(Anas Platyrhynchos) in the Spread of Avian Influenza

Total Page:16

File Type:pdf, Size:1020Kb

(Anas Platyrhynchos) in the Spread of Avian Influenza The Role of Mallard (Anas platyrhynchos) in the Spread of Avian In uenza: GENOMICS, POPULATION GENETICS, AND FLYWAYS. Robert H. Kraus The Role of Mallard (Anas platyrhynchos) in the Spread of Avian Influenza: GENOMICS, POPULATION GENETICS, AND FLYWAYS. Robert H. Kraus THESIS COMMITTEE THESIS SUPERVISORS Prof. dr. H.H.T. Prins Professor of Resource Ecology, Wageningen University Prof. dr. R.C. Ydenberg Professor of Fauna Management and Conservation, Wageningen University Professor of Behavioural Ecology, Simon Frasier University, Canada THESIS CO-SUPERVISOR Dr. W.F. van Hooft Assistant professor, Resource Ecology Group Wageningen University OTHER MEMBERS Prof. dr. B.J. Zwaan, Wageningen University Prof. dr. C. Dreyer, MPI for developmental Biology, Tübingen, Germany Prof. dr. C. Schlötterer, University of Veterinary Medicine, Vienna, Austria Prof. dr. R. Tiedemann, University of Potsdam, Golm, Germany This research was conducted under the auspices of the C.T. de Wit Graduate School Production Ecology & Resource Conservation The Role of Mallard (Anas platyrhynchos) in the Spread of Avian Influenza: GENOMICS, POPULATION GENETICS, AND FLYWAYS. Robert H. Kraus THESIS submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 13 December 2011 at 1.30 p.m. in the Aula Robert H. Kraus The Role of Mallard (Anas platyrhynchos) in the Spread of Avian Influenza: Genomics, Population Genetics, and Flyways. 143 pages. Thesis, Wageningen University, Wageningen, NL (2011) With references, with summaries in Dutch and English ISBN 978-94-6173-028-2 Table of Contents CHAPTER 1 — General Introduction . 6 CHAPTER 2 — Evolution and connectivity in the world-wide migration system of the mallard: Inferences from mitochondrial DNA . .11 CHAPTER 3 — Genome wide SNP discovery, analysis and evaluation in mallard....................................31 CHAPTER 4 — Global panmixia in a cosmopolitan bird? Model selection with hundreds of genome-wide single nucleotide polymorphisms reveals world- wide gene pool connectivity . .46 CHAPTER 5 — Widespread horizontal genomic exchange does not erode species barriers among duck species . .66 CHAPTER 6 — Avian Influenza surveillance: on the usability of FTA® cards to solve biosafety and transport issues . .90 CHAPTER 7 — Avian Influenza surveillance with FTA® cards: Field methods, biosafety, and transportation issues solved . .96 CHAPTER 8 — Synthesis . .105 References ..............................................113 Summary ...............................................135 Samenvatting ............................................136 Acknowledgements .......................................137 5 CHAPTER 1 General Introduction 6 General Introduction Birds, in particular poultry and ducks, are a source of many zoonotic diseases, such as those caused by corona and influenza viruses1,2. These viruses are a threat not only to these birds themselves but also to poultry farming and human health, as forms that can infect humans are known to have evol- ved1,2. It is believed that migratory birds, and water birds in particular, play an important role in the global spread of Avian Influenza (AI)3. However, it is still debated how large this role precisely is and whether other modes of spread may be more important2,4. Migratory birds with separate breeding and wintering grounds are interesting model species for studying disease transmission. The mallard The mallard (Anas platyrhynchos) is a member of the order of the Anseriformes (ducks, geese and swans)5,6, and is generally bound to open waters and wetland habitats. Mallards are omnivorous, and their diet consists not only of small invertebrates, which they collect with their bill by “da- bbling” under water with their tail up (the characteristic feeding behaviour of the sub-family dabbling ducks, the Anatini7), but also tadpoles, small fish, or all sorts of plant material. In the family of ducks (Anatidae) the mallard is the largest bird with a weight of around 1 kg and a body size of 50 cm in both females and males8. Mallards display sexual dimorphism: males have bright plumage to display to females during courtship9, females are dull-brown camouflaged to facilitate secretive life-style, especially during breeding season. The mallard is the most numerous and well-known waterfowl (Anseriformes) species with a Holarctic distribution. For instance, in Europe it is absent only in January from upland areas and those areas affected by prolonged freezing10. Most mallards are migratory without clear geo- graphic directionality, and spring and fall flights can exceed thousands of kilometres11. Northern breeding birds are mostly migratory, wintering much further