The Ecology and Evolution of the New World Non-Pollinating Fig Wasp

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology and Evolution of the New World Non-Pollinating Fig Wasp Journalof Biogeography (1996) 23, 447-458 The ecologyand evolutionof the New Worldnon-pollinating figwasp communities STUART A. WEST', EDWARD ALLEN HERRE2, DONALD M. WINDSOR2 and PHILIP R. S. GREEN' 'Departmentof Biology,Imperial College at SilwoodPark, Ascot,Berkshire SL5 7PY, U.K and 2SmithsonianTropical Research Institute, Apartado2072, Balboa, Republicof Panama Abstract. We present data on several previously of pollinatorwasps and viable seeds. Some of the species undescribedspecies fromsix genera of New World non- investigatedare parasitoidsof othernon-pollinating species. pollinatingfig wasps. We show that many of thesespecies We examinethe importance of thevarious forms of spatial have a negativeeffect on the reproductivesuccess of both heterogeneityin theparasitism rate that can act to stabilise the pollinatorwasps and the host figs.Our resultssuggest the host-parasitoidinteraction. Finally, we discuss the that the two most abundant genera of non-pollinating factorsunderlying the large variation in theabundance and wasps, the Idarnes and the Critogaster,compete for the diversityof the non-pollinatingwasps both among and same pool of femaleflowers as the pollinatingwasps in the withinfruit crops. Urostigmaand Pharmacosyceafigs, respectively. Wasps from the genusAepocerus induce and develop withinlarge galls, Key words. Ficus, parasitoid, parasites, coevolution, in the Urostigmafigs. By drainingresources from the fruit density dependence, spatial heterogeneity,community thesewasps may have a detrimentaleffect on theproduction structure. success of the pollinatingwasps and also the host figs,by 1. INTRODUCTION reducingthe figs'ability to dispersepollen (West & Herre, The wasp species that are only able to develop withinthe 1994). In contrast,species which merely gall the fruitwall fruitof fig trees are collectivelytermed fig wasps. These or unoccupiedovaries may have less obvious costs to their species include both mutualisticpollinators and parasitic hosts. non-pollinators.While the fig trees are completelydependent In thisstudy we describevarious aspects of the ecology upon the pollinatorsfor the dispersal of pollen between of thenon-pollinating wasps associatedwith two subgenera fruit,the non-pollinators provide no apparentservice. Each of monoeciousNew Worldfigs (Ficus, subgenera Urostigma figspecies usually has a singlespecies specificpollinating and Pharmacosycea).We found threecommon genera of wasp species (Ramirez, 1970; Wiebes, 1979; Herre et al., non-pollinatingwasps associatedwith the Urostigmafigs in 1996b). These pollinatingwasps are all membersof the Panama: IdarnesWalker, Aepocerus Mayr and Physothorax chalcidoid family,Agaonidae, and have relativelysimilar Mayr.The Idarnescan be furthersplit into two very different lifecycles. The non-pollinatingwasps also generallyappear groups which we have referredto as Idarnes and Idarnes to be species-specificto a singlefig species (Gordh, 1975; (incerta)(see section2). The majorityof thespecies that we Ulenberg,1985; van Noort, 1991; Boucek, 1993; Machado, have examinedare undescribed.However, molecular work et al., 1996). However,a singlefig species may have several suggeststhat a distinctspecies of each of the four wasp associated non-pollinatingwasp species (e.g. Compton & groups is found in most of the Urostigmafig species Hawkins,1992). These non-pollinatingwasp speciesbelong (Machado et al., 1996; Table 2). While the differentspecies to severalchalcidoid families and show a largerange of life- withineach of these four groups appear to use the same cycles(Boucek, 1988, 1993). resourcesfor larval development,members of the different Verylittle is knownabout the biologyof any of thenon- groups tend to use differentresources (Table 1). All the pollinatingfig wasps. Basic questionsinclude: what are the Idarnes species develop withinfemale flowers, which they resourcesutilized for larval growthby these wasps, and appear to competefor with the pollinatingwasps (West & does theirpresence have any detrimentalcost to theirhost Herre,1994; section3). The Aepocerusand Idarnes(incerta) fig?These questions are closely linked because the effect wasps developwithin much larger galls whichprotrude