UNITED STATES PATENT OFFICE 2,236,530 Sulphocarboxylic ACRED ESTERS of ALCOBO AMNE DERWATWES Albert K

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES PATENT OFFICE 2,236,530 Sulphocarboxylic ACRED ESTERS of ALCOBO AMNE DERWATWES Albert K Patented Apr. 1, 94 2,236,530 UNITED STATES PATENT OFFICE 2,236,530 suLPHoCARBOXYLIC ACRED ESTERS OF ALCOBO AMNE DERWATWES Albert K. Epstein and Morris Katzaraat, Chicago, l, assignors to Ahe Emulso Corporation, Chi cago, Ill., a corporation of Elinois No Drawing. Application September 28, 1939, Serial No. 296.98 18 Claims. (C. 260-401) Our invention relates to a new class of chemical acid group. A more complete understanding of Substances, and more in particular to a new class what may comprise the lipophile group and the of chemical substances having capillary active particular character of the sulpho-carboxylic or properties and particularly adapted for use as sulpho-fatty acid group will be had as the de detergents, wetting, penetrating, emulsifying, , tailed description progreSSeS. lathering, fiotation and anti-spattering agents, The function of the sulphonic acid group is to and for frothing purposes. impart hydrophilic properties, that is, water Wet The principal object of the present invention ting or water attracting properties, to the mole is the provision of a new class of chemical Sub cule as a whole. The groups which are esteri stances capable of satisfactory use in connection fied by the sulpho-carboxylic or sulpho-fatty acid with the problems and fields hereinabove and are in general of a lipophile character. At times hereinafter discussed. they may be strongly lipophilic and at other Another object is the provision of a new class times moderately lipophilic. They may be of of chemical substances which are in general of low molecular weight or of moderately high no relatively simple structure and can be cheaply lecular weight, depending upon the purpose for made in commercial quantities. which the substances may be used. Another object is the provision of a new class More specifically, at least most of the Sub of chemical substances having improved Wetting stances of the invention are lower molecular and detergent characteristics. weight sulpho-carboxylic acid esters of alcohol Other objects and features of the invention Will :20 primary or secondary amines, hydrogen attached be apparent from a consideration of the following to nitrogen of the alcohol primary or Secondary detailed description. amines being replaced by an acyl radical con The substances of the invention are in general taining at least four and preferably from eight esters, preferably of lower molecular Weight car to eighteen carbon atoms. boxylic or fatty acids, with at least one unesteri illustrative examples of compounds falling fied sulphonic acid group in the carboxylic or Within the scope of the invention are as follows: fatty acid radical, wherein. the group esterified with the sulpho-carboxylic or Sulpho-fatty acid (1) C-C-NH-CH-O-C-CH -SO3Na contains nitrogen linked to carbon and a lipophile l & radical with at least four carbon atoms. In cera 30 (2) Cish-C-NH-C.E.-O-C-CH-CH-soak tain circumstances there may be more than one nesterified sulphonic acid group in the car boxylic or fatty acid radical or there Inay be sul (3) CH-CO-NH-CH-O-C-CH2-SO3K phonic acid groups that are esterified and other O sulphonic acid groups that are not esterified but 3 (4) C.E.-- N- CH-CH-C-O-C-C-SO3N in all cases there must be at least One unesteria O O fied sulphonic acid group in preferably the lower molecular weight carboxylic or fatty acid radical. The carboxylic or fatty acid radical with the un (5) CE-O-C-C133 esterified sulphonic acid group is, as indicated, 40 C-CO-N-CH-CH-N preferably of relatively low molecular weight and, for best results, should contain not more C.H-0--C H-SO3Na than eight carbons. Considering the compounds from another C.H.OH aspect, the molecule in each instance contains a 45 relatively high molecular weight lipophile group (6) CH-CO-N and a relatively low molecular Weight hydrophile CH-O--CH-SO.Na group which, in the class of compounds to which the present invention relates, are sulphonic acid O radicals or free or unesterified OH groups in con junction with a sulphonic acid radical. From C.H-0--Caha still