Network Security Principles, Symmetric Key Cryptography

Total Page:16

File Type:pdf, Size:1020Kb

Network Security Principles, Symmetric Key Cryptography Network Security • Classic properties of secure systems: Network Security Principles, •Confidentiality • Encrypt message so only sender and receiver can Symmetric Key Cryptography, understand it. Public Key Cryptography • Authentication • Both sender and receiver need to verify the identity of the other party in a communication: are Modified by Xiuzhen Cheng you really who you claim to be? Originally provided by Professor •Authorization • Does a party with a verified identity have Rick Han ([email protected]) at permission to access (r/w/x/…) information? Gets the University of Colorado at into access control policies. Boulder Network Security (2) Cryptography • Classic properties of secure systems: (cont.) plaintext ciphertext plaintext •Integrity Encryption Decryption • During a communication, can both sender and receiver detect whether a message has been • Encryption algorithm also called a cipher altered? • Cryptography has evolved so that modern • Non-Repudiation encryption and decryption use secret keys • Originator of a communication can’t deny later • Only have to protect the keys! => Key distribution that the communication never took place problem • Availability • Cryptographic algorithms can be openly published • Guaranteeing access to legitimate users. plaintext ciphertext plaintext Prevention of Denial-of-Service (DOS) attacks. Encryption Decryption Key KA Key KB Cryptography (2) Cryptography (3) • Cryptography throughout history: • Cryptanalysis – Type of attacks: • Julius Caesar cipher: replaced each character by a • Brute force: try every key character cyclically shifted to the left. • Ciphertext-only attack: Weakness? • Attacker knows ciphertext of several messages • Easy to attack by looking at frequency of characters encrypted with same key (but doesn’t know plaintext). • Possible to recover plaintext (also possible to deduce • Mary Queen of Scots: put to key) by looking at frequency of ciphertext letters death for treason after Queen • Known-plaintext attack: Elizabeth’s I’s spymaster cracked • Attacker observes pairs of plaintext/ciphertext her encryption code encrypted with same key. • WWII: Allies break German • Possible to deduce key and/or devise algorithm to Enigma code and Japanese naval decrypt ciphertext. code • Enigma code machine (right) 1 Principles of Confusion and Cryptography (4) Diffusion • Cryptanalysis – Type of attacks: plaintext ciphertext plaintext • Chosen-plaintext attack: Encryption Decryption • Attacker can choose the plaintext and look at the paired ciphertext. • Attacker has more control than known-plaintext attack and may be able to gain more info about key Key KA Key KB • Adaptive Chosen-Plaintext attack: • Terms courtesy of Claude Shannon, father of • Attacker chooses a series of plaintexts, basing the next Information Theory plaintext on the result of previous encryption • Differential cryptanalysis – very powerful attacking tool • “Confusion” = Substitution • But DES is resistant to it •a -> b • Cryptanalysis attacks often exploit the •Caesar cipher redundancy of natural language • “Diffusion” = Transposition or Permutation • Lossless compression before encryption removes •abcd-> dacb redundancy •DES Principles of Confusion and Principles of Confusion and Diffusion (2) Diffusion (3) • “Confusion” : a classical Substitution Cipher • “Diffusion” : a classical Transposition cipher Courtesy: Courtesy: Andreas Andreas Steffen Steffen • Modern substitution ciphers take in N bits and • modern Transposition ciphers take in N bits and substitute N bits using lookup table: called S- permute using lookup table : called P-Boxes Boxes Symmetric-Key Cryptography Symmetric-Key Cryptography (2) plaintext ciphertext plaintext Encryption Decryption • DES • 64-bit input is permuted • 16 stages of identical Key KA Key KB=KA operation • differ in the 48-bit Secure Key Distribution key extracted from 56-bit key - complex •R2= “R1 is encrypted • Both sender and receiver keys are the same: KA=KB with K1 and XOR’d • The keys must be kept secret and securely with L1” distributed – we’ll study this later •L2=R1, … • Thus, also called “Secret Key Cryptography” • Final inverse permutation • Data Encryption Standard (DES) stage 2 Symmetric-Key Cryptography (3) Symmetric-Key Cryptography (4) • Data Encryption Standard (DES) • DES