south, while birds breeding in temperate regions (most of Western Europe) are resident or merely dispersive12. Additionally, the level of “abmigration” (the switching of flyways) is thought to be very high in ducks species13 and thus a dense network-like connectivity between populations may exist. The large-scale migration systems of temperate waterfowl have been extensively studied us- ing ringing, telemetry, morphometrics, radar tracking and isotope analysis14. Migration routes are clearly defined12 for most waterfowl species and usually follow north-south directions, with populations travelling between northerly breeding areas and more southerly non-breeding areas. Many species follow similar routes and decades of studies on bird migration have led to the delin- eation of major waterfowl “flyways”12,15-17. In North-America especially, flyways are managerial units created by agreements between adjoining states and provinces, and thus are bounded by management requirements. In a population ecological sense true migratory pathways are much fuzzier. Populations and individuals within species may occupy different flyways, and many mi- grants are flexible in migration routing18, even though these migration routes have been in place for relatively long periods of time19,20. Mallards seem to display an extreme flexibility in their migration behaviour, when compared to the related species in their bird order, and it is unclear if biological reality would support their placement into a global waterfowl flyway system. Migra- tion in mallards is heavily studied but delineations of populations have been more tentative than in other waterfowl12,16,17. 7 Chapter 1 The foraging habitat of the mallard in shallow waters brings it into contact with a wide variety of pathogens and it may act as a reservoir and disperser for many of them. The mallard is consid- ered the primary natural reservoir of avian influenza due to its wide range and large population sizes21. Moreover, together with the black-headed gull (Larus ridibundus) it was identified as the species bearing the highest risk to transmit AI to farm-birds due to frequent contact with poul- try10. Post-breeding pre-migratory staging areas are thought to be important locations for viral acquisition22. Avian Influenza The Influenza viruses are a genus within the Orthomyxoviridae. They have a segmented negative sense single-stranded RNA-genome [(-)ssRNA]. Forms of the Influenza A virus can infect a wide range of host species including among others birds, pigs, horses, seals, whales and humans. There are eight RNA segments. Viral subtypes are classified using two of the encoded genes: the hemag- glutinin (HA) gene and the neuraminidase (NA) gene. These genes code for surface proteins that play a key role in host recognition and initial infection23. Sixteen HA-types24 and nine NA-types are recognised, giving rise to 144 (= 9 × 16) possible subtypes. These are described as, e.g., H5N1 (type 5 of HA, and type 1 of NA). The classification used to rely on immunoassays using standard procedures25-27. Nowadays it is also possible to sequence the genes of a virus using retrograde transcriptase PCR (RT-PCR) with a set of universal primers for all genes and all subtypes28 and compare the obtained cDNA sequence with databases such as GenBank29. Humans can be infected with all three species of Influenza viruses: A, B and C. Influenza A viruses are those referred to as Avian Influenza. In humans, the HA proteins H1-3 and NA types 1 and 2 of Influenza A viruses usually cause seasonal Influenza, but Influenza B and, less frequently, Influenza C viruses also circulate in humans30. However, human pandemics for which the medical histories have been reconstructed were all caused by Influenza A viruses31,32. It has been proposed that wild birds in general, and especially migratory waterfowl, are not only the reservoir, but also the vectors for the spread of Avian Influenza over large distances2. Highly pathogenic types of AI are thought to be easily spread through the flyways of waterfowl, because of these birds show no clinical signs of infection but transmit a form highly patho- genic to poultry or humans33-36, although this is not generally true for every highly pathogenic strain37-39. However, the evidence for this possible route of transport in cases of highly pathogenic strains is equivocal40-43. Alternatively, highly pathogenic strains might evolve from low pathogenic ones directly in poultry farms where the selective regime is different from the wild44. The molecular ecological approach The scientific discipline of ‘molecular ecology’ is characterised by the use of a certain type of data:
Recommended publications
  • A 2010 Supplement to Ducks, Geese, and Swans of the World
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible.
