Cellminer: a Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mir-379 Deletion Ameliorates Features of Diabetic Kidney Disease By
ARTICLE https://doi.org/10.1038/s42003-020-01516-w OPEN miR-379 deletion ameliorates features of diabetic kidney disease by enhancing adaptive mitophagy via FIS1 ✉ Mitsuo Kato 1,8 , Maryam Abdollahi 1,8, Ragadeepthi Tunduguru1, Walter Tsark2, Zhuo Chen 1, 1234567890():,; Xiwei Wu3, Jinhui Wang3, Zhen Bouman Chen 1,4, Feng-Mao Lin1, Linda Lanting1, Mei Wang1, Janice Huss5, ✉ Patrick T Fueger 5,6, David Chan7 & Rama Natarajan 1,4 Diabetic kidney disease (DKD) is a major complication of diabetes. Expression of members of the microRNA (miRNA) miR-379 cluster is increased in DKD. miR-379, the most upstream 5′-miRNA in the cluster, functions in endoplasmic reticulum (ER) stress by targeting EDEM3. However, the in vivo functions of miR-379 remain unclear. We created miR-379 knockout (KO) mice using CRISPR-Cas9 nickase and dual guide RNA technique and characterized their phenotype in diabetes. We screened for miR-379 targets in renal mesangial cells from WT vs. miR-379KO mice using AGO2-immunopreciptation and CLASH (cross-linking, ligation, sequencing hybrids) and identified the redox protein thioredoxin and mitochondrial fission-1 protein. miR-379KO mice were protected from features of DKD as well as body weight loss associated with mitochondrial dysfunction, ER- and oxidative stress. These results reveal a role for miR-379 in DKD and metabolic processes via reducing adaptive mitophagy. Strate- gies targeting miR-379 could offer therapeutic options for DKD. 1 Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA. -
NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment. -
Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts. -
Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ...................................................... -
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. -
Nucleic Acids Research, 2009, Vol
Published online 2 June 2009 Nucleic Acids Research, 2009, Vol. 37, No. 14 4587–4602 doi:10.1093/nar/gkp425 An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia Yair Benita1, Hirotoshi Kikuchi2, Andrew D. Smith3, Michael Q. Zhang3, Daniel C. Chung2 and Ramnik J. Xavier1,2,* 1Center for Computational and Integrative Biology, 2Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 and 3Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA Received April 20, 2009; Revised May 6, 2009; Accepted May 8, 2009 ABSTRACT the pivotal mediators of the cellular response to hypoxia is hypoxia-inducible factor (HIF), a transcription factor The transcription factor Hypoxia-inducible factor 1 that contains a basic helix-loop-helix motif as well as (HIF-1) plays a central role in the transcriptional PAS domain. There are three known members of the response to oxygen flux. To gain insight into HIF family (HIF-1, HIF-2 and HIF-3) and all are a/b the molecular pathways regulated by HIF-1, it is heterodimeric proteins. HIF-1 was the first factor to be essential to identify the downstream-target genes. cloned and is the best understood isoform (1). HIF-3 is We report here a strategy to identify HIF-1-target a distant relative of HIF-1 and little is currently known genes based on an integrative genomic approach about its function and involvement in oxygen homeosta- combining computational strategies and experi- sis. -
Genome-Wide Association Study in 2,046 Participants Drawn from a Population-Based Study
www.nature.com/scientificreports OPEN Variants in NEB and RIF1 genes on chr2q23 are associated with skeletal muscle index in Koreans: genome‑wide association study Kyung Jae Yoon1,2,3,4, Youbin Yi1, Jong Geol Do1, Hyung‑Lae Kim5, Yong‑Taek Lee1,2* & Han‑Na Kim2,4* Although skeletal muscle plays a crucial role in metabolism and infuences aging and chronic diseases, little is known about the genetic variations with skeletal muscle, especially in the Asian population. We performed a genome‑wide association study in 2,046 participants drawn from a population‑based study. Appendicular skeletal muscle mass was estimated based on appendicular lean soft tissue measured with a multi‑frequency bioelectrical impedance analyzer and divided by height squared to derive the skeletal muscle index (SMI). After conducting quality control and imputing the genotypes, we analyzed 6,391,983 autosomal SNPs. A genome‑wide signifcant association was found for the intronic variant rs138684936 in the NEB and RIF1 genes (β = 0.217, p = 6.83 × 10–9). These two genes are next to each other and are partially overlapped on chr2q23. We conducted extensive functional annotations to gain insight into the directional biological implication of signifcant genetic variants. A gene‑based analysis identifed the signifcant TNFSF9 gene and confrmed the suggestive association of the NEB gene. Pathway analyses showed the signifcant association of regulation of multicellular organism growth gene‑set and the suggestive associations of pathways related to skeletal system development or skeleton morphogenesis with SMI. In conclusion, we identifed a new genetic locus on chromosome 2 for SMI with genome‑wide signifcance. -
UC San Francisco Electronic Theses and Dissertations