is an example of a block cipher • Encodes plaintext in 64-bit chunks using a 64-bit key • Divide input bit stream into n-bit sections, encrypt (56 bits + 8 bits parity) only that section, no dependency/history between • Uses a combination of diffusion and confusion to sections achieve security •abcdÆ dbac • Was cracked in 1997 • Parallel attack – exhaustively search key space • Triple-DES: put the output of DES back as input into Courtesy: DES again with a different key, loop again: 3*56 = 168 Andreas bit key Steffen • Decryption in DES – it’s symmetric! Use KA again as • In a good block cipher, each output bit is a input and then the same keys except in reverse order function of all n input bits and all k key bits • Advanced Encryption Standard (AES) successor Symmetric-Key Cryptography (5) Symmetric-Key Cryptography (6) • Electronic Code Book (ECB) mode for block • Cipher Block Chaining (CBC) mode for block ciphers of a long digital sequence ciphers • Inhibits replay attacks and codebook building: identical • Vulnerable to replay attacks: if an attacker thinks block input plaintext Pi =Pk won’t result in same output code due to memory-based chaining C2 corresponds to $ amount, then substitute another Ck • IV = Initialization Vector – use only once • Attacker can also build a codebook of <Ck, guessed Pk> pairs Symmetric-Key Cryptography (7) Symmetric-Key Cryptography (8) • Stream ciphers • RC4 stream cipher by Ron Rivest of RSA Data Security Inc. – used in 802.11b’s security • Block ciphers vs. stream ciphers • Stream ciphers work at bit-level and were originally implemented in hardware => fast! • Block ciphers work at word-level and were originally implemented in software => not as fast • Error in a stream cipher only affects one bit • Rather than divide bit stream into discrete blocks, as • Error in a block cipher in CBC mode affects two block ciphers do, XOR each bit of your plaintext blocks continuous stream with a bit from a pseudo-random • Distinction is blurring: sequence • Stream ciphers can be efficiently implemented in software • At receiver, use same symmetric key, XOR again to • Block ciphers getting faster extract plaintext 3 Symmetric-Key Cryptography (9) Symmetric Key Distribution • Symmetric key is propagated to both endpoints A & B via Diffie-Hellman key exchange algorithm •Key distribution • A & B agree on a large prime modulus n, a “primitive • Public key via trusted Certificate element” g, and a one-way function f(x)=gx mod n Authorities • n and g are publicly known • Symmetric key? • A chooses a large random int a and sends B AA=ga mod n • Diffie-Helman Key Exchange • B chooses a large random int b and sends A BB= gb • Public key, then secret key (e.g. SSL) mod n • Symmetric Key distribution via a KDC (Key • A & B compute secret key S = gba mod n Distribution Center) •Since x=f-1(y) is difficult to compute, then observer who knows AA, BB, n, g and f will not be able to deduce the product ab and hence S is secure Symmetric Key Distribution (2) Symmetric Key Distribution (3) • Symmetric Key distribution via a KDC (Key Distribution Center) • KDC is a server (trusted 3rd party) sharing a different symmetric key with each registered user • Alice wants to talk with Bob, and sends encrypted request to KDC, K (Alice,Bob) A-KDC m= • KDC generates a one-time shared secret key R1 • KDC encrypts Alice’s identity and R1 with Bob’s secret key, let m= KB-KDC(Alice,R1) • KDC sends to Alice both R1 and m, encrypted with Alice’s key: i.e. KA-KDC(R1, KB-KDC(Alice,R1)) • Kerberos authentication basically follows this • Alice decrypts message, extracting R1 and m. Alice KDC trusted 3rd party approach sends m to Bob. • In Kerberos, the message m is called a ticket and • Bob decrypts m and now has the session key R1 has an expiration time Public-Key Cryptography Public-Key Cryptography (2) plaintext ciphertext plaintext plaintext ciphertext plaintext Encryption Decryption Encryption Decryption Key KPUBLIC Key KPRIVATE Key KPUBLIC Key KPRIVATE • For over 2000 years, from Caesar to 1970s, Public Key Distribution Secure Key encrypted communication required both sides to share a common secret key => key distribution problems! • Diffie and Hellman in 1976 invented asymmetric public • Host (receiver) who wants data sent to it in key cryptography – elegant, revolutionary! encrypted fashion advertises a public encryption key • Sender’s key differs from receiver’s key Kpublic • Sender encrypts with public key • Simplifies key distribution – just protect Kprivate • Useful for authentication as well as encryption • Receiver decrypts with private key 4 Public-Key Cryptography (3) Public-Key Cryptography (4) plaintext ciphertext plaintext • Decryption algorithm has the property that only a Encryption Decryption private key Kprivate can decrypt the ciphertext • Based on the difficulty of factoring the product of two prime #’s Key KPUBLIC Key KPRIVATE • Example: RSA algorithm (Rivest, Shamir, Adleman) • Choose 2 large prime #’s p and q Public Key Distribution Secure Key • n=p*q should be about 1024 bits long • z=(p-1)*(q-1) • Decryption algorithm has the property that • Choose e<n with no common factors with z • only a private key Kprivate can decrypt the • Find d such that (e*d) mod
Recommended publications
  • GCM) for Confidentiality And
    NIST Special Publication 800-38D Recommendation for Block DRAFT (April, 2006) Cipher Modes of Operation: Galois/Counter Mode (GCM) for Confidentiality and Authentication Morris Dworkin C O M P U T E R S E C U R I T Y Abstract This Recommendation specifies the Galois/Counter Mode (GCM), an authenticated encryption mode of operation for a symmetric key block cipher. KEY WORDS: authentication; block cipher; cryptography; information security; integrity; message authentication code; mode of operation. i Table of Contents 1 PURPOSE...........................................................................................................................................................1 2 AUTHORITY.....................................................................................................................................................1 3 INTRODUCTION..............................................................................................................................................1 4 DEFINITIONS, ABBREVIATIONS, AND SYMBOLS.................................................................................2 4.1 DEFINITIONS AND ABBREVIATIONS .............................................................................................................2 4.2 SYMBOLS ....................................................................................................................................................4 4.2.1 Variables................................................................................................................................................4
    [Show full text]
  • Recommendation for Block Cipher Modes of Operation Methods
    NIST Special Publication 800-38A Recommendation for Block 2001 Edition Cipher Modes of Operation Methods and Techniques Morris Dworkin C O M P U T E R S E C U R I T Y ii C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2001 U.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Arden L. Bement, Jr., Director iii Reports on Information Security Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security, and its collaborative activities with industry, government, and academic organizations. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.
    [Show full text]
  • Block Ciphers
    BLOCK CIPHERS MTH 440 Block ciphers • Plaintext is divided into blocks of a given length and turned into output ciphertext blocks of the same length • Suppose you had a block cipher, E(x,k) where the input plaintext blocks,x, were of size 5-bits and a 4-bit key, k. • PT = 10100010101100101 (17 bits), “Pad” the PT so that its length is a multiple of 5 (we will just pad with 0’s – it doesn’t really matter) • PT = 10100010101100101000 • Break the PT into blocks of 5-bits each (x=x1x2x3x4) where each xi is 5 bits) • x1=10100, x2= 01010, x3=11001, x4=01000 • Ciphertext: c1c2c3c4 where • c1=E(x1,k1), c2=E(x2,k2), c3=E(x3,k3), c4=E(x4,k4) • (when I write the blocks next to each other I just mean concatentate them (not multiply) – we’ll do this instead of using the || notation when it is not confusing) • Note the keys might all be the same or all different What do the E’s look like? • If y = E(x,k) then we’ll assume that we can decipher to a unique output so there is some function, we’ll call it D, so that x = D(y,k) • We might define our cipher to be repeated applications of some function E either with the same or different keys, we call each of these applications “round” • For example we might have a “3 round” cipher: y Fk x E((() E E x, k1 , k 2)), k 3 • We would then decipher via 1 x Fk (,, y) D((() D D y, k3 k 2) k 1) S-boxes (Substitution boxes) • Sometimes the “functions” used in the ciphers are just defined by a look up table that are often referred to “S- boxes” •x1 x 2 x 3 S(x 1 x 2 x 3 ) Define a 4-bit function with a 3-bit key 000