into that differentspecies have on the reproductivesuccess of the centreof the fruitand appear to arise fromfemale theirhosts will depend upon theirlarval diet. For example, flowersand possiblythe fruit wall (section2.2). The fourth species which are competitors or parasitoids of the and finalgroup are the Physothorax,which are parasitoids pollinatorswill have a direct effecton the reproductive of the Aepoceruswasps. ( 1996 BlackwellScience Ltd 447 448 StuartA. Westet al. 050 ? ctc Big 0- ~~~~~~~~~~~~~~~~~+ -C -~~~~~~~~~~~~~~~cC O $ ct ~ ~ ~ c-c~ -o -o c~~~~~~ z~~~~c C' ct I, 0 o -~~~~~~~~~~~~~~~~~CdCdd' ~ ~ ~ - ~ 7 0c ;- = = ;! B v=, 3 _ o o o o o > ? o - cd D 0 5ct 3 c*: 4Sa bD ~ ~ ~ ~ ~ ~ 0I ct boEi >d ddC Q0 *d 0 0 0~~~~~~~~~~~~~~~~~b0b H d C-d >00 HSm mm ct ~ ~ ~ ~ ~ lcwl cec t 96,Junlo igorpy 3 4-5 Non-pollinatingfig wasps 449 In the Pharmacosyceafigs that we have studiedthere are 1989;Ware et al., 1993).These foundress wasps subsequently only two common types of non-pollinatingwasps, both die inside the fruit.The proportionof the flowersin each belongingto the genus CritogasterMayr. The two types fruitthat begin to develop is dependentupon the number can easily be distinguishedby the colour of the female's of foundressesthat entered that fruit (Herre, 1989). Fruits body and themorphology of themales (section2). As with thatare not pollinatedare usuallyaborted (e.g. Compton, the Urostigmawasps, a distinctspecies from each of these Ross & Thornton,1994). groupsis generallyfound in each of the Pharmacosyceafig The female flowerswithin the fruitshow continuous species (Machado et al., 1996). Both these types of variationin lengthof styleranging from those with ovaries Critogasterappear to competefor female flowers with the close to the hollow centreof the fruit;that is, close to the pollinatingwasps in a similarway to the Idarnes wasps stigmaticsurfaces (short-styled flowers) to thosewith ovaries (section3.2). close to thewall of thefruit, far from the stigmatic surfaces The firstaim of this paper is to answer fundamental (long-styledflowers). The ovariesof theshort-styled flowers questionsabout thebiology of thesenon-pollinating wasps. are closerto theovipositing foundress wasps. Of theflowers Initiallywe describein detail the naturalhistory of the figs that develop, the long-styledflowers tend, in general,to and wasps studied(section 2). Followingthis, we quantify develop as viable seeds,whereas the seeds developingfrom theeffects that the Idarnes, Critogaster and Aepoceruswasps short-styledflowers tend to be eatenby thewasps' offspring have on viable seed and pollinatorwasp productionand, (Herre, 1989). It should,however, be noted thatvariation therefore,the reproductivesuccess of theirhosts (section in stylelength is gradual and by no means bimodal, and 3). We thenuse theseresults to inferthe larval dietsof the that the characterizationof flowersas 'short' and 'long' wasps (section3). styledis an oversimplificationmade purelyfor convenience Our second aim is to show the ways in which non- (see also Verkerke,1986,1989; Bronstein, 1988a,b; Compton pollinatingfig wasps can be used to examinemore general & Nefdt,1990). biologicalquestions. For example,considerable theoretical Justbefore final ripeningof the fruittakes place, the and empiricalattention has been paid to the factorsthat winglessmales of thepollinating wasps chew theirway out may explainthe persistenceof host-parasitoidinteractions of the flowersin which they have developed. They then (reviewedin Hassell & Godfray,1992; Jones,Hassell & crawl around the interiorof the fruitsearching for flowers May, 1994). Parasitoids such as Physothoraxand their which contain femalewasps. The males chew open these Aepocerushosts may provide useful systems for the empirical flowersand matewith the females. The femalesthen emerge study of potentialstabilizing effects of various formsof fromtheir flowers and gatherpollen, before leaving through parasitoid aggregation at many differentspatial and a hole in the fruitwall chewedby the male wasps. temporalscales. In this studywe examinethe relationship betweenpercentage parasitism and host density,and the 2.2. The non-pollinatingwasps factors that may contributeto the stability of their interaction,using data from the fruitof a single crop Beforeexamining each genus in more detail we will first (section4). As a second example we considerpatterns at establishthe featureswhich are commonto the biologyof the communitylevel. Specifically,we discuss factorsthat all the non-pollinatingwasps thatwe have examinedhere. may influencethe abundance and diversityof the various First,unlike the pollinator females, all thespecies considered typesof non-pollinatingwasps across differentfig species in this study oviposit fromoutside the fruitwall (Table (section5). 