another angle, the compounds may be con (7) C-CO-N- W sidered as combinations of a higher molecular weight lipophile group and a relatively low no CH-O--chi-sok lecular weight sulpho-Carboxylic or SulphO-fatty 55 8 2 2,286,580 (8) l', corn oil, cottonseed oil, sardine oil, tallow, soya CH-C-NH-(CH2)-CH-O-C-CH-SOH.NE(('HOH) bean oil, peanut oil, castor oil, seal oil, whale oil, I shark oil, partially or completely hydrogenated animal and vegetable oils such as those men tioned; hydroxy and alphahydroxy higher ali phot phatic and fatty acids such as i-hydroxy stearic (9) Cutta--NH-CH-N--H-CH,- COOK acid, dihydroxy stearic acid, alpha-hydroxy dok stearic acid, alpha-hydroxy palmitic acid, alpha hydroxy lauric acid, alpha-hydroxy coconut oil (10) CH-C-NBI-CE-NH-CH-O-C-C-SONa 10 mixed fatty acids, and the like; other substituted fatty acids such as (ii) CH-C-NH-CH-O-CH-O-C-CH-S OK B-C-COO (12) CiHan-g-NH-CHi-O-g-CH-soH.HN-CHOH 15 Where R is a higher molecular weight hydrocar bon radical; fatty acids derived from various Waxes such as beeswax, spermaceti, montan wax, (13) CH-(CH2)-CH--NH-CH-O-g-CH-s OK and carnauba wax and carboxylic acids derived, by oxidation and other methods, from petrole CH-CH 20 um; cycloaliphatic and hydroaromatic acids such as hexahydrobenzoic acid, resinic acids, naph (14) cá, C-C-NH-C-C-C-O-C-C-SONa thenic acid, and abietic acid; aromatic acids Yoh-cá, such as phthalic acid, benzoic acid, naphtholic O acid, pyridine carboxylic acids; hydroxy aro 25 matic acids such as salicylic acid, hydroxy ben (15) t–NH-CH-O--ch-s ONBI Zoic and naphtholic acids, and the like; and sub stitution and addition derivatives such as amino, halogen, hydroxy, sulphate, sulphonic, phosphate O and the like substitution and addition derivatives 30 of the aforementioned carboxylic substances. It CH-CH-CH-O-(-CH-s O3K will be understood that mixtures of any two or (16) Ciba-C-N, more of said acids may be employed. Yoh-CH-CH-o-c-ch-s OK The alcohol primary and secondary amines or alkylolamines which provide the linkage between the lipophile group and the sulpho-carboxylic Cas group may be selected from a large class and in (17) Culti-c-f-c-b-o-c-CH,- SO3Na clude symmetrical, unsymmetrical, normal and s iso-derivatives, such as monoethanolamine, di O ethanolamine, mono-propanolamine, di-propa 40 nolamine, mono-butanolamine, mono-iso-buta (18) CH-NH--Caha nolamine, mono-pentanolamine, mono-hexanol & HoH amine, mono-decylolamine, mono-laurylolamine, mono-hexadecylolamine, mono-Octodecylolamine, mono-ethyl ethanolamine, mono-butyl ethanol bi-o-on-on-on- OK amine, cyclohexyl ethanolamine, N-cyclohexyl O butanolamine, ethanolandline, alkylolamines of (19) CH-NH-i-Citi, other monovalent or polyvalent alcohols such as glycols, glycerol, sugars, and sugar alcohols such (HoH), as dextrose, sucrose, sorbitol, mannitol and dul CH-0--H-CH, t 50 citol, alkylol polyamines such as alkylol deriva d solk tives of ethylene diamine, diethylene trianine While the above examples represent single and triethylene tetraamine, arylolamines and Substances, it will be understood that, in practice, cyclic hydroxy amines such as N-phenyl ethanol it is, in general, more advantageous to employ amine, p-amino phenol, mixtures of any two or more thereof with or 55 Without diluents. Many different types of compounds may be Ho-ch-{ X-NH. Selected as lipophile groups which are to be re and the like. The alcohol or alkylol radicals of acted with the alcohol primary or secondary the alcohol amines or alkylolamines may contain amines, principally compounds having lipophile 60 substitutent groups such as amino, nitrile, car radicals of relatively high molecular weight. boxyl, hydroxy, halogen, sulphate, Sulphonic, For example, the following materials may be phosphate, and the like and the sequence of car utilized as Sources of lipophile groups: straight bon atoms therein may be interrupted by O, S, chain and branched chain carboxylic, aliphatic, C-O, NH, NR where R is lower alkyl, and the and fatty acids, saturated and unsaturated, such 65 like. as butyric acid, caprylic acid, caproic acid, capric From a study of the compounds which are acid, sebacic acid, behenic acid, arachidic acid, listed hereinabove, those skilled in the art will cerotic acid, erucic acid, melissic acid, Stearic acid, understand