Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs Clin Pharmacokinet DOI 10.1007/s40262-017-0570-0 REVIEW ARTICLE Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs 1,2 2,3 1,2,3 1,4 Anke E. Kip • Jan H. M. Schellens • Jos H. Beijnen • Thomas P. C. Dorlo Ó The Author(s) 2017. This article is an open access publication Abstract This review describes the pharmacokinetic half-life, potentially due to intracellular conversion to properties of the systemically administered antileishma- trivalent antimony. Pentamidine is the only antileish- nial drugs pentavalent antimony, paromomycin, pen- manial drug metabolised by cytochrome P450 enzymes. tamidine, miltefosine and amphotericin B (AMB), Paromomycin is excreted by the kidneys unchanged and including their absorption, distribution, metabolism and is eliminated fastest of all antileishmanial drugs. Milte- excretion and potential drug–drug interactions. This fosine pharmacokinetics are characterized by a long overview provides an understanding of their clinical terminal half-life and extensive accumulation during pharmacokinetics, which could assist in rationalising and treatment. AMB pharmacokinetics differ per drug for- optimising treatment regimens, especially in combining mulation, with a fast renal and faecal excretion of AMB multiple antileishmanial drugs in an attempt to increase deoxylate but a much slower clearance of liposomal efficacy and shorten treatment duration. Pentavalent AMB resulting in an approximately ten-fold higher antimony pharmacokinetics are characterised by rapid exposure. AMB and pentamidine pharmacokinetics have renal excretion of unchanged drug and a long terminal never been evaluated in leishmaniasis patients. Studies linking exposure to effect would be required to define target exposure levels in dose optimisation but have only been performed for miltefosine. Limited research has been conducted on exposure at the drug’s site of action, such as skin exposure in cutaneous leishmaniasis Electronic supplementary material The online version of this patients after systemic administration. Pharmacokinetic article (doi:10.1007/s40262-017-0570-0) contains supplementary material, which is available to authorized users. data on special patient populations such as HIV co-in- fected patients are mostly lacking. More research in & Thomas P. C. Dorlo these areas will help improve clinical outcomes by [email protected] informed dosing and combination of drugs. 1 Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital/MC Slotervaart, Amsterdam, The Netherlands 2 Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands 3 Department of Clinical Pharmacology, Antoni van Leeuwenhoek Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands 4 Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden A. E. Kip et al. 1 Introduction Key Points Leishmaniasis is a neglected tropical disease caused by the Due to very limited treatment options for Leishmania parasite and can cause diverse clinical mani- leishmaniasis patients, optimisation of current drug festations depending on the subspecies responsible for the dosages and drug combinations is of utmost infection and the host immune response. The two main importance, for which this review provides a solid types are the systemic disease visceral leishmaniasis (VL) pharmacokinetic basis. and the skin infection cutaneous leishmaniasis (CL). Sev- eral drugs (Table 1) are currently used in clinical practice This review describes the absorption, distribution, in treatment of both VL and CL [1, 2] but clinical guide- metabolism and excretion, as well as the clinical lines differ by region. Clinical results obtained in one area pharmacokinetics and potential drug–drug of endemicity cannot be extrapolated to other geographical interactions of the antileishmanial drugs pentavalent areas as efficacies have been shown to vary widely between antimonials, paromomycin, pentamidine, miltefosine countries and parasite subspecies (reviewed in Croft and and amphotericin B in the context of leishmaniasis. Olliaro [3] and Sundar and Singh [4]). The pharmacokinetics of two out of five Rising levels of resistance against antimonials, mostly in antileishmanial drugs have never been evaluated in India, and potentially miltefosine, is a great pitfall in the leishmaniasis patients. Exposure–response studies treatment of leishmaniasis patients [4, 5]. Available treatment and pharmacokinetic data in special patient options are limited, especially in vulnerable patient popula- populations such as HIV co-infected patients are tions such as paediatric leishmaniasis patients and