    [Show full text]
  • ( 7)-Revista Ac. Nº 84
    Ardeol a 67(2), 2020, 449 -494 DOI: 10.13157/arla.67.2.2020.on NOTICIARIO ORNITOLÓGICO ORNITHOLOGICAL NEWS 1 2 3 Blas MOLIN A , Javier PRIET A , Juan Antonio LORENZ O (Canarias) 4 y Carlos LÓPEZ -JURAD O (Baleares) RESUMEN .— En este informe se muestra información sobre 149 especies que se reparten por toda la geografía nacional. Entre ellas, se incluyen 28 especies que aparecen de forma escasa para las que se muestra su distribución espacio-temporal en 2019 mediante mapas y gráficas (véase De Juana y Garcia, 2015; Gil-Velasco et al ., 2018; Rouco et al ., 2018). Para contabilizar el número de citas para cada espe- cie escasa se revisaron las observaciones disponibles en diferentes plataformas de recogida de datos, especialmente en eBird ( eBird , 2020; Observado , 2020; Reservoir Birds , 2020 y Ornitho , 2020), des - cartando aquellas que aparentemente correspondieran a las mismas citas hechas por diferentes observa - dores con el objeto de contar con muestras de datos lo suficientemente homogéneas. Para el archipiélago canario, se incorpora un buen número de citas correspondientes al episodio de calima que se produjo a finales de febrero de 2020. Dichas circunstancias meteorológicas provocaron la arribada de muchas aves accidentales procedentes del noroeste africano de las que dará cuenta el correspondiente informe del Comité de Rarezas de SEO/BirdLife, junto con muchas otras especies de paso que se pudieron observar en las islas con mayor frecuencia y en números más altos de lo habitual, y de las que se sinte- tiza en el presente informe aquellas observaciones más relevantes. Se sigue la secuencia taxonómica de acuerdo con la nueva lista patrón de las aves de España (Rouco et al ., 2019).
    [Show full text]
  • European Red List of Birds
    European Red List of Birds Compiled by BirdLife International Published by the European Commission. opinion whatsoever on the part of the European Commission or BirdLife International concerning the legal status of any country, Citation: Publications of the European Communities. Design and layout by: Imre Sebestyén jr. / UNITgraphics.com Printed by: Pannónia Nyomda Picture credits on cover page: Fratercula arctica to continue into the future. © Ondrej Pelánek All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Available from: to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed Published by the European Commission. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Cataloguing data can be found at the end of this publication. ISBN: 978-92-79-47450-7 DOI: 10.2779/975810 © European Union, 2015 Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Printed in Hungary. European Red List of Birds Consortium iii Table of contents Acknowledgements ...................................................................................................................................................1 Executive summary ...................................................................................................................................................5 1.
    [Show full text]
  • 2.9 Waterbirds: Identification, Rehabilitation and Management
    Chapter 2.9 — Freshwater birds: identification, rehabilitation and management• 193 2.9 Waterbirds: identification, rehabilitation and management Phil Straw Avifauna Research & Services Australia Abstract All waterbirds and other bird species associated with wetlands, are described including how habitats are used at ephemeral and permanent wetlands in the south east of Australia. Wetland habitat has declined substantially since European settlement. Although no waterbird species have gone extinct as a result some are now listed as endangered. Reedbeds are taken as an example of how wetlands can be managed. Chapter 2.9 — Freshwater birds: identification, rehabilitation and management• 194 Introduction such as farm dams and ponds. In contrast, the Great-crested Grebe is usually associated with large Australia has a unique suite of waterbirds, lakes and deep reservoirs. many of which are endemic to this, the driest inhabited continent on earth, or to the Australasian The legs of grebes are set far back on the body region with Australia being the main stronghold making them very efficient swimmers. They forage for the species. Despite extensive losses of almost completely underwater pursuing fish and wetlands across the continent since European aquatic arthropods such as insects and crustaceans. settlement no extinctions of waterbirds have They are strong fliers but are poor at manoeuvering been recorded from the Australian mainland as in flight and generally prefer to dive underwater a consequence. However, there have been some to escape avian predators or when disturbed by dramatic declines in many populations and several humans. Flights between wetlands, some times species are now listed as threatened including over great distances, are carried out under the cover the Australasian Bittern, Botaurus poiciloptilus of darkness when it is safe from attack by most (nationally endangered).
    [Show full text]
  • Ciconiiformes, Charadriiformes, Coraciiformes, and Passeriformes.]