that many different expedients may oleic acid, ricinoleic acid, linoleic acid, linolenic be employed for forming the compounds in So acid, lauric acid, myristic acid, palmitic acid, 70 far as the dominant lipophile group and the rel mixtures of any two or more of the above men atively low molecular weight sulpho-carboxylic or tioned acids or other acids, mixed higher fatty fatty acid group are concerned. As stated, how acids derived from animal or vegetable sources, ever, ester linkages are utilized between these for example, lard, COConut oil, rapeseed oil, two portions of the compound, and the skilled sesame oil, palm kernel oil, palm oil, olive oil, 75 chemist will understand in general the most ap a. s 2,286,530 8 proved practices in securing this result. Nu ester of lauric acid may be reacted with mono merous methods are also available for the in ethanolamine at about 150 degrees C. to 80 de troduction of the sulphonic acid group. grees C.
Recommended publications
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • ( Vaccinium Myrtillus L . ) And
    Food Chemistry 354 (2021) 129517 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant Priyanka Trivedi a,1, Nga Nguyen a,1, Linards Klavins b, Jorens Kviesis b, Esa Heinonen c, Janne Remes c, Soile Jokipii-Lukkari a, Maris Klavins b, Katja Karppinen d, Laura Jaakola d,e, Hely Haggman¨ a,* a Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland b Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia c Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland d Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway e NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway ARTICLE INFO ABSTRACT Keywords: In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of Cuticular wax wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable Fruit cuticle with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with Gene expression increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular Glossy type mutant wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower Triterpenoids Wax composition density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused Chemical compounds studied in this article: by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty β-Amyrin (PubChem CID: 73145) acids in the cuticular wax.
    [Show full text]
  • Biochemistry Prologue to Lipids
    Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests.
    [Show full text]
  • Aroma Volatile Biosynthesis in Apples Affected by 1-MCP and Methyl Jasmonate
    Postharvest Biology and Technology 36 (2005) 61–68 Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate S. Kondo a, ∗, S. Setha a, D.R. Rudell b, D.A. Buchanan b, J.P. Mattheis b a Graduate School of Applied Biosciences, Hiroshima Prefectural University, Shobara, Hiroshima 727-0023, Japan b Tree Fruit Research Lab, United States Department of Agriculture—ARS, Wenatchee, WA 98801, USA Received 13 August 2004; received in revised form 8 November 2004; accepted 24 November 2004 Abstract Effects of 1-methylcyclopropene (1-MCP), 2-chloroethyl phosphonic acid (ethephon), and methyl jasmonate (MeJA) on production of aroma volatile compounds and ethylene by ‘Delicious’ and ‘Golden Delicious’ apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] during ripening were investigated. Forty-four volatile compounds in ‘Delicious’ and 40 compounds in ‘Golden Delicious’ were detected. Among volatiles classified as alcohols, esters, ketones, aldehydes, acetic acid, and ␣-farnesene, esters were the most prevalent compounds, followed by alcohols. Aroma volatile production was high in untreated controls and ethephon treatment. Volatile production by 1-MCP-treated fruit was lower compared with untreated controls throughout the evaluation period. The impact of MeJA application on volatile production was cultivar dependent. The combination of ethephon with MeJA reduced volatile production by ‘Delicious’ compared with ethephon only, but this treatment combination stimulated volatile production by ‘Golden Delicious’ with the exception of esters. In general, the effect of MeJA on volatile production was related to the effect of MeJA on internal ethylene concentration. The results suggest that the effect of MeJA on aroma volatiles in apple fruit may be mediated by ethylene.