1). Other studies have shown that some species of non- pollinatingwasps do enterthe fruitto oviposit(see Galil & Eiskikowitch,1969; Murray, 1989; Compton, 1993b). 2. BACKGROUND BIOLOGY Secondly,all the non-pollinatingwasps emergefrom their flowersat approximatelythe same timeas the pollinators 2.1. The figsand their pollinators and exitthe fruit through the hole chewedby thepollinator We sampled naturallyoccurring fig species in the vicinity males.The non-pollinatorwasps thereforedepend upon the of the Panama Canal. The figspecies are grouped
Recommended publications
  • Book Section Reprint the STRUGGLE for TROGLODYTES1
    The RELICT HOMINOID INQUIRY 6:33-170 (2017) Book Section Reprint THE STRUGGLE FOR TROGLODYTES1 Boris Porshnev "I have no doubt that some fact may appear fantastic and incredible to many of my readers. For example, did anyone believe in the existence of Ethiopians before seeing any? Isn't anything seen for the first time astounding? How many things are thought possible only after they have been achieved?" (Pliny, Natural History of Animals, Vol. VII, 1) INTRODUCTION BERNARD HEUVELMANS Doctor in Zoological Sciences How did I come to study animals, and from the study of animals known to science, how did I go on to that of still undiscovered animals, and finally, more specifically to that of unknown humans? It's a long story. For me, everything started a long time ago, so long ago that I couldn't say exactly when. Of course it happened gradually. Actually – I have said this often – one is born a zoologist, one does not become one. However, for the discipline to which I finally ended up fully devoting myself, it's different: one becomes a cryptozoologist. Let's specify right now that while Cryptozoology is, etymologically, "the science of hidden animals", it is in practice the study and research of animal species whose existence, for lack of a specimen or of sufficient anatomical fragments, has not been officially recognized. I should clarify what I mean when I say "one is born a zoologist. Such a congenital vocation would imply some genetic process, such as that which leads to a lineage of musicians or mathematicians.
    [Show full text]
  • Investigations Into Stability in the Fig/Fig-Wasp Mutualism
    Investigations into stability in the fig/fig-wasp mutualism Sarah Al-Beidh A thesis submitted for the degree of Doctor of Philosophy of Imperial College London. Declaration I hereby declare that this submission is my own work, or if not, it is clearly stated and fully acknowledged in the text. Sarah Al-Beidh 2 Abstract Fig trees (Ficus, Moraceae) and their pollinating wasps (Chalcidoidea, Agaonidae) are involved in an obligate mutualism where each partner relies on the other in order to reproduce: the pollinating fig wasps are a fig tree’s only pollen disperser whilst the fig trees provide the wasps with places in which to lay their eggs. Mutualistic interactions are, however, ultimately genetically selfish and as such, are often rife with conflict. Fig trees are either monoecious, where wasps and seeds develop together within fig fruit (syconia), or dioecious, where wasps and seeds develop separately. In interactions between monoecious fig trees and their pollinating wasps, there are conflicts of interest over the relative allocation of fig flowers to wasp and seed development. Although fig trees reap the rewards associated with wasp and seed production (through pollen and seed dispersal respectively), pollinators only benefit directly from flowers that nurture the development of wasp larvae, and increase their fitness by attempting to oviposit in as many ovules as possible. If successful, this oviposition strategy would eventually destroy the mutualism; however, the interaction has lasted for over 60 million years suggesting that mechanisms must be in place to limit wasp oviposition. This thesis addresses a number of factors to elucidate how stability may be achieved in monoecious fig systems.
