-known from everyday experience. We live in a three-dimensional space and have a clear perception of passing of time. We can also easily agree on how to measure these quantities. We will denote the position of a point in space by a vector r. If we de¯ne an arbitrary Cartesian coordinate system, this vector can be described by a set of three components: r = [x; y; z] = xx^ + yy^ + zz^ where x^; y^, and z^ are unit vectors along the axes of the coordinate system. If the point is moving in the coordinate system, r = r(t). Thus, each component of r is a single-variable function, e.g., x = x(t).
    [Show full text]