UCSF UC San Francisco Electronic Theses and Dissertations Title Uncovering virulence pathways facilitated by proteolysis in HIV and a HIV associated fungal pathogen, Cryptococcus neoformans Permalink https://escholarship.org/uc/item/7vv2p2fh Author Clarke, Starlynn Cascade Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California ii Acknowledgments I would first like to thank my thesis advisor, Dr. Charles Craik. Throughout my PhD Charly has been unfailingly optimistic and enthusiastic about my projects, but most importantly, he has always had confidence in my abilities. During the course of graduate school I have doubted myself and my capabilities almost daily, but Charly has always believed that I would be successful in my scientific endeavors and I cannot thank him enough for that. Charly is the most enthusiastic scientist that I have ever met and he has the capacity to find a silver lining to almost any event. He also understands the importance of presentation and has the resourcefulness to transform almost any situation into an opportunity. These are all traits that do not come naturally to me, but having Charly as a mentor has helped me to learn some of these important skills. I would also like to thank my thesis committee members, Dr. Raul Andino and Dr. John Gross who have both been incredibly supportive over the years. Despite the fact that my research ended up veering away from the original focus that was more in line with their expertise, they have continued to provide me with encouragement and thoughtful feedback during my thesis committee meetings as well as at other times that I sought their advice. -
Ubiquitination/Proteasome Pathways Specialized in Cellular Stress
The Journal of Immunology The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways Jaanus Suurva¨li,* Luc Jouneau,† Dominique The´pot,‡ Simona Grusea,x Pierre Pontarotti,{ Louis Du Pasquier,‖ Sirje Ru€utel€ Boudinot,* and Pierre Boudinot† The MHC is a large genetic region controlling Ag processing and recognition by T lymphocytes in vertebrates. Approximately 40% of its genes are implicated in innate or adaptive immunity. A putative proto-MHC exists in the chordate amphioxus and in the fruit fly, indicating that a core MHC region predated the emergence of the adaptive immune system in vertebrates. In this study, we identify a putative proto-MHC with archetypal markers in the most basal branch of Metazoans—the placozoan Trichoplax adhaerens, indicating that the proto-MHC is much older than previously believed—and present in the common ancestor of bilaterians (contains vertebrates) and placozoans. Our evidence for a T. adhaerens proto-MHC was based on macrosynteny and phylogenetic analyses revealing approximately one third of the multiple marker sets within the human MHC-related paralogy groups have unique counterparts in T. adhaerens, consistent with two successive whole genome duplications during early verte- brate evolution. A genetic ontologic analysis of the proto-MHC markers in T. adhaerens was consistent with its involvement in defense, showing proteins implicated in antiviral immunity, stress response, and ubiquitination/proteasome pathway. Proteasome genes psma, psmb, and psmd are present, whereas the typical markers of adaptive immunity, such as MHC class I and II, are absent. Our results suggest that the proto-MHC was involved in intracellular intrinsic immunity and provide insight into the primordial architecture and functional landscape of this region that later in evolution became associated with numerous genes critical for adaptive immunity in vertebrates. -
Suppression of Carcinogenesis and Tumor Progression by an Energy Restriction-Mimetic Agent in Murine Models of Prostate Cancer
SUPPRESSION OF CARCINOGENESIS AND TUMOR PROGRESSION BY AN ENERGY RESTRICTION-MIMETIC AGENT IN MURINE MODELS OF PROSTATE CANCER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Lisa Danielle Berman-Booty, V.M.D Graduate Program in Veterinary Biosciences The Ohio State University 2013 Dissertation Committee: Professor Ching-Shih Chen, Advisor Professor Robert Brueggemeier Professor Steven Clinton Professor Thomas Rosol Copyrighted by Lisa Danielle Berman-Booty 2013 ABSTRACT Cancer cells preferentially utilize glycolysis to generate energy even in the presence of sufficient oxygen for oxidative phosphorylation. This shift in energy metabolism, termed the Warburg effect, is responsible for cancer cells’ high metabolic rate. Therapies that inhibit cancer cell energy metabolism have proved effective in vitro, and dietary caloric restriction is a valuable experimental chemotherapeutic strategy. While animal studies utilizing caloric restriction typically restrict the experimental group’s caloric intake by 20-40%, this degree of caloric restriction is not realistic for human cancer patients. Therefore, agents that can induce a response similar to that of glucose restriction in vitro and caloric restriction in vivo are needed. These agents are termed energy-restriction mimetic agents (ERMAs) and include 2-deoxyglucose, resveratrol, and the thiazolidinedione derivatives OSU-CG12 and OSU-CG5. Here, we characterized OSU- CG5’s mechanism of action in vitro and its chemotherapeutic and chemopreventive activities in vivo. Specifically, we evaluated OSU-CG5’s activity in three different human prostate cancer cell lines that range from androgen-dependent (LNCaP) to castration- resistant (LNCaP-abl and PC3). -
Modulation of ERQC and ERAD: a Broad-Spectrum Spanner in the Works of Cancer Cells?”