    [Show full text]
  • Mutualism Stability and Gall Induction in the Fig and Fig Wasp Interaction
    Mutualism Stability and Gall Induction in the Fig and Fig Wasp Interaction Item Type text; Electronic Dissertation Authors Martinson, Ellen O'Hara Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 01:14:56 Link to Item http://hdl.handle.net/10150/265556 MUTUALISM STABILITY AND GALL INDUCTION IN THE FIG AND FIG WASP INTERACTION by Ellen O. Martinson _____________________ A Dissertation Submitted to the Faculty of the ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Ellen O. Martinson entitled MUTUALISM STABILITY AND GALL INDUCTION IN THE FIG AND FIG WASP INTERACTION and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 11/02/12 A. Elizabeth Arnold _______________________________________________________________________ Date: 11/02/12 Jeremiah D. Hackett _______________________________________________________________________ Date: 11/02/12 Carlos A. Machado _______________________________________________________________________ Date: 11/02/12 Rob H. Robichaux _______________________________________________________________________ Date: 11/02/12 Noah K. Whiteman Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Evolution of Tbe Mandibular Appendage in Figwasps (Hymenoptera: Agaonidae)
    Rev. Biol. Trop., 39 (1): 87-95. 1991 Evolution of tbe mandibular appendage in figwasps (Hymenoptera: Agaonidae) William Ramírez B. Escuela de Fitotecnia, Universidadde Costa Rica. (Ree. 20-IX-I990. Acep. 15-X-I990) Abstract: The phylogenetic value of the conformation of the mandibular appendages, the number of mandibular glands andother head characters in the Agaonidae are examined.The phylogenetic arrangement suggests thatthe pre­ agaonid had a normal bidentate mandible with two glands, and a undistinct facial groove as in sorneDiazi ella (Sycoecinae), Sycophaga (Sycophaginae) and in related chalcidoid non-pollinating fig wasps. lt also had thirteen-seg­ mented antennae;'a long scape, several times ¡onger than wide a long triangular pedicel, two or three anelli andeight flagellomeres withsensilla (as uniquely found in Tetrapus). The mandibularappendage apparently co-evolved with the development oí the ostiolum of thesyconium andthe firstmandibular appendage was fixed andhad ridges or lameUae. A flexible hinge evolved laterat its base.The polygamous males were wingless with extendible (solenogastrus) abdo­ men and mate inside the galls. These characters are also found in most Sycophaginae.The ancestor of Aganoidae was probably a primary sycophilous wasp, withdorsoventral depressed head, thorax and abdomen, that oviposit through thestylar channel as stiU Sycophaga sycomori does. Sycophaga wasps withits apterousand polyg amous males seem to be the sister group of Agaonidae. The Agaonidae females are characterized by their mandibular appendage and the antennalprocess. They have a prognathous head with gula. Themales are wingless polygamous andsolenogastrous. Key words: Agaonidae(Hymenoptera), mandibular appendage, evolution, phylogeny. Ficus is pollinated by small chalcidoid wasps and two or three antennal anelli.