    [Show full text]
  • Chapter 4 Symmetric Encryption
    Chapter 4 Symmetric Encryption The symmetric setting considers two parties who share a key and will use this key to imbue communicated data with various security attributes. The main security goals are privacy and authenticity of the communicated data. The present chapter looks at privacy, Chapter ?? looks at authenticity, and Chapter ?? looks at providing both together. Chapters ?? and ?? describe tools we shall use here. 4.1 Symmetric encryption schemes The primitive we will consider is called an encryption scheme. Such a scheme speci¯es an encryption algorithm, which tells the sender how to process the plaintext using the key, thereby producing the ciphertext that is actually transmitted. An encryption scheme also speci¯es a decryption algorithm, which tells the receiver how to retrieve the original plaintext from the transmission while possibly performing some veri¯cation, too. Finally, there is a key-generation algorithm, which produces a key that the parties need to share. The formal description follows. De¯nition 4.1 A symmetric encryption scheme SE = (K; E; D) consists of three algorithms, as follows: ² The randomized key generation algorithm K returns a string K. We let Keys(SE) denote the set of all strings that have non-zero probability of be- ing output by K. The members of this set are called keys. We write K Ã$ K for the operation of executing K and letting K denote the key returned. ² The encryption algorithm E takes a key K 2 Keys(SE) and a plaintext M 2 f0; 1g¤ to return a ciphertext C 2 f0; 1g¤ [ f?g.
    [Show full text]
  • Public Evaluation Report UEA2/UIA2
    ETSI/SAGE Version: 2.0 Technical report Date: 9th September, 2011 Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report LTE Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. page 1 of 43 Document 4: Design and Evaluation report. Version 2.0 Document History 0.1 20th June 2010 First draft of main technical text 1.0 11th August 2010 First public release 1.1 11th August 2010 A few typos corrected and text improved 1.2 4th January 2011 A modification of ZUC and 128-EIA3 and text improved 1.3 18th January 2011 Further text improvements including better reference to different historic versions of the algorithms 1.4 1st July 2011 Add a new section on timing attacks 2.0 9th September 2011 Final deliverable LTE Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. page 2 of 43 Document 4: Design and Evaluation report. Version 2.0 Reference Keywords 3GPP, security, SAGE, algorithm ETSI Secretariat Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 X.400 c= fr; a=atlas; p=etsi; s=secretariat Internet [email protected] http://www.etsi.fr Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • A New Stream Cipher HC-256
    A New Stream Cipher HC-256 Hongjun Wu Institute for Infocomm Research 21 Heng Mui Keng Terrace, Singapore 119613 [email protected] Abstract. Stream cipher HC-256 is proposed in this paper. It generates keystream from a 256-bit secret key and a 256-bit initialization vector. HC-256 consists of two secret tables, each one with 1024 32-bit elements. The two tables are used as S-Box alternatively. At each step one element of a table is updated and one 32-bit output is generated. The encryption speed of the C implementation of HC-256 is about 1.9 bit per clock cycle (4.2 clock cycle per byte) on the Intel Pentium 4 processor. 1 Introduction Stream ciphers are used for shared-key encryption. The modern software efficient stream ciphers can run 4-to-5 times faster than block ciphers. However, very few efficient and secure stream ciphers have been published. Even the most widely used stream cipher RC4 [25] has several weaknesses [14, 16, 22, 9, 10, 17, 21]. In the recent NESSIE project all the six stream cipher submissions cannot meet the stringent security requirements [23]. In this paper we aim to design a very simple, secure, software-efficient and freely-available stream cipher. HC-256 is the stream cipher we proposed in this paper. It consists of two secret tables, each one with 1024 32-bit elements. At each step we update one element of a table with non-linear feedback function. Every 2048 steps all the elements of the two tables are updated.