    [Show full text]
  • Molecular Tracers and Untargeted Characterization of Water Soluble Organic Compounds in Polar Ice for Climate Change Studies
    PhD Thesis in SCIENCE AND MANAGEMENT OF CLIMATE CHANGE Molecular tracers and untargeted characterization of water soluble organic compounds in polar ice for climate change studies. PhD Candidate Ornela Karroca Supervisor Prof. Andrea Gambaro Co-Supervisor Dr. Roberta Zangrando 1 GLOSSARY 1. ABSTRACT ........................................................................................................................................ 4 2. INTRODUCTION ............................................................................................................................... 5 3. THESIS GOALS ................................................................................................................................ 15 4. EXPERIMENTAL SECTION ............................................................................................................... 16 4.1 Reagents and standard solutions ............................................................................................ 16 4.2 Quantitative analyses .............................................................................................................. 17 4.2.1 Instrumentation and working conditions .......................................................................... 17 4.2.2 Amino acids and phenolic compounds: Method validation .............................................. 21 4.2.2.1 Chromatographic separation ..................................................................................... 21 4.2.2.2 Quality control...........................................................................................................
    [Show full text]
  • Open Thesis.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF VETERINARY AND BIOMEDICAL SCIENCE EFFECTS OF DIETARY LINOLEIC ACID ON CONVERSION OF OMEGA-3 FATTY ACIDS TO LONG CHAIN FATTY ACIDS ELIZABETH ANN FLAHERTY FALL 2018 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Veterinary and Biomedical Science with honors in Veterinary and Biomedical Science Reviewed and approved* by the following: Dr. Kevin Harvatine Associate Professor of Nutritional Physiology Thesis Supervisor Dr. Robert VanSaun Professor of Veterinary Science Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT With the modern diet that is high in total fats, high in omega-6 fatty acids (FA), and low in omega-3 FA, there is a high prevalence of metabolic and cardiovascular disease. Certain dietary acids are beneficial, while others may contribute to these disease processes. Eggs are an important part of the human diet as they are protein and nutrient dense and are a good source of vitamins and minerals. It is possible to manipulate the nutrients and composition of FA in the eggs by modifying the balance of the hens diets. This makes them a good target for experiments with fatty acids (FA). A diet high in omega-3 (n-3) FA has many beneficial effects including plasma lipid reduction, reduction in some types of cancer mortality, anti-inflammatory effects, antiarrhythmic effects, antithrombotic effects, antiatheromatous effects, and less severe manifestations of autoimmune diseases and inflammatory diseases. Due to the benefits of n-3 FA, it is important to understand the effects of oleic acid and linoleic acid (LA; C18:2n-6) on the deposition of n-3 FA in egg yolks.