HIV lacking. More research in this area will patients co-infected with VL. Therefore, several new combi- improve clinical outcomes via informed dosing nations of drugs are currently being tested to improve the regimens and combinations of drugs. efficacy of antileishmanial therapies. Furthermore, combina- tion therapies could possibly shorten treatment duration. Table 1 Overview of antileishmanial drugs systemically administered in treatment of visceral and/or cutaneous leishmaniasis (only includes information in human subjects, unless indicated otherwise) Antileishmanial Formulations Route of Distribution Metabolism Excretion drug administration Highest Skin accumulation Pentavalent Sodium IM/IV Liver, thyroid, heart Confirmed Intracellular Renal clearance antimonials stibugluconate reduction to SbIII (SSG) Meglumine Antimoniate (MA) Paromomycin Paromomycin IM Not reported Not reported Not metabolized Renal clearance sulphate Pentamidine Pentamidine IM/IV Kidney, liver, spleen, Not reported CYP1A1 Not excreted unchanged dimesylate adrenal glands (CYP2D6, Pentamidine CYP3A5 and isethionate CYP4A11) Miltefosine Miltefosine Oral Not reported (rats/ Not reported Intracellularly by Not excreted unchanged mice: kidney, liver, (in rats: phospholipase D (metabolised to spleen, intestines, confirmed) endogenous compounds) adrenal) Amphotericin D-AMB IV Liver, spleen Not reported Metabolism not D-AMB: urinary excretion a B L-AMB (in rats: well-studied. (21%); faecal excretion confirmed) Liposomes (43%) engulfed by RES L-AMB: urinary excretion (5%); faecal excretion (4%) CYP cytochrome P450, D-AMB amphotericin B deoxylate, IM intramuscular, IV intravenous, L-AMB liposomal amphotericin B, RES Retic- uloendothelial system a More lipid formulations exist of amphotericin B, but these are outside the scope of this review Clinical Pharmacokinetics of Antileishmanial Drugs Pharmacokinetics provide a scientific framework for Pharmacokinetic studies based on bio-assays were exclu- choosing the appropriate (combination of) drugs and their ded due to low sensitivity and problems with potential co- dosage. The clinical pharmacokinetics of antileishmanial measurements of the effect of metabolites. Many pharma- drugs, however, remain largely unexplored [6]. The aim of cokinetic studies have been conducted for AMB, and for this review is to give a comprehensive overview of the this reason we excluded studies with fewer than ten sub- pharmacokinetic characteristics relating to the absorption, jects or patients, studies with continuous infusion and distribution, metabolism and excretion (ADME) of system- studies on neonates\3 kg based on their limited relevance ically administered antileishmanial drugs currently being in the context of the treatment of leishmaniasis. Studies on used in the clinic as a basis to further rationalise the therapy experimental formulations were excluded for all drugs, for leishmaniasis. Albeit the pharmacokinetics of miltefos- such as a pharmacokinetic study on the experimental ine [7] and liposomal amphotericin B (L-AMB, with focus generic sodium stibogluconate (SSG) formulation ‘Ulam- on treatment of fungal infections [8]) have previously been ina’ composed of the pentachloride of antimony plus N- reviewed, our aim was to discuss the antileishmanial drugs methylglucamine [10], as no records have been found of collectively in the context of leishmaniasis. the commercialisation of this formulation. We have composed a summary of all pharmacokinetic studies performed, providing the reported primary and secondary pharmacokinetic parameters in overview tables. 3 Absorption, Distribution, Metabolism The pharmacokinetics in special patient populations rele- and Excretion (ADME) and Clinical vant in treatment of leishmaniasis are described: paediatric Pharmacokinetics patients, HIV co-infected patients, pregnant patients and patients with renal failure. Furthermore, potential drug– 3.1 Pentavalent Antimonials drug interactions between antileishmanial drugs, as well as between antileishmanial and antiretroviral drugs are dis- Pentavalent antimonials (pentavalent Sb/SbV) have been cussed. When information in humans is lacking, in vitro first-line treatment against CL and VL in the majority of and in vivo animal studies are examined. endemic regions for decades, though increasing drug In this review we solely focus on systemically admin- resistance has compromised its efficacy [3, 4]. Pentavalent istered drugs, as the majority of these drugs are adminis- antimonials are administered intramuscularly (IM) or tered in both CL and VL. Topical formulations were intravenously (IV) in systemic treatment of both CL and omitted due to its sole applicability to CL patients. The VL. It is marketed in two formulations: SSG (marketed as