    [Show full text]
  • Enhancing Hierocrypt-3 Performance by Modifying Its S- Box and Modes of Operations
    Journal of Communications Vol. 15, No. 12, December 2020 Enhancing Hierocrypt-3 Performance by Modifying Its S- Box and Modes of Operations Wageda I. El Sobky1, Ahmed R. Mahmoud1, Ashraf S. Mohra1, and T. El-Garf 2 1 Benha Faculty of Engineering, Benha University, Egypt 2 Higher Technological Institute 10th Ramadan, Egypt Email: [email protected]; [email protected]; Abstract—Human relationships rely on trust, which is the The Substitution box (S-Box) is the unique nonlinear reason that the authentication and related digital signatures are operation in block cipher, and it determines the cipher the most complex and confusing areas of cryptography. The performance [3]. The stronger S-Box, the stronger and Massage Authentication Codes (MACs) could be built from more secure algorithm. By selecting a strong S-Box, the cryptographic hash functions or block cipher modes of nonlinearity and complexity of these algorithms increases operations. Substitution-Box (S-Box) is the unique nonlinear operation in block ciphers, and it determines the cipher and the overall performance is modified [4]. This change performance. The stronger S-Box, the stronger and more secure will be seen here on the Hierocrypt-3 [5] as an example the algorithm. This paper focuses on the security considerations of block ciphers. for MACs using block cipher modes of operations with the The S-Box construction is a major issue from initial Hierocrypt-3 block cipher. the Hierocrypt-3 could be considered days in cryptology [6]-[8]. Use of Irreducible as a week cipher. It could be enhanced by changing its S-Box Polynomials to construct S-Boxes had already been with a new one that has better performance against algebraic adopted by crypto community [9].
    [Show full text]
  • Bahles of Cryptographic Algorithms
    Ba#les of Cryptographic Algorithms: From AES to CAESAR in Soware & Hardware Kris Gaj George Mason University Collaborators Joint 3-year project (2010-2013) on benchmarking cryptographic algorithms in software and hardware sponsored by software FPGAs FPGAs/ASICs ASICs Daniel J. Bernstein, Jens-Peter Kaps Patrick Leyla University of Illinois George Mason Schaumont Nazhand-Ali at Chicago University Virginia Tech Virginia Tech CERG @ GMU hp://cryptography.gmu.edu/ 10 PhD students 4 MS students co-advised by Kris Gaj & Jens-Peter Kaps Outline • Introduction & motivation • Cryptographic standard contests Ø AES Ø eSTREAM Ø SHA-3 Ø CAESAR • Progress in evaluation methods • Benchmarking tools • Open problems Cryptography is everywhere We trust it because of standards Buying a book on-line Withdrawing cash from ATM Teleconferencing Backing up files over Intranets on remote server Cryptographic Standards Before 1997 Secret-Key Block Ciphers 1977 1999 2005 IBM DES – Data Encryption Standard & NSA Triple DES Hash Functions 1993 1995 2003 NSA SHA-1–Secure Hash Algorithm SHA SHA-2 1970 1980 1990 2000 2010 time Cryptographic Standard Contests IX.1997 X.2000 AES 15 block ciphers → 1 winner NESSIE I.2000 XII.2002 CRYPTREC XI.2004 V.2008 34 stream 4 HW winners eSTREAM ciphers → + 4 SW winners XI.2007 X.2012 51 hash functions → 1 winner SHA-3 IV.2013 XII.2017 57 authenticated ciphers → multiple winners CAESAR 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 time Why a Contest for a Cryptographic Standard? • Avoid back-door theories • Speed-up
    [Show full text]
  • AT10747: SAM L Advanced Encryption Standard (AES) Driver
    SMART ARM-based Microcontrollers AT10747: SAM L Advanced Encryption Standard (AES) Driver APPLICATION NOTE Introduction This driver for Atmel® | SMART ARM®-based microcontrollers provides an interface for the configuration and management of the device's Advanced Encryption Standard functionality. The following driver API modes are covered by this manual: • Polled APIs • Callback APIs The Advanced Encryption Standard module supports all five confidentiality modes of operation for symmetrical key block cipher algorithms (as specified in the NIST Special Publication 800-38A Recommendation): • Electronic Code Book (ECB) • Cipher Block Chaining (CBC) • Output Feedback (OFB) • Cipher Feedback (CFB) • Counter (CTR) The following peripheral is used by this module: • AES (Advanced Encryption Standard) The following devices can use this module: • Atmel | SMART SAM L21 • Atmel | SMART SAM L22 The outline of this documentation is as follows: • Prerequisites • Module Overview • Special Considerations • Extra Information • Examples • API Overview Atmel-42445B-SAM-Advanced-Encryption-Standard-AES-Driver_AT10747_Application Note-12/2015 Table of Contents Introduction......................................................................................................................1 1. Software License....................................................................................................... 4 2. Prerequisites..............................................................................................................5 3. Module Overview.......................................................................................................6
