Freeze Tolerance of Cyphoderris Monstrosa (Orthoptera: Prophalangopsidae) Jantina Toxopeus Western University, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae. -
Mark-Recapture Study of Mountain Stone Weta Hemideina Maori (Orthoptera: Anostostomatidae) on Rock Tor ‘Islands’
JAMIESON, FORBES, McKNIGHT: SURVIVAL AND MOVEMENT OF WETA 209 SHORT COMMUNICATION Mark-recapture study of mountain stone weta Hemideina maori (Orthoptera: Anostostomatidae) on rock tor ‘islands’ Ian G. Jamieson, Mark R. Forbes1 and E. Brooke McKnight Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand (E-mail:[email protected]) 1Department of Biology, 2240 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada KlS 5B6 __________________________________________________________________________________________________________________________________ Absract: Mountain stone weta (Hemideina maori) on the Rock and Pillar Range in the South Island, New Zealand, are found primarily in cavities under flat rocks on isolated outcrops or ‘tors’. We marked 66 adult weta on one tor and 30 adults on an adjacent tor and recorded their location during the summer and for the following three years to obtain baseline data on survival, longevity, dispersal, and movement within tors. It was not uncommon for adult weta to live for two to three years. Most marked weta were resighted at least once, usually under the same rock. Few weta moved further than the rock adjacent to where they were first captured and only one dispersed to a neighbouring tor. On one tor, a relatively stable group of 6–8 females and 2 males was resighted during most of the summer period under one large rock. An analysis of our mark-recapture methodology and results indicates that H. maori may be an appropriate species for investigating population structure in a metapopulation context as well as local mate competition. __________________________________________________________________________________________________________________________________ Key words: survival; longevity; dispersal; Stenopelmatidae; New Zealand. -
(Orthoptera: Prophalangopsidae)?
applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, 131, 434–448. With 5 figures. Does hunger lead to hybridization in a genus of sexually cannibalistic insects (Orthoptera: Prophalangopsidae)? Downloaded from https://academic.oup.com/biolinnean/article/131/2/434/5893746 by MacEwan University Libraries user on 07 December 2020 JULIAN R. DUPUIS1,2*, , KEVIN A. JUDGE3,4*, BRYAN M. T. BRUNET2,5, SHAWNA OHLMANN CHAN3 and FELIX A. H. SPERLING2 1Department of Entomology, University of Kentucky, Lexington, KY 40546, USA 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 3Department of Biological Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada 4Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada 5Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada Received 17 March 2020; revised 27 May 2020; accepted for publication 28 May 2020 Allochronic isolation can be a strong mechanism for reproductive isolation and speciation. However, imperfect allochrony and the expression of phenological plasticity can erode temporal barriers to gene flow and result in hybridization between divergent lineages. Here, we combine behavioural ecology and genomics to investigate this scenario in two closely related species of grigs in the genus Cyphoderris. These species exhibit a unique mating system whereby females feed on the fleshy hind wings of the male during copulation, and copulation with conspecific males is more likely in food-restricted females than in well-fed females. In western Canada, Cyphoderris buckelli and Cyphoderris monstrosa are sympatric but largely allochronically separated, with C. -
Little Or No Gene Flow Despite F1 Hybrids at Two Interspecific Contact
Little or no gene flow despite F1 hybrids at two interspecific contact zones Natasha E. Mckean, Steven A. Trewick & Mary Morgan-Richards Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Keywords Abstract Divergence, Hemideina, hybridization, introgression, population genetics. Hybridization can create the selective force that promotes assortative mating but hybridization can also select for increased hybrid fitness. Gene flow Correspondence resulting from hybridization can increase genetic diversity but also reduce dis- Mary Morgan-Richards, Ecology Group, tinctiveness. Thus the formation of hybrids has important implications for Institute of Agriculture and Environment, long-term species coexistence. This study compares the interaction between the Massey University, Palmerston North 4442, tree weta Hemideina thoracica and its two neighboring species; H. crassidens New Zealand. and H. trewicki. We examined the ratio of parent and hybrid forms in natural Tel: +64 6356 9099 ext 84835; Fax:+64 6355 7950; areas of sympatry. Individuals with intermediate phenotype were confirmed as E-mail: [email protected] first generation hybrids using nine independent genetic markers. Evidence of gene flow from successful hybridization was sought from the distribution of Funding Information morphological and genetic characters. Both species pairs appear to be largely This work was supported by the Massey retaining their own identity where they live in sympatry, each with a distinct University Research Fund (M. Morgan- karyotype. Hemideina thoracica and H. trewicki are probably reproductively Richards; MURF2013: Can wet a coexist?). isolated, with sterile F1 hybrids. This species pair shows evidence of niche dif- Received: 29 November 2015; Accepted: 1 ferences with adult size and timing of maturity differing where Hemideina December 2015 thoracica is sympatric with H. -