    [Show full text]
  • Breakdown of the One-To-One Rule in Mexican Fig-Wasp Associations Inferred by Molecular Phylogenetic Analysis
    SYMBIOSIS (2008) 45, 73-81 ©2008 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Breakdown of the one-to-one rule in Mexican fig-wasp associations inferred by molecular phylogenetic analysis Zhi-Hui Su1,2y' Hitoshi Iino1'5, Keiko Nakamura 1, Alejandra Serrato':'', and Ken Oyama" 1JT Biohistory Research Hall, 1-1 Murasaki-cha, Takatsuki, Osaka 569-1125, Japan, Email. [email protected]; 2Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan; 3School of Life Science, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P.R. China; "Centro de lnvestigaciones en Ecosistemas, Universidad Nacional Autonorna de Mexico (UNAM) Campus More lia, Antigua Carretera a Patzcuaro No. 8701, Col. Ex-Hacienda de San Jose de la Huerta, C. P. 58190, Morelia, Michoacan, Mexico; 5Present address: RIKEN Harima Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; "Present address: Universidad Autonorna Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico 09340 D.F. (Received February 20, 2007, Accepted June 17, 2007) Abstract The interaction between figs (Ficus spp., Moraceae) and fig-pollinating wasps (Chalcidoidea, Agaonidae) is one of the most species-specific cases of mutualism, and is a model system for studying coevolution and cospeciation between insects and plants. To test the specificity-breakdown hypothesis, we performed a phylogenetic analysis using mitochondrial COi gene sequences of Mexican fig-pollinating wasps collected from each fig species at various localities. Phylogenetic analysis revealed a clear division of Mexican fig pollinators into two major groups: one pollinating the Ficus species of subgenus Pharmacosycea: and the other pollinating Ficus subgenus Urostigma.
    [Show full text]
  • Weiblen, G.D. 2002 How to Be a Fig Wasp. Ann. Rev. Entomol. 47:299
    25 Oct 2001 17:34 AR ar147-11.tex ar147-11.sgm ARv2(2001/05/10) P1: GJB Annu. Rev. Entomol. 2002. 47:299–330 Copyright c 2002 by Annual Reviews. All rights reserved ! HOW TO BE A FIG WASP George D. Weiblen University of Minnesota, Department of Plant Biology, St. Paul, Minnesota 55108; e-mail: [email protected] Key Words Agaonidae, coevolution, cospeciation, parasitism, pollination ■ Abstract In the two decades since Janzen described how to be a fig, more than 200 papers have appeared on fig wasps (Agaonidae) and their host plants (Ficus spp., Moraceae). Fig pollination is now widely regarded as a model system for the study of coevolved mutualism, and earlier reviews have focused on the evolution of resource conflicts between pollinating fig wasps, their hosts, and their parasites. Fig wasps have also been a focus of research on sex ratio evolution, the evolution of virulence, coevolu- tion, population genetics, host-parasitoid interactions, community ecology, historical biogeography, and conservation biology. This new synthesis of fig wasp research at- tempts to integrate recent contributions with the older literature and to promote research on diverse topics ranging from behavioral ecology to molecular evolution. CONTENTS INTRODUCING FIG WASPS ...........................................300 FIG WASP ECOLOGY .................................................302 Pollination Ecology ..................................................303 Host Specificity .....................................................304 Host Utilization .....................................................305
    [Show full text]
  • NATIVE POLLINATORS Who Are They and Are They Important?