    [Show full text]
  • Fatty Acids, Trivial and Systematic Names
    FATTY ACIDS, TRIVIAL AND SYSTEMATIC NAMES Trivial Name Systematic Name Abbreviation Formic Acid Methanoic Acid Acetic Acid Ethanoic Acid Propionic Acid Propanoic Acid Butyric Acid Butanoic Acid 4:0 Valerianic Acid Pentanoic Acid 5:0 Caproic Acid Hexanoic Acid 6:0 Enanthic Acid Heptanoic Acid 7:0 Caprylic Acid Octanoic Acid 8:0 Pelargonic Acid Nonanoic Acid 9:0 Capric Acid Decanoic Acid 10:0 Obtusilic Acid 4-Decenoic Acid 10:1(n-6) Caproleic Acid 9-Decenoic Acid 10:1(n-1) Undecylic Acid Undecanoic Acid 11:0 Lauric Acid Dodecanoic Acid 12:0 Linderic Acid 4-Dodecenoic Acid 12:1(n-8) Denticetic Acid 5-Dodecenoic Acid 12:1(n-7) Lauroleic Acid 9-Dodecenoic Acid 12:1(n-3) Tridecylic Acid Tridecanoic Acid 13:0 Myristic Acid Tetradecanoic Acid 14:0 Tsuzuic Acid 4-Tetradecenoic Acid 14:1(n-10) Physeteric Acid 5-Tetradecenoic Acid 14:1(n-9) Myristoleic Acid 9-Tetradecenoic Acid 14:1(n-5) Pentadecylic Acid Pentadecanoic Acid 15:0 Palmitic Acid Hexadecanoic Acid 16:0 Gaidic acid 2-Hexadecenoic Acid 16:1(n-14) Sapienic Acid 6-Hexadecenoic Acid 16:1(n-10) Hypogeic Acid trans-7-Hexadecenoic Acid t16:1(n-9) cis-Hypogeic Acid 7-Hexadecenoic Acid 16:1(n-9) Palmitoleic Acid 9-Hexadecenoic Acid 16:1(n-7) Palmitelaidic Acid trans-9-Hexadecenoic Acid t16:1(n-7) Palmitvaccenic Acid 11-Hexadecenoic Acid 16:1(n-5) Margaric Acid Heptadecanoic Acid 17:0 Civetic Acid 8-Heptadecenoic Acid 17:1 Stearic Acid Octadecanoic Acid 18:0 Petroselinic Acid 6-Octadecenoic Acid 18:1(n-12) Oleic Acid 9-Octadecenoic Acid 18:1(n-9) Elaidic Acid trans-9-Octadecenoic acid t18:1(n-9)
    [Show full text]
  • Fatty Acids in Human Metabolism - E
    PHYSIOLOGY AND MAINTENANCE – Vol. II – Fatty Acids in Human Metabolism - E. Tvrzická, A. Žák, M. Vecka, B. Staňková FATTY ACIDS IN HUMAN METABOLISM E. Tvrzická, A. Žák, M. Vecka, B. Staňková 4th Department of Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic Keywords: polyunsaturated fatty acids n-6 and n-3 family, phospholipids, sphingomyeline, brain, blood, milk lipids, insulin, eicosanoids, plant oils, genomic control, atherosclerosis, tissue development. Contents 1. Introduction 2. Physico-Chemical Properties of Fatty Acids 3. Biosynthesis of Fatty Acids 4. Classification and Biological Function of Fatty Acids 5. Fatty Acids as Constitutional Components of Lipids 6. Physiological Roles of Fatty Acids 7. Milk Lipids and Developing Brain 8. Pathophysiology of Fatty Acids 9. Therapeutic Use of Polyunsaturated Fatty Acids Acknowledgements Glossary Bibliography Biographical Sketches Summary Fatty acids are substantial components of lipids, which represent one of the three major components of biological matter (along with proteins and carbohydrates). Chemically lipids are esters of fatty acids and organic alcohols—cholesterol, glycerol and sphingosine. Pathophysiological roles of fatty acids are derived from those of individual lipids. Fatty acids are synthesized ad hoc in cytoplasm from two-carbon precursors, with the aid of acyl carrier protein, NADPH and acetyl-CoA-carboxylase. Their degradation by β-oxidationUNESCO in mitochondria is accompanied – byEOLSS energy-release. Fatty acids in theSAMPLE mammalian organism reach CHAPTERSchain-length 12-24 carbon atoms, with 0- 6 double bonds. Their composition is species- as well as tissue-specific. Endogenous acids can be desaturated up to Δ9 position, desaturation to another position is possible only from exogenous (essential) acids [linoleic (n-6 series) and α-linolenic (n-3 series)].