Recommended publications
  • Miltefosine Combined with Intralesional Pentamidine for Leishmania Braziliensis Cutaneous Leishmaniasis in Bolivia
    Am. J. Trop. Med. Hyg., 99(5), 2018, pp. 1153–1155 doi:10.4269/ajtmh.18-0183 Copyright © 2018 by The American Society of Tropical Medicine and Hygiene Miltefosine Combined with Intralesional Pentamidine for Leishmania braziliensis Cutaneous Leishmaniasis in Bolivia Jaime Soto,1* Paula Soto,1 Andrea Ajata,2 Daniela Rivero,3 Carmelo Luque,2 Carlos Tintaya,2 and Jonathan Berman4 1FUNDERMA (Fundacion ´ Nacional de Dermatolog´ıa), Santa Cruz, Bolivia; 2Servicio Departamental de Salud, Departamento de La Paz, La Paz, Bolivia; 3Hospital Dermatologico ´ de Jorochito, Santa Cruz, Bolivia; 4AB Foundation, North Bethesda, Maryland Abstract. Bolivian cutaneous leishmaniasis due to Leishmania braziliensis was treated with the combination of mil- tefosine (150 mg/day for 28 days) plus intralesional pentamidine (120 μg/mm2 lesion area on days 1, 3, and 5). Ninety-two per cent of 50 patients cured. Comparison to historic controls at our site suggests that the efficacy of the two drugs was additive. Adverse effects and cost were also additive. This combination may be attractive when a prime consideration is efficacy (e.g., in rescue therapy), avoidance of parenteral therapy, or the desire to treat locally and also provide systemic protection against parasite dissemination. INTRODUCTION METHODS AND PATIENTS Cutaneous leishmaniasis (CL) in the New World gener- Study design and treatments. This was an open-label ally presents as a papule that enlarges and ulcerates over evaluation of one intervention: standard treatment with oral 1–3 months and then self-cures, but the predominant spe- miltefosine in combination with intralesional treatment with cies at our site in Bolivia, Leishmania (Viannia) braziliensis pentamidine.
    [Show full text]
  • 204684Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 OFFICE DIRECTOR MEMO Deputy Office Director Decisional Memo Page 2 of 17 NDA 204,684 Miltefosine Capsules 1. Introduction Leishmania organisms are intracellular protozoan parasites that are transmitted to a mammalian host by the bite of the female phlebotomine sandfly. The main clinical syndromes are visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). VL is the result of systemic infection and is progressive over months or years. Clinical manifestations include fever, hepatomegaly, splenomegaly, and bone marrow involvement with pancytopenia. VL is fatal if untreated. Liposomal amphotericin B (AmBisome®) was FDA approved in 1997 for the treatment of VL. CL usually presents as one or more skin ulcers at the site of the sandfly bite. In most cases, the ulcer spontaneously resolves within several months, leaving a scar. The goals of therapy are to accelerate healing, decrease morbidity and decrease the risk of relapse, local dissemination, or mucosal dissemination. There are no FDA approved drugs for the treatment of CL. Rarely, CL disseminates from the skin to the naso-oropharyngeal mucosa, resulting in ML. ML can also develop some time after CL spontaneous ulcer healing. The risk of ML is thought to be highest with CL caused by the subgenus Viannia. ML is characterized in the medical literature as progressive with destruction of nasal and pharyngeal structures, and death may occur due to complicating aspiration pneumonia. There are no FDA approved drugs for the treatment of ML. Paladin Therapeutics submitted NDA 204, 684 seeking approval of miltefosine for the treatment of VL caused by L.
    [Show full text]
  • Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise
    microorganisms Review Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise Nicola S. Carter, Brendan D. Stamper , Fawzy Elbarbry , Vince Nguyen, Samuel Lopez, Yumena Kawasaki , Reyhaneh Poormohamadian and Sigrid C. Roberts * School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; cartern@pacificu.edu (N.S.C.); stamperb@pacificu.edu (B.D.S.); fawzy.elbarbry@pacificu.edu (F.E.); nguy6477@pacificu.edu (V.N.); lope3056@pacificu.edu (S.L.); kawa4755@pacificu.edu (Y.K.); poor1405@pacificu.edu (R.P.) * Correspondence: sroberts@pacificu.edu; Tel.: +1-503-352-7289 Abstract: Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania Citation: Carter, N.S.; Stamper, B.D.; in rodent infectivity studies.
    [Show full text]
  • Administering Medications Through Feeding Tubes (GT, NG, JT, NJ, Etc.)