    Die Vogelwarte 39, 1997: 131-140 Clues to the Migratory Routes of the Eastern Fly way of the Western Palearctics - Ringing Recoveries at Eilat, Israel [I - Ciconiiformes, Charadriiformes, Coraciiformes, and Passeriformes.] By Reuven Yosef Abstract: R euven , Y. (1997): Clues to the Migratory Routes of the Eastern Fly way of the Western Palearctics - Ringing Recoveries at Eilat, Israel [I - Ciconiiformes, Charadriiformes, Coraciiformes, and Passeriformes.] Vogelwarte 39: 131-140. Eilat, located in front of (in autumn) or behind (in spring) the Sinai and Sahara desert crossings, is central to the biannual migration of Eurasian birds. A total of 113 birds of 21 species ringed in Europe were recovered either at Eilat (44 birds of 12 species) or were ringed in Eilat and recovered outside Israel (69 birds of 16 spe­ cies). The most common species recovered are Lesser Whitethroat {Sylvia curruca), White Stork (Ciconia cico- nia), Chiffchaff (Phylloscopus collybita), Swallow {Hirundo rustica) Blackcap (S. atricapilla), Pied Wagtail {Motacilla alba) and Sand Martin {Riparia riparia). The importance of Eilat as a central point on the migratory route is substantiated by the fact that although the number of ringing stations in eastern Europe and Africa are limited, and non-existent in Asia, several tens of birds have been recovered in the past four decades. This also stresses the importance of taking a continental perspective to future conservation efforts. Key words: ringing, recoveries, Eilat, Eurasia, Africa. Address: International Bird Center, P. O. Box 774, Eilat 88106, Israel. 1. Introduction Israel is the only land brigde between three continents and a junction for birds migrating south be­ tween Europe and Asia to Africa in autumn and north to their breeding grounds in spring (Yom-Tov 1988).
    [Show full text]
  • Handbook of Waterfowl Behavior: Tribe Anatini (Surface-Feeding Ducks)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Handbook of Waterfowl Behavior, by Paul Johnsgard Papers in the Biological Sciences January 1965 Handbook of Waterfowl Behavior: Tribe Anatini (Surface-feeding Ducks) Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscihandwaterfowl Part of the Ornithology Commons Johnsgard, Paul A., "Handbook of Waterfowl Behavior: Tribe Anatini (Surface-feeding Ducks)" (1965). Handbook of Waterfowl Behavior, by Paul Johnsgard. 16. https://digitalcommons.unl.edu/bioscihandwaterfowl/16 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Handbook of Waterfowl Behavior, by Paul Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Subfamily Anatinae 125 Aix. During extreme excitement the male will often roll his head on his back, or even bathe. I have not observed Preening-behind-the- wing, but W. von de Wall (pers. comm.) has observed a male per- form it toward a female. Finally, Wing-flapping appears to be used as a display by males, and it is especially conspicuous because each sequence of it is ended by a rapid stretching of both wings over the back in a posture that makes visible the white axillary feathers, which contrast sharply with the black underwing surface. Copulatory behavior. Precopulatory behavior consists of the male swimming up to the female, his neck stretched and his crest de- pressed, and making occasional Bill-dipping movements. He then suddenly begins to perform more vigorous Head-dipping movements, and the female, if receptive, performs similar Bill-dipping or Head- dipping movements.
    [Show full text]
  • A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen.
    [Show full text]
  • Bird Checklist
    Checklist of Birds of the National Butterfly Center Mission, Hidalgo County Texas (289 Species + 3 Forms) *indicates confirmed nesting UPDATED: September 28, 2021 Common Name (English) Scientific Name Spanish Name Order Anseriformes, Waterfowl Family Anatidae, Tree Ducks, Ducks, and Geese Black-bellied Whistling-Duck Dendrocygna autumnalis Pijije Alas Blancas Fulvous Whistling-Duck Dendrocygna bicolor Pijije Canelo Snow Goose Anser caerulescens Ganso Blanco Ross's Goose Anser rossii Ganso de Ross Greater White-fronted Goose Anser albifrons Ganso Careto Mayor Canada Goose Branta canadensis Ganso Canadiense Mayor Muscovy Duck (Domestic type) Cairina moschata Pato Real (doméstico) Wood Duck Aix sponsa Pato Arcoíris Blue-winged Teal Spatula discors Cerceta Alas Azules Cinnamon Teal Spatula cyanoptera Cerceta Canela Northern Shoveler Spatula clypeata Pato Cucharón Norteño Gadwall Mareca strepera Pato Friso American Wigeon Mareca americana Pato Chalcuán Mexican Duck Anas (platyrhynchos) diazi Pato Mexicano Mottled Duck Anas fulvigula Pato Tejano Northern Pintail Anas acuta Pato Golondrino Green-winged Teal Anas crecca Cerceta Alas Verdes Canvasback Aythya valisineria Pato Coacoxtle Redhead Aythya americana Pato Cabeza Roja Ring-necked Duck Aythya collaris Pato Pico Anillado Lesser Scaup Aythya affinis Pato Boludo Menor Bufflehead Bucephala albeola Pato Monja Ruddy Duck Oxyura jamaicensis Pato Tepalcate Order Galliformes, Upland Game Birds Family Cracidae, Guans and Chachalacas Plain Chachalaca Ortalis vetula Chachalaca Norteña Family Odontophoridae,