    [Show full text]
  • ( 12 ) United States Patent
    US010155042B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 155 , 042 B2 Bannister et al. (45 ) Date of Patent: * Dec. 18 , 2018 ( 54 ) COMPOSITIONS AND METHODS FOR A61K 31/ 60 (2006 . 01) TREATING CHRONIC INFLAMMATION A61K 47 / 10 ( 2017 .01 ) AND INFLAMMATORY DISEASES A61K 31 / 202 (2006 . 01 ) A61K 31 / 337 (2006 .01 ) ( 71 ) Applicant: Infirst Healthcare Limited , London A61K 31 / 704 ( 2006 . 01 ) (GB ) A61K 31/ 25 (2006 . 01) 2 ) U . S . CI. ( 72 ) Inventors : Robin M . Bannister , Essex (GB ) ; John CPC .. .. .. .. A61K 47 / 14 ( 2013 .01 ) ; A61K 9 / 08 Brew , Hertfordshire (GB ) ; Wilson ( 2013 .01 ) ; A61K 9 /2013 (2013 . 01 ) ; A61K Caparros - Wanderely , Buckinghamshire 31/ 192 ( 2013 .01 ) ; A61K 31 /60 ( 2013 .01 ) ; (GB ) ; Suzanne J . Dilly , Oxfordshire A61K 47 / 10 ( 2013 .01 ) ; A61K 47 /44 ( 2013 .01 ) ; (GB ) ; Olga Pleguezeulos Mateo , A61K 31 / 19 ( 2013 . 01 ) ; A61K 31 / 202 Bicester (GB ) ; Gregory A . Stoloff , (2013 .01 ) ; A61K 31/ 25 ( 2013 .01 ) ; AIK London (GB ) 31 / 337 ( 2013. 01 ) ; A6IK 31/ 704 ( 2013 .01 ) ( 73 ) Assignee : Infirst Healthcare Limited , London (58 ) Field of Classification Search (GB ) CPC . .. .. A61K 31 /192 ; A61K 31/ 19 USPC .. .. .. 514 / 570 , 571, 557 ( * ) Notice : Subject to any disclaimer, the term of this See application file for complete search history . patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . References Cited This patent is subject to a terminal dis (56 ) claimer . U . S . PATENT DOCUMENTS 3 , 228 ,831 A 1 / 1966 Nicholson et al. (21 ) Appl . No. : 15 / 614 ,592 3 , 800 ,038 A 3 / 1974 Rudel 4 ,571 ,400 A 2 / 1986 Arnold (22 ) Filed : Jun .
    [Show full text]
  • Role of Fatty Acids/Fat Soluble Component from Medicinal Plants Targeting BACE Modulation and Their Role in Onset of AD: an In-Silico Approach
    Journal of Graphic Era University Vol. 6, Issue 2, 270-281, 2018 ISSN: 0975-1416 (Print), 2456-4281 (Online) Role of Fatty Acids/Fat Soluble Component from Medicinal Plants Targeting BACE Modulation and Their Role in Onset of AD: An in-silico Approach Prashant Anthwal1, Bipin Kumar Sati1, Madhu Thapliyal2, Devvret Verma1, Navin Kumar1, Ashish Thapliyal*1 1Department of Life Sciences and Biotechnology Graphic Era Deemed to be University, Dehradun, India 2Department of Zoology Government Degree College, Raipur, Dehradun *Corresponding author: [email protected] (Received May 25, 2017; Accepted August 10, 2018) Abstract Fatty acids have been reported in several researches targeting cure and treatment of Alzheimer’s disease (AD). Besides having so many contradictory reports about fatty acids related to the issues of human health, there are many evidences that point towards the beneficial effects of PUFAs and essential fatty acids on human health, even in AD. This study investigated the interaction of fatty acids and phyto-constituents for the inhibition of BACE enzyme (mainly responsible and prominent target for amyloid hypothesis) through in-silico approach. Phyto-compounds from Picrorhiza kurroa, Cinnamomum tamala, Curcuma longa, Datura metel, Rheum emodi and Bacopa monnieri, which are well known, were screened. For screening of drug molecules, Lipinski’s rule is usually used. Because of this rule compounds like Bacoside A, Bacoside A3, Bacopaside II, Bacopasaponin C, Baimantuoluoline C, Daturameteline A, Cucurbitacin B, Cucurbitacin D, Cucurbitacin E, Cucurbitacin I, Cucurbitacin F, Cucurbitacin R, Picroside III, Kutkoside, Picroside II are usually excluded from docking/binding studies because of their higher molecular weight as they do now follow the Lipinski’s rules.