Orthoptera: Prophalangopsidae) from the Middle Jurassic of Daohugou, China
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2909: 64–68 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A exceptionally-preserved new species of Barchaboilus (Orthoptera: Prophalangopsidae) from the Middle Jurassic of Daohugou, China JUN-JIE GU1, GE-XIA QIAO2 & DONG REN1 1College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian District, Beijing, China. E-mail: [email protected] 2Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China Abstract A new species of Prophalangopsidae, Bacharboilus lii sp. nov., is described. It was collected from the Middle Jurassic Jiulongshan Formation of Daohugou Village, Ningcheng County, Chifeng City, Inner Mongolia, China. This exquisitely preserved specimen exhibits clear wing venation and head structures, especially the mouthpart morphology. The stout mandibles bear well defined molar dentes which indicate an herbivorous feeding habit. Key words: Bacharboilus, new species, Jiulongshan Formation, mandibles Introduction A number of prophalangopsids collected from Chinese Middle Jurassic deposits have been described in recent years. (Hong 1982, 1983, 1984, 1986; Wang 1987; Lin & Huang 2006, Ren & Meng, 2006; Li et al. 2007; Fang et al. 2007, 2009; Lin et al. 2008; Gu et al. 2009, 2010). They are known based on forewing venation, but few with head morphology. Herein, we report a new species assigned to Bacharboilus Gorochov 1988, and provide more information on head characters of Bacharboilus. -
A New Species of Chifengiinae (Orthoptera: Prophalangopsidae) from the Lower Cretaceous Zhonggou Formation of the Jiuquan Basin, Northwest China
Cretaceous Research 73 (2017) 60e64 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication A new species of Chifengiinae (Orthoptera: Prophalangopsidae) from the Lower Cretaceous Zhonggou Formation of the Jiuquan Basin, Northwest China * He Wang a, b, , Daran Zheng a, c, Xiaojie Lei a, b, Qingqing Zhang a, b, Xiaoyin Ren a, ** Bo Wang a, d, Yan Fang a, Edmund A. Jarzembowski a, e, Haichun Zhang a, a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China b University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui, 230026, China c Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region d Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1, Beichen West Road, Beijing, 100101, China e Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK article info abstract Article history: A new orthopteran species, Ashanga jiuquanensis Wang and Zhang sp. nov., is assigned to the subfamily Received 26 November 2016 Chifengiinae of Prophalangopsidae (Insecta: Orthoptera) and is reported based on male and female Received in revised form forewings from the Lower Cretaceous Zhonggou Formation in the Jiuquan Basin, Gansu Province, 23 January 2017 Northwest China. The discovery of the new species extends not only the age range of the subfamily Accepted in revised form 24 January 2017 Chifengiinae, but also the geographical distribution of the genus Ashanga. Available online 31 January 2017 © 2017 Elsevier Ltd. -
Hemideina Crassidens
Ecology and Development in an Island Population of Wellington Tree Weta (Hemideina crassidens). A thesis presented in fulfillment of the requirements for the degree of Master of Science in Ecology and Biodiversity At Victoria University of Wellington. New Zealand. Alexander Scott Dixson 2020 Acknowledgements I am extremely grateful to Dr. George Gibbs for allowing me access to the wealth of data he collected during field work on Matiu/Somes Island and by rearing tree weta at his home. I would also like to thank Dr. Gibbs for many fascinating discussions about tree weta and for his feedback. Many thanks to my supervisor, Dr. Phil Lester for his ongoing encouragement, support and guidance. A big thank you to Dr. Shirley Pledger for advice and support with data analysis and for many interesting conversations about Science. ii Abstract Sexual selection and the mating system of the Wellington tree weta has been extensively studied during the last 15 years. In the past 10 years, nutritional ecology and factors affecting the distribution of species in the genus Hemideina have also been examined in great detail. This recent work and the extensive studies of New Zealand tree weta species that preceded it provide much context and comparison for this thesis, which examines the ecology of a population of tree weta living on Matiu/Somes Island. Less is known about factors affecting the development of the exaggerated male weaponry that is characteristic of much of the genus Hemideina. This thesis firstly presents a mark-recapture study conducted over 42 months on Matiu/Somes Island to obtain ecological information about the population. -
Orthoptera: Ensifera)?