    [Show full text]
  • Detailed Species Accounts from The
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]
  • Hunting and Consumption of Passerine Birds by Wild Mallards (Anas Platyrhynchos) Author(S): Silviu O
    Hunting and Consumption of Passerine Birds by Wild Mallards (Anas platyrhynchos) Author(s): Silviu O. Petrovan and Mihai Leu Source: Waterbirds, 40(2):187-190. Published By: The Waterbird Society https://doi.org/10.1675/063.040.0212 URL: http://www.bioone.org/doi/full/10.1675/063.040.0212 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Hunting and Consumption of Passerine Birds by Wild Mallards (Anas platyrhynchos) SILVIU O. PETROVAN¹,* AND MIHAI LEU² ¹Department of Zoology, University of Cambridge, The David Attenborough Building, Cambridge, England, CB2 3QZ, U.K. ²Veterinary and Food Safety Authority, Strada Timisoarei, 15, Resita, 320232, Romania *Corresponding author; E-mail: [email protected] Abstract.—Predation of vertebrates by Mallards (Anas platyrhynchos) has rarely been documented and only in relation to fish and amphibians. Mallard foraging behavior was observed at a reservoir bordering Semenic-Caras Gorges National Park in southwest Romania.
    [Show full text]
  • Northern Pintail (Anas Acuta ) Movements the Breeding Area of the Pintail Covers a Large Area of the Northern Holarctic, Across
    Northern Pintail (Anas acuta) movements The breeding area of the Pintail covers a large area of the northern Holarctic, across North America and Eurasia. The Pintail is mainly migratory and in most regions is a long- distance migrant. Wintering areas are spread out in western and southern Europe, across Africa south of the Sahara, southwest Asia, India, southern China and Japan. North American Pintails move south and leave most of the breeding range during winter. Large numbers of recoveries are available only from birds ringed in Russia, Britain and the Netherlands. Recoveries from the period December – February are found in western and Figure 1: Map depicting the movements of Northern Pintail (Anas acuta) based on southern Europe, North Africa and in the area published information and ring recoveries in of the Black and Caspian Sea. A few the EURING Data Bank. recoveries are also reported from southwest Asia and India as well as from areas south of the Sahara in Africa. An increase in recoveries in Mediterranean countries like Italy is observed between January and February, becoming more intense between February and March. The most intense phases of return migration start in March, become prominent in southern Russia in April and reach the northernmost areas in May. Recoveries from the breeding season (May-June) cover a large area to about 80oE, with concentrations of recoveries in southwestern Siberia and northern Kazakhstan. The autumn migration seems to start in August, but recoveries are spread out in Ukraine, western and southern Russia and in Kazakhstan as late as October. Birds breeding in Iceland, Sweden, Finland, the Baltic States and northwest Russia migrate SW-S mainly to west and south Europe and often along the Atlantic coast.
    [Show full text]
  • Cavity-Nesting Ducks: Why Woodpeckers Matter Janet Kear
    Cavity-nesting ducks: why woodpeckers matter Janet Kear Goosander Mergus merganser Rosemary Watts/Powell ABSTRACT This paper poses a number of related questions and suggests some answers.Why were there no resident tree-hole-nesting ducks in Britain until recently? Why is the Black Woodpecker Dryocopus martius not found in Britain? Could the supply of invertebrate food items, especially in winter, be responsible for the distribution of woodpeckers in western Europe? It is concluded that, in Europe, only the Black Woodpecker can construct holes large enough for ducks to nest in, and that this woodpecker does not occur in Britain & Ireland because of the absence of carpenter ants Campanotus. A plea is made for the global conservation of dead and dying timber, since it is vital for the biodiversity of plants, insects, woodpeckers and ducks. irdwatchers, at least in Britain, tend to surface-feeding ducks (Anatini), including think of ducks as nesting in the open and those which we used to call ‘perching ducks’, Bon the ground, but cavity-nesting is actu- and in the seaducks (Mergini). ally normal, if not obligatory, in almost one- Because ducks are incapable of making holes third of the 162 members of the wildfowl family for themselves, however, they must rely on (Anatidae). Geffen & Yom-Tov (2001) suggested natural agents for the construction of nest cavi- that hole-nesting has evolved independently at ties, and this dependence has profound implica- least three times within the group. I think that it tions for their lifestyles, breeding productivity is more likely to have arisen five or six times; and conservation.
    [Show full text]