    [Show full text]
  • British Chemical Abstracts
    BRITISH CHEMICAL ABSTRACTS A —PURE CHEMISTRY MARCH, 1936. General, Physical, and Inorganic Chemistry. Absorption spectrum of hydrogen. II. The Excitation of the auroral green line by meta­ D state in the term scheme of hydrogen from stable nitrogen molecules. J. K a p la n (Physical photographs of H 9 and D2. H. B e u t le r , A. Rev., 1936, [ii], 49, 67— 69; cf. A., 1934, 827).— Deubner, and H. 0 . J ü n ger (Z. Physik, 1935, 98, Jhc excitation in tubes which show the two new 181—197; cf. A., 1935, 1291). ' A. B. D. C. afterglow spectra of N2 is described. The conditions Ground state of (H2), the molecular ion (H2<), of excitation are compared with those in the night- and wave mechanics. 0. W. Richardson (Proc. sky and in the aurora borealis, in which cases, it is Roy. Soc., 1935, A , 152, 503— 514).— The agreement suggested, the LSq state of 0 which is responsible between the vals. of the fundamental consts. of the for the green line is produced by collisions of O atoms ground state of the H 2 mol. (i) as determined by and metastable N2 mols. in the A 8S state. experiment, and (ii) as calc, by wave mechanics, is N. M. B. discussed. The properties of the mol. ion (H2+) Hopfield’s Rydberg series and the ionisation as predicted by wave mechanics are compared with potential and heat of dissociation of nitrogen. those predicted empirically from a study of various R. S. M u llik e n (Physical Rev., 1934, [ii], 46 144 - excited states of (Ii2).
    [Show full text]
  • Lipid Glossary 2 Was Published by the Oily Press in 2004 and Is Available Free of Charge from the Publisher's Web Site
    This electronic version of Lipid Glossary 2 was published by The Oily Press in 2004 and is available free of charge from the publisher's web site. A printed and bound hardback copy of the book can also be purchased from the web site: www.pjbarnes.co.uk/op/lg2.htm LIPID GLOSSARY 2 Frank D. Gunstone Honorary Professor, Scottish Crop Research Institute, Dundee, UK Bengt G. Herslöf Managing Director, Scotia LipidTeknik AB, Stockholm, Sweden THE OILY PRESS BRIDGWATER ii Copyright © 2000 PJ Barnes & Associates PJ Barnes & Associates, PO Box 200, Bridgwater TA7 0YZ, England Tel: +44-1823-698973 Fax: +44-1823-698971 E-mail: [email protected] Web site: http://www.pjbarnes.co.uk All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted by any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission in writing from the publisher. All reasonable care is taken in the compilation of information for this book. However, the author and publisher do not accept any responsibility for any claim for damages, consequential loss or loss of profits arising from the use of the information. ISBN 0-9531949-2-2 This book is Volume 12 in The Oily Press Lipid Library Publisher's note: Lipid Glossary 2 is based on A Lipid Glossary, which was published by The Oily Press in 1992 (ISBN 0-9514171-2-6). However, Lipid Glossary 2 is more than simply a revised and updated edition of the earlier book — it is also much extended, with more than twice as many pages, and a much greater number of graphics (see Preface).
    [Show full text]