Zootaxa 4291 (1): 001–033 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4291.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BD31B828-E7EF-46AD-B618-1BAAA2D63DBD Tackling an intractable problem: Can greater taxon sampling help resolve relationships within the Stenopelmatoidea (Orthoptera: Ensifera)? AMY G. VANDERGAST1,7, DAVID B. WEISSMAN2, DUSTIN A. WOOD3, DAVID C. F. RENTZ4, CORINNA S. BAZELET5 & NORIHIRO UESHIMA6 1U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road Suite 200, San Diego, CA 92101, USA. E-mail: [email protected] 2Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA. E-mail: [email protected] 3U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road Suite 200, San Diego, CA 92101, USA. E-mail: [email protected] 4School of Marine & Tropical Biology, James Cook University, Australia. E-mail: [email protected] 5Steinhardt Museum, Tel Aviv University, Department of Zoology, Sherman Building Rm. 403, Tel Aviv, Israel; Department of Conser- vation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. E-mail: [email protected] 61435-1 Kubocho, Matsusaka, Mie 515-0044, Japan. E-mail: [email protected] 7Corresponding Author Abstract The relationships among and within the families that comprise the orthopteran superfamily Stenopelmatoidea (suborder Ensifera) remain poorly understood. We developed a phylogenetic hypothesis based on Bayesian analysis of two nuclear ribosomal and one mitochondrial gene for 118 individuals (84 de novo and 34 from GenBank). -
Entomological News
Vol. 1 14. No. 4. September & October 2003 197 TERRITORIALLY AND SINGING-SITE PREFERENCES IN THE CRICKET, CYPHODERRIS MONSTROSA (ORTHOPTERA: HAGLIDAE) IN WESTERN NORTH AMERICA 1 J. Ladau' ABSTRACT: Many male orthopterans prefer to stridulate from certain microhabitats. However, it is unknown if such preferences exist in Cyphoderris monstrosa Uhler (Haglidae). Choice tests indi- cated that C. monstrosa strongly prefer to sing from large trees and clumps of trees, but a survey of singing C. monstrosa suggested indifference to tree species. The observed preferences may have implications for understanding the evolution of territoriality in C. monstrosa. KEY WORDS: Orthoptera, Haglidae, Cricket, stridulate, conifer, habitat preference, territoriality. western North America. The haglid crickets are represented in Western North America by three species: Cyphoderris monstrosa in the Cascade and northern Rocky Mountains, C. strepitans in the central Rocky Mountains, and C. buckelli in the Canadian Rocky Mountains (Morris and Gwynne 1978). Males of all three species sing at approximately 1 3kHz with essentially the same pulse rate, pulse duration, and amplitude (Morris and Gwynne 1978). However, two of the three species com- municate differently with their songs: C. strepitans use song to attract mates (Dodson et al. 1983, Snedden and Irazuzta 1994) while C. monstrosa use song to mediate territorial disputes (knowledge of C. buckelli is lacking; Sakaluk et al. 1995, Mason 1996). In C. monstrosa, territorial disputes can escalate from singing to biting and kicking matches (Mason, 1996), but physical aggression is absent in C. strepi- - tans and C. buckelli. That difference in aggressiveness is puzzling why aren't all three species alike? Mason (1996) and Sakaluk et al (1995) suggest that the answer may lie in habitat geometry. -
Sex- and Season-Dependent Behaviour in a Flightless Insect, the Auckland Tree Weta (Hemideina Thoracica)
AvailableWehi et al.: on-line Seasonal at: http://www.newzealandecology.org/nzje/ behaviour patterns in weta 75 Sex- and season-dependent behaviour in a flightless insect, the Auckland tree weta (Hemideina thoracica) Priscilla M Wehi1,4*, Murray Jorgensen2 and Mary Morgan-Richards3 1Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand 2Department of Statistics, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand 3Institute of Natural Resources, Massey University, Private Bag 11222, Palmerston North, New Zealand 4Present address: CSAFE, University of Otago, P O Box 56, Dunedin, New Zealand *Author for correspondence (Email: [email protected]) Published online: 17 December 2012 Abstract: In a polygynous mating system, males frequently compete by locating and defending sites with resources essential to female survival and reproduction. We investigated seasonal changes in site occupancy in a