    [Show full text]
  • Symmetric and Public-Key Crypto Due April 14 2015, 11:59PM
    CMSC 414 (Spring 2015) 1 Symmetric and Public-key Crypto Due April 14 2015, 11:59PM Updated April 11: see Piazza for a list of errata. Sections 1–4 are Copyright c 2006 - 2011 Wenliang Du, Syracuse University. The development of this document is/was funded by three grants from the US National Science Foundation: Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trustworthy Computing. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy of the license can be found at http://www.gnu.org/licenses/fdl.html. 1 Overview The overall learning objective of this lab is to get familiar with the concepts with symmetric key encryption and hashing. You will be getting first-hand experience with using the OpenSSL commandline tool and library to encrypt/decrypt messages under different encryption modes, and to construct message digests with hash functions. The tasks are set up in such a way that you not only gain experience with the use of these various mechanisms, but also with their properties. You are encouraged to think about what these tools are doing, and why you get the results you get. Some tasks ask you to write up these observations. You will be using the same VM that you used for the previous projects. Also, you will have to read up on the OpenSSL documentation (we provide links throughout this document). Make this a habit: standards, interfaces, requirements, and recommended uses change over time.
    [Show full text]
  • Bad Cryptography Bruce Barnett Who Am I?
    Bad Cryptography Bruce Barnett Who am I? • Security consultant @ NYSTEC • 22 years a research scientist @ GE’s R&D Center • 15 years software developer, system administrator @ GE and Schlumberger • I’m not a cryptographer • I attended a lot of talks at Blackhat/DEFCON • Then I took a course on cryptography……….. Who should attend this talk? • Project Managers • Computer programmers • Those that are currently using cryptography • Those that are thinking about using cryptography in systems and protocols • Security professionals • Penetration testers who don’t know how to test cryptographic systems and want to learn more • … and anybody who is confused by cryptography Something for everyone What this presentation is … • A gentle introduction to cryptography • An explanation why cryptography can’t be just “plugged in” • Several examples of how cryptography can be done incorrectly • A brief description of why certain choices are bad and how to exploit it. • A checklist of warning signs that indicate when “Bad Cryptography” is happening. Example of Bad Cryptography!!! Siren from snottyboy http://soundbible.com/1355-Warning-Siren.html What this talk is not about • No equations • No certificates • No protocols • No mention of SSL/TLS/HTTPS • No quantum cryptography • Nothing that can cause headaches • (Almost) no math used Math: Exclusive Or (XOR) ⊕ Your Cat Your Roommates' Will you have Cat kittens? No kittens No kittens Note that this operator can “go backwards” (invertible) What is encryption and decryption? Plain text Good Morning, Mr. Phelps
    [Show full text]
  • 6 September 2006 Specification of the 3GPP Confidentiality And
    ETSI/SAGE Version: 1.1 Technical report Date: 6 th September 2006 Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. Document 5: Design and Evaluation Report 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. page 1 of 40 Document 5: Design and Evaluation report. Version 1.1 Document History V1.0 6th February 2006 Publication V1.1 6th September 2006 No change to the technical content at all, just removal of an unwanted page header 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. page 2 of 40 Document 5: Design and Evaluation report. Version 1.1 Reference Keywords 3GPP, security, SAGE, algorithm ETSI Secretariat Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 X.400 c= fr; a=atlas; p=etsi; s=secretariat Internet [email protected] http://www.etsi.fr Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2006. All rights reserved. 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. page 3 of 40 Document 5: Design and Evaluation report. Version 1.1 Contents 1 Scope ..................................................................................................................................8
    [Show full text]