Hindawi Journal of Oncology Volume 2020, Article ID 1396429, 7 pages https://doi.org/10.1155/2020/1396429 Erratum Erratum to “Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells?” Gabor Tax,1 Andrea Lia,1,2 Angelo Santino,2 and Pietro Roversi 1 1Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK 2Institute of Sciences of Food Production, C.N.R. Unit of Lecce, Via Monteroni, I-73100 Lecce, Italy Correspondence should be addressed to Pietro Roversi; [email protected] Received 27 January 2020; Accepted 28 January 2020; Published 9 July 2020 Copyright © 2020 Gabor Tax et al. 'is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the article titled “Modulation of ERQC and ERAD: A make attractive targets for the treatment of cell malignancies Broad-Spectrum Spanner in the Works of Cancer Cells?” [1], [10], in that the fitness of the cancer cells, particularly those there was an incorrect section numbering. 'ese errors bearing a high secretory burden such as multiple myeloma occurred during the production process. 'e correct section cells [11], is critically dependent on the functional integrity numbering are as follows. of the endoplasmic reticulum (ER), which in turn relies on ERQC/ERAD as ER stress-attenuating mechanisms. -
Glomerular Expression Pattern of Long Non-Coding Rnas in the Type 2
www.nature.com/scientificreports OPEN Glomerular expression pattern of long non-coding RNAs in the type 2 diabetes mellitus BTBR mouse Received: 13 August 2018 Accepted: 11 June 2019 model Published: xx xx xxxx Simone Reichelt-Wurm 1, Tobias Wirtz1, Dominik Chittka1, Maja Lindenmeyer2,3, Robert M. Reichelt4, Sebastian Beck1, Panagiotis Politis5, Aristidis Charonis6, Markus Kretz7, Tobias B. Huber3, Shuya Liu3, Bernhard Banas 1 & Miriam C. Banas1 The prevalence of type 2 diabetes mellitus (T2DM) and by association diabetic nephropathy (DN) will continuously increase in the next decades. Nevertheless, the underlying molecular mechanisms are largely unknown and studies on the role of new actors like long non-coding RNAs (lncRNAs) barely exist. In the present study, the inherently insulin-resistant mouse strain “black and tan, brachyuric” (BTBR) served as T2DM model. While wild-type mice do not exhibit pathological changes, leptin- defcient diabetic animals develop a severe T2DM accompanied by a DN, which closely resembles the human phenotype. We analyzed the glomerular expression of lncRNAs from wild-type and diabetic BTBR mice (four, eight, 16, and 24 weeks) applying the “GeneChip Mouse Whole Transcriptome 1.0 ST” array. This microarray covered more lncRNA gene loci than any other array before. Over the observed time, our data revealed diferential expression patterns of 1746 lncRNAs, which markedly difered from mRNAs. We identifed protein-coding and non-coding genes, that were not only co-located but also co- expressed, indicating a potentially cis-acting function of these lncRNAs. In vitro-experiments strongly suggested a cell-specifc expression of these lncRNA-mRNA-pairs. Additionally, protein-coding genes, being associated with signifcantly regulated lncRNAs, were enriched in various biological processes and pathways, that were strongly linked to diabetes.