sexually dimorphic, harem-forming insect, the Auckland tree weta (Hemideina thoracica). First we established artificial cavities as diurnal refuge cavities and potential harem guarding sites. We then examined cavity occupancy changes, and, based on our knowledge of prior occupants, determined sex-specific patterns of arrival, departure, and aggregation at a population level throughout the year. Both season and the sex of prior occupants influenced weta occupancy patterns. Most observations were of single females. However, both males and females moved into cavities previously occupied by a weta of the opposite sex more often than expected by chance alone. Females avoided cavities where other females were present, except during summer when most harems formed. In early summer, male and female tree weta previously living apart began co-habiting. -
Ewers & Cowley FINAL.P65
The role of sound production in determining dominance in agonistic interactions between male tree wetas (Hemideina crassidens, Orthoptera: Anostostomatidae) Robert M. Ewers1,2,3 and Greig Cowley1 1 School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 2 Current address: Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK, and Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK 3Corresponding author’s email: [email protected] (Received 17 July 2005, revised and accepted 5 October 2005) Abstract New Zealand tree wetas in the genus Hemideina have a resource-defence polygynous mating system, where males compete for ownership of galleries and the females they contain. Large males have previously been shown to have better success in male-male agonistic encounters than small males, and consequently obtain more mating opportunities. However, sound production by stridulation is frequently observed in agonistic interaction between males, but its role in determining the outcome is unknown. Here, we experimentally tested the role of sound production in determining dominance in the tree weta H. crassidens. We found that muting a dominant male can result in a change in dominance between rival males, but only if the males are similar in size. Large disparities in the size of combating males overrides any effect of stridulation. Keywords: agonistic interaction - body size - dominance - Hemideina - stridulation - sound production - weta. Introduction frequently found in the lowland forests of Westland, Nelson and Marlborough in New Zealand tree wetas (Hemideina spp.) the South Island, and are also common are endemic, flightless orthopterans, and in Wellington in the North Island (Field are among the heaviest insects in the & Rind 1992). -
Overwintering in New Zealand Stick Insects Alice B
Western University Scholarship@Western Biology Publications Biology Department Summer 6-2013 Overwintering in New Zealand stick insects Alice B. Dennis Landcare Research, Auckland, New Zealand, [email protected] Luke T. Dunning Landcare Research, Auckland, New Zealand Christopher J. Dennis Brent J. Sinclair Western University, [email protected] Thomas R. Buckley Landcare Research, Auckland, New Zealand Follow this and additional works at: https://ir.lib.uwo.ca/biologypub Part of the Biology Commons, Entomology Commons, and the Other Ecology and Evolutionary Biology Commons Citation of this paper: Dennis, Alice B.; Dunning, Luke T.; Dennis, Christopher J.; Sinclair, Brent J.; and Buckley, Thomas R., "Overwintering in New Zealand stick insects" (2013). Biology Publications. 78. https://ir.lib.uwo.ca/biologypub/78 1 Overwintering in New Zealand stick insects 2 3 4 Alice B. Dennis1,2*, Luke T. Dunning1,2,3, Christopher J. Dennis4, Brent J. Sinclair5 and 5 Thomas R. Buckley1,2,3 6 7 1Landcare Research, Private Bag 92170, Auckland, New Zealand 8 2Allan Wilson Centre for Ecology and Evolution 9 3School of Biological Sciences, The University of Auckland, Auckland, New Zealand 10 4 3B Kotiri St, St. Heliers, Auckland 1071, New Zealand 11 5Department of Biology, University of Western Ontario, London, ON, Canada 12 13 *Corresponding Author: [email protected]. Landcare Research, Private Bag 14 92170, Auckland, New Zealand. Tel: +64 (09) 574 4194, Fax: +64 (09) 574 4101. 15 16 Short running title: Overwinter Survival in Stick Insects 17 1 18 Abstract: 19 Stick insects are found in a variety of habitats throughout New Zealand, including at 20 least four species that occur at high altitudes.