    NATIVE POLLINATORS Who are they and are they important? Compiled by Jim Revell, Bedford Extension Master Gardener Reproduction – the goal One goal of all living organisms, including plants, is to create offspring for the next generation. One method for plants to accomplish this is by producing seed. Pollen – a fine-to-coarse yellow dust or powder – “bears a plant’s male sex cells and is a vital link in the reproductive cycle.” USDA Forest Service • Pollination is usually an unplanned event due to an animal’s activity on a flower Pollination • It is calculated that one out of every three or four mouthfuls of food or drink “The act of transferring consumed is provided by pollinators pollen grains from the • male anther of a flower to More than 150 food crops in the U.S. depend on pollinators; this includes almost all fruit the female stigma.” and grain crops (see Handout, “List of USDA Forest Service Pollinated Foods” by Pollinator Partnership) • 80% or more of all plants worldwide Pollinator Methods: (including food crops) are pollinated by animals (biotic pollination) ABIOTIC: Without • Of the ≤20% abiotic method involvement of • organisms 98% are pollinated by wind • 2% are pollinated by water BIOTIC: Mediated by • ±200,000 species of animals around the animals world act as pollinators • Of the ±200,000 about 1,000 species are vertebrates (birds, bats, small mammals) Abiotic Pollinators: Wind | Water Left: Diagram of how Wind Pollination works; picture of windblown pollen from male cone of a Lodgepole Pine. Right: Diagram of how Water Pollination works; Seagrasses (marine angiosperms / flowering plants) have adapted to aquatic environments allowing for pollination, seed formation and germination in water.
    [Show full text]
  • First Record of a Non-Pollinating Fig Wasp (Hymenoptera: Sycophaginae) from Dominican Amber, with Estimation of the Size of Its Host Figs
    This is a repository copy of First record of a non-pollinating fig wasp (Hymenoptera: Sycophaginae) from Dominican amber, with estimation of the size of its host figs. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103701/ Version: Accepted Version Article: Farache, FHA, Rasplus, JY, Azar, D et al. (2 more authors) (2016) First record of a non-pollinating fig wasp (Hymenoptera: Sycophaginae) from Dominican amber, with estimation of the size of its host figs. Journal of Natural History, 50 (35-36). pp. 2237-2247. ISSN 0022-2933 https://doi.org/10.1080/00222933.2016.1193646 © 2016 Informa UK Limited, trading as Taylor & Francis Group. This is an author produced version of a paper published in Journal of Natural History. The version of record of this manuscript has been published and is available in http://dx.doi.org/10.1080/00222933.2016.1193646. Uploaded in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Indirect Mutualism: Ants Protect Fig Seeds and Pollen Dispersers from Parasites Ecological Entomology, 2015 K
    Ecological Entomology (2015), DOI: 10.1111/een.12215 Indirect mutualism: ants protect fig seeds and pollen dispersers from parasites K. CHARLOTTE JANDÉR1,2,3 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, U.S.A., 2Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden and 3Smithsonian Tropical Research Institute, Panama City, Panama Abstract. 1. Mutualisms are ubiquitous and ecologically important, but may be particularly vulnerable to exploitation by species outside of the mutualism owing to a combination of an attractive reward and potentially limited defence options. For some mutualisms, ants can offer dynamic and relatively selective protection against herbivores and parasites. 2. The mutualism between fgtreesandtheirpollinatingwasps,akeystonemutualism in tropical forests, is particularly well suited for ant protection because pollinators are protected inside hollow inforescences but parasites are exposed on the outside. 3. In the present study, it was shown that the presence of ants provides a ftness beneft for both the pollinators and the hosting fgtree.Thepresenceofants(i)reducedabortions of developing fgs, (ii) reduced herbivory of fgs, and (iii) reduced parasitic wasp loads, resulting in more pollinators and more seeds in ant-protected fgs. Even when taking costs such as ant predation on emerging pollinators into account, the total ftness increase of hosting ants was threefold for the tree and fvefold for the pollinators. 4. It was further shown that the seemingly most vulnerable parasitic wasps, of the genus Idarnes,haveaspecifcbehaviourthatallowsthemtoevadeantattackwhilecontinuing to oviposit. 5. Ants were present on 79% of surveyed Panamanian fgtrees.Togetherwithprevious studies from the Old World, the results found here imply that ants are both powerful and common protectors of the fgmutualismworldwide.