    Administering Medications through Feeding Tubes (GT, NG, JT, NJ, etc.) This content was developed by: Adrian Turner, Pharm.D.- Cook Children’s Medical Center, Ft. Worth, TX Marry Vuong, Pharm.D.- Nicklaus Children’s Health System, Miami, FL Veronica Hood, PhD- Dravet Syndrome Foundation, Cherry Hill, NJ This information should not replace guidance from a health care professional managing the care of your child or loved one. Caregivers should use this guide to help inform conversations as part of the health care team, working with medical professionals to determine the best medications and routes of administration to use given the individual patient’s medical history and needs. Sometimes oral intake is not possible or is not ideal. In these instances, the use of alternative routes can be quite beneficial. Both nutrition and medication administration can be improved or maintained through the appropriate use of enteral alternatives such as gastrostomy tubes (GT), nasogastric tubes (NG), gastrostomy buttons (G-Buttons; GB), jejunostomy tubes (JT), and nasojejunal tubes (NJ). However, these routes present unique barriers and considerations the traditional oral route does not. Miscellaneous tips for medication administration via feeding tubes1-8: • Product choices: o Generally, products that are extended release or delayed release should not be crushed. There are a few exceptions, outlined below. o If using a liquid formulation, elixirs and suspensions may be less likely to clump with enteral nutrition compared to syrups. o Some liquids may contain high amounts of sugar alcohols (e.g. sorbitol, malitol) or have a high osmolality. Both of these can increase the risk of developing abdominal cramping, bloating, nausea, and diarrhea.
    [Show full text]
  • The Epidemiology and Clinical Features of Balamuthia Mandrillaris Disease in the United States, 1974 – 2016
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 August 28. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1815–1822. doi:10.1093/cid/ciy813. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974 – 2016 Jennifer R. Cope1, Janet Landa1,2, Hannah Nethercut1,3, Sarah A. Collier1, Carol Glaser4, Melanie Moser5, Raghuveer Puttagunta1, Jonathan S. Yoder1, Ibne K. Ali1, Sharon L. Roy6 1Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 2James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, MD, USA 3Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 4Kaiser Permanente, San Francisco, CA, USA 5Office of Financial Resources, Centers for Disease Control and Prevention Atlanta, GA, USA 6Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract Background—Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. Methods—The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed.
    [Show full text]
  • Epigallocathechin-O-3-Gallate Inhibits Trypanothione Reductase of Leishmania Infantum, Causing Alterations in Redox Balance And
    ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fcimb.2021.640561 Epigallocathechin-O-3-Gallate Inhibits Trypanothione Reductase of Leishmania infantum, Causing Alterations in Redox Balance and Edited by: Leading to Parasite Death Brice Rotureau, Institut Pasteur, France Job D. F. Inacio 1, Myslene S. Fonseca 1, Gabriel Limaverde-Sousa 2, Ana M. Tomas 3,4, Reviewed by: Helena Castro 3 and Elmo E. Almeida-Amaral 1* Wanderley De Souza, Federal University of Rio de Janeiro, 1 Laborato´ rio de Bioqu´ımica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundac¸ão Oswaldo Cruz – FIOCRUZ, Brazil Rio de Janeiro, Brazil, 2 Laborato´ rio de Esquistossomose Experimental, Instituto Osvaldo Cruz, Fundac¸ão Oswaldo Cruz – Andrea Ilari, FIOCRUZ, Rio de Janeiro, Brazil, 3 i3S—Instituto de Investigac¸ão e Inovac¸ão em Sau´ de, Universidade do Porto, Porto, Italian National Research Portugal, 4 ICBAS—Instituto de Cieˆ ncias Biome´ dicas Abel Salazar, Universidade do Porto, Porto, Portugal Council, Italy Marina Gramiccia, ISS, Italy Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease *Correspondence: in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. Elmo E. Almeida-Amaral donovani, presently impacts the health of 500,000 people worldwide, and is treated elmo@ioc.fiocruz.br with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side Specialty section: effects, high cost and/or emergence of resistant parasites. In previous works we have This article was submitted to disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a Parasite and Host, flavonoid compound present in green tea leaves.
    [Show full text]
  • ACR Manual on Contrast Media
    ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions.
