Genome-Wide Association Study in 2,046 Participants Drawn from a Population-Based Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mir-379 Deletion Ameliorates Features of Diabetic Kidney Disease By
ARTICLE https://doi.org/10.1038/s42003-020-01516-w OPEN miR-379 deletion ameliorates features of diabetic kidney disease by enhancing adaptive mitophagy via FIS1 ✉ Mitsuo Kato 1,8 , Maryam Abdollahi 1,8, Ragadeepthi Tunduguru1, Walter Tsark2, Zhuo Chen 1, 1234567890():,; Xiwei Wu3, Jinhui Wang3, Zhen Bouman Chen 1,4, Feng-Mao Lin1, Linda Lanting1, Mei Wang1, Janice Huss5, ✉ Patrick T Fueger 5,6, David Chan7 & Rama Natarajan 1,4 Diabetic kidney disease (DKD) is a major complication of diabetes. Expression of members of the microRNA (miRNA) miR-379 cluster is increased in DKD. miR-379, the most upstream 5′-miRNA in the cluster, functions in endoplasmic reticulum (ER) stress by targeting EDEM3. However, the in vivo functions of miR-379 remain unclear. We created miR-379 knockout (KO) mice using CRISPR-Cas9 nickase and dual guide RNA technique and characterized their phenotype in diabetes. We screened for miR-379 targets in renal mesangial cells from WT vs. miR-379KO mice using AGO2-immunopreciptation and CLASH (cross-linking, ligation, sequencing hybrids) and identified the redox protein thioredoxin and mitochondrial fission-1 protein. miR-379KO mice were protected from features of DKD as well as body weight loss associated with mitochondrial dysfunction, ER- and oxidative stress. These results reveal a role for miR-379 in DKD and metabolic processes via reducing adaptive mitophagy. Strate- gies targeting miR-379 could offer therapeutic options for DKD. 1 Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA. -
Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo)
animals Article Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo) Kyu-Sang Lim 1 , Sun-Sik Chang 2, Bong-Hwan Choi 3, Seung-Hwan Lee 4, Kyung-Tai Lee 3 , Han-Ha Chai 3, Jong-Eun Park 3 , Woncheoul Park 3 and Dajeong Lim 3,* 1 Department of Animal Science, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25340, Korea; [email protected] 3 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; [email protected] (B.-H.C.); [email protected] (K.-T.L.); [email protected] (H.-H.C.); [email protected] (J.-E.P.); [email protected] (W.P.) 4 Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected] Received: 26 July 2019; Accepted: 23 September 2019; Published: 26 September 2019 Simple Summary: Allele-specific expression (ASE) is the biased allelic expression of genetic variants within the gene. Recently, the next-generation sequencing (NGS) technologies allowed us to detect ASE genes at a transcriptome-wide level. It is essential for the understanding of animal development, cellular programming, and the effect on their complexity because ASE shows developmental, tissue, or species-specific patterns. However, these aspects of ASE still have not been annotated well in farm animals and most studies were conducted mainly at the fetal stages. Hence, the current study focuses on detecting ASE genes in 17 tissues in adult cattle. -
Retinoic Acid Induced 1 Gene Analysis in Humans and Zebrafish
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2009 RETINOIC ACID INDUCED 1 GENE ANALYSIS IN HUMANS AND ZEBRAFISH Bijal Vyas Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Genetics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1901 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Bijal Akshay Vyas, 2009 All Rights Reserved RETINOIC ACID INDUCED 1 GENE ANALYSIS IN HUMANS AND ZEBRAFISH A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by BIJAL AKSHAY VYAS Bachelor of Biology North Carolina State University, 2007 Director: SARAH H. ELSEA Associate Professor, Department of Human and Molecular Genetics Department of Pediatrics Virginia Commonwealth University