    [Show full text]
  • A Preliminary Study on the Life History of Fig Wasp, Eupristina Verticillata
    Journal of Entomology and Zoology Studies 2016; 4(6): 496-500 E-ISSN: 2320-7078 P-ISSN: 2349-6800 A preliminary study on the life history of fig wasp, JEZS 2016; 4(6): 496-500 © 2016 JEZS Eupristina verticillata and its key role in the Received: 06-09-2016 Accepted: 07-10-2016 pollination of fig tree, Ficus microcarpa Susheela P Department of Zoology, PSGR Krishnammal College for Susheela P, Radha R and Meenatshi K Women, Coimbatore, Tamil Nadu, India Abstract Fig wasps are apparently irrelevant insects which have an inseparable and delicate relationship with fig trees as they both try to maintain a delicate balance for survival. The fig trees are dependent on fig wasps Radha R Department of Zoology, Sree for growth, reproduction and the perpetuation of their species. These wasps have considerably adapted to Ayyappa College for Women, the morphological changes shown by the fig fruits. Hence a preliminary study had been made to study the Nagercoil, Tamil Nadu, India life history of the fig wasp, Eupristina verticillata and its key role in the pollination of fig tree, Ficus microcarpa. There exists a mutualism between fig wasps and fig trees and the behavioural aspects shown Meenatshi K by the wasps are highly suited for their living inside the fig fruit bodies. These wasps are the ones which Department of Zoology, PSGR pollinate the fig trees and in turn the fig trees provide nutrition and shelter to these wasps. The ratio of Krishnammal College for number of females to males is in such a way that many fig tree species can be pollinated at a time.
    [Show full text]
  • A Comment on Iranian Fig Wasps (Chalcidoidea: Agaonidae, Pteromalidae)
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 43/2 1247-1252 19.12.2011 A comment on Iranian fig wasps (Chalcidoidea: Agaonidae, Pteromalidae) H. GHAHARI & S. VAN NOORT Abstract: A total of 5 species of fig wasps from 5 genera including, Blastophaga, Elisabethiella (Agaonidae), and Apocrypta, Sycophaga, Apocryptophagus (Pteromalidae) are recorded from Iran. Among the collected fig wasps, Apocryptophagus gigas (MAYR) is a new record for the Iranian fauna. Key words: Fig wasp, Agaonidae, Pteromalidae, Ficus, Iran. Introduction Fig wasps include the pollinating fig wasps (Chalcidoidea: Agaonidae) and a diverse assemblage of non-pollinating fig wasps (Chalcidoidea: Pteromalidae, Eurytomidae, Ormyridae) that are also associated with individual fig tree species (VAN NOORT & VAN HARTEN 2006). The relationship between pollinating fig wasps (Chalcidoidea, Agaoni- dae) and their host fig trees (Ficus L. 1753, Moraceae) is a classic example of an obligate mutualism, where neither partner can reproduce without the other, the wasp providing a pollination service and the fig tree in turn providing a breeding site for the pollinating wasp’s progeny (JANZEN 1979). The obligate mutualism between pollinating fig wasps and their host fig trees (Ficus, Moraceae) has historically been considered to be a one-to- one relationship (RAMIREZ 1970; WIEBES 1979; WIEBES & COMPTON 1990; VAN NOORT 2004), but increasing evidence is suggesting that the relationship is not as tight as has previously been supposed, with records of more than one species of pollinator associated with a single host and, conversely, of a single pollinator species associated with more than one host fig species (COMPTON & VAN NOORT 1992; WEST & HERRE 1994; WEST et al.
    [Show full text]
  • The Impact of Fig Wasps (Chalcidoidea), New to The
    This is a repository copy of The impact of fig wasps (Chalcidoidea), new to the Mediterranean, on reproduction of an invasive fig tree Ficus microcarpa (Moraceae) and their potential for its biological control. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85567/ Version: Accepted Version Article: Wang, R, Aylwin, R, Cobb, J et al. (5 more authors) (2015) The impact of fig wasps (Chalcidoidea), new to the Mediterranean, on reproduction of an invasive fig tree Ficus microcarpa (Moraceae) and their potential for its biological control. Biological Control, 81. 21 - 30. ISSN 1049-9644 https://doi.org/10.1016/j.biocontrol.2014.11.004 © 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]