    [Show full text]
  • Treatment of Visceral Leishmaniasis with Intravenous Pentamidine And
    International Journal of Infectious Diseases 14 (2010) e522–e525 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Case Report Treatment of visceral leishmaniasis with intravenous pentamidine and oral fluconazole in an HIV-positive patient with chronic renal failure — a case report and brief review of the literature Jan Rybniker a, Valentin Goede a, Jessica Mertens b, Monika Ortmann c, Wolfgang Kulas d, Matthias Kochanek a, Thomas Benzing e, Jose´ R. Arribas f, Gerd Fa¨tkenheuer a,* a 1st Department of Internal Medicine, University of Cologne, 50924 Cologne, Germany b Department of Gastroenterology, University of Cologne, Cologne, Germany c Institute of Pathology, University of Cologne, Cologne, Germany d Nephrologisches Zentrum Mettmann, Mettmann, Germany e Department of Medicine and Centre for Molecular Medicine, University of Cologne, Cologne, Germany f Enfermedades Infecciosas, Hospital Universitario La Paz, Madrid, Spain ARTICLE INFO SUMMARY Article history: We report the case of an HIV-positive patient with visceral leishmaniasis and several relapses after Received 3 March 2009 treatment with the two first-line anti-leishmanial drugs, liposomal amphotericin B and miltefosine. End- Accepted 4 June 2009 stage renal failure occurred in 2007 when the patient was on long-term treatment with miltefosine. A Corresponding Editor: William Cameron, relapse of leishmaniasis in 2008 was successfully treated with a novel combination regimen of Ottawa, Canada intravenous pentamidine and oral fluconazole. Secondary prophylaxis with fluconazole monotherapy did not prevent parasitological relapse of leishmaniasis. Keywords: ß 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Visceral leishmaniasis HIV Fluconazole Pentamidine Miltefosine Renal failure 1.
    [Show full text]
  • Lopinavir, an HIV-1 Peptidase Inhibitor, Induces Alteration on the Lipid Metabolism of Cambridge.Org/Par Leishmania Amazonensis Promastigotes
    Parasitology Lopinavir, an HIV-1 peptidase inhibitor, induces alteration on the lipid metabolism of cambridge.org/par Leishmania amazonensis promastigotes 1 2 3 Special Issue Research Karina M. Rebello , Valter V. Andrade-Neto , Aline A. Zuma , 3 4 Article Maria Cristina M. Motta , Claudia Regina B. Gomes , Marcus Vinícius N. de Souza4, Geórgia C. Atella5, Marta H. Branquinha6, ‡Both authors share senior authorship. André L. S. Santos6, Eduardo Caio Torres-Santos2,‡ and Claudia M. d’Avila-Levy1,‡ Cite this article: Rebello KM et al (2018). Lopinavir, an HIV-1 peptidase inhibitor, 1Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz induces alteration on the lipid metabolism of (FIOCRUZ), Rio de Janeiro, Brazil; 2Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Leishmania amazonensis promastigotes. 3 145 – FIOCRUZ, Rio de Janeiro, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Parasitology , 1304 1310. https://doi.org/ 4 10.1017/S0031182018000823 Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Laboratório de Síntese de Fármacos, Farmanguinhos, FIOCRUZ, Rio de Janeiro, Brazil; 5Instituto de Bioquímica Médica, UFRJ, Rio de Received: 8 February 2018 Janeiro, Brazil and 6Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes, UFRJ, Revised: 3 April 2018 Rio de Janeiro, Brazil Accepted: 5 April 2018 First published online: 28 May 2018 Key words: Abstract Aspartyl; chemotherapy; co-infection; The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; how- leishmaniasis; trypanosomatids ever, the biochemical target and mode of action are still a matter of controversy in Leishmania Author for correspondence: parasites.
    [Show full text]
  • UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Micro- and Nanofabrication of Polymeric Devices and Films for Oral Drug Delivery Applications Permalink https://escholarship.org/uc/item/4t95664f Author Nemeth, Cameron Lee Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Micro- and Nanofabrication of Polymeric Devices and Films for Oral Drug Delivery Applications By Cameron Lee Nemeth A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with University of California, San Francisco in Bioengineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tejal A. Desai, Chair Professor Dorian Liepmann Professor Ronald S. Fearing Spring 2019 Micro- and Nanofabrication of Polymeric Devices and Films for Oral Drug Delivery Applications Copyright © 2019 By: Cameron Lee Nemeth Abstract Micro- and Nanofabrication of Polymeric Devices and Films for Oral Drug Delivery Applications By Cameron Lee Nemeth Joint Doctor of Philosophy in Bioengineering with University of California, San Francisco University of California, Berkeley Professor Tejal A. Desai, Chair Oral drug delivery is the preferred route of administration due to its convenience to patients, low cost, and high patient compliance. However, the oral delivery of small molecules and protein therapeutics face physiological challenges that result in low drug solubility, poor absorption, and metabolic breakdown. This dissertation work describes the development of micro- and nanofabrication techniques to create drug delivery platforms that are designed to overcome these barriers. Micron-scale devices with planar, asymmetric geometries were fabricated using biocompatible materials with photolithography and inkjet printer techniques.
    [Show full text]
  • Methotrexate in Rheumatoid Arthritis: Benefits, Limitations and the Emerging Value of Subcutaneous Administration
    International Journal of Drug Evaluation Clinical Rheumatology 9 Drug Evaluation Methotrexate in rheumatoid arthritis: benefits, limitations and the emerging value of subcutaneous administration Int. J. Clin. Rheumatol. Because of its efficacy and safety, methotrexate (MTX) is well established as the Edward Keystone*,1,2 & Bruce anchor drug for treatment of rheumatoid arthritis. Although MTX is typically Freundlich3 administered orally, parenteral MTX offers greater bioavailability and may cause 1The Rebecca MacDonald Centre for Arthritis & Autoimmune Disease, less gastrointestinal intolerability. Parenteral MTX may be considered for patients Mount Sinai Hospital, Toronto, ON, with rheumatoid arthritis who experience an inadequate response to oral MTX at Canada the highest tolerated dose; however, its use remains low in the USA. To facilitate 2Joseph & Wolf Lebovic Health Complex, the administration of subcutaneous MTX, a state of the art MTX auto-injector that 60 Murray Street, 2nd Floor (Main), enables patients to self-administer prespecified doses of MTX subcutaneously was Toronto, ON, M5T 3L9, Canada 3Medical Department, Antares recently developed. This auto-injector may improve patient adherence and the ability Pharma Inc., Ewing, NJ, USA to reach an optimally effective MTX dose, thereby allowing more patients with *Author for correspondence: rheumatoid arthritis to obtain the maximum benefit from MTX. Tel.: +1 416 586 8646 Fax: +1 416 586 8766 Keywords: auto-injector • bioavailability • disease-modifying antirheumatic drug • dose [email protected] optimization • rheumatoid arthritis • self-administration • subcutaneous methotrexate Methotrexate (MTX) has been recognized as Clinical importance of MTX in the a valuable treatment for rheumatoid arthritis treatment of RA (RA) for more than 30 years and, despite the Owing to its efficacy and safety, MTX has emergence of many newer therapies, remains gained wide acceptance as a key treatment the cornerstone of RA treatment [1] .
    [Show full text]
  • Definition of Terms, Style, and Conventions Used in ASPEN Board of Directors–Approved Documents
    American Society for Parenteral and Enteral Nutrition (ASPEN) Definition of Terms, Style, and Conventions Used in ASPEN Board of Directors–Approved Documents May 2018 Daniel Robinson, MD, Chair; Renee Walker, MS,RD,LD,CNSC, FAND, Vice-Chair; Stephen C Adams, MS,RPh,BCNSP; Karen Allen, MD; Meghan A. Arnold, MD, FACS; Matthew Bechtold, MD,FASGE,FACG; Kayla Bridges, MS, RD-AP,CSP,CNSC,FAND; Sandra Wolke Citty,PhD, ARNP- BC; M. Petrea Cober, PharmD, BCNSP, BCPPS; Chen Du, RDN, LD; June Greaves, RD,CNSC,CD- N,LDN; Kathleen Gura, PharmD, BCNSP,FASHP,FPPAG,FASPEN; Blair Hamilton-Brown, MS,RD,LD; Kelli Horton, MPHRD,CNSC; Todd Mattox, PharmD,BCNSP; Manpreet S. Mundi, MD; Melissa Pleva, PharmD, BCPS BCNSP,BCCCP; Steven W. Plogsted, BS,PharmD,BCNSP,CNSC; Amit Raina, MD, CNSC; Amy Ralph, MS,RD,CNSC,CDN; Greg Roberti, PharmD,BCPS,BCNSP; Mary Russell, MS,RDN,LDN, FAND; Kim Sabino, MS,RD, CNSC; Ceressa Ward, PharmD,BCPS,BCNSP, BCCCP; Hailey Wilson, MS,RD,CD,CNSC; Patricia Worthington, RN,MSN,CNSC; Joseph Ybarra, PharmD,BCNSP; Wei Yuan, RD,CNSC; Beverly Holcombe, PharmD,BCNSP,FASHP,FASPEN. ASPEN’s mission is to improve patient care by advancing the science and practice of clinical nutrition and metabolism Founded in 1976, ASPEN is an interdisciplinary organization whose members are involved in the provision of clinical nutrition therapies, including parenteral and enteral nutrition. With more than 6,500 members from around the world, ASPEN is a community of dietitians, nurses, pharmacists, physicians, scientists, students, and other health professionals from every facet of nutrition support clinical practice, research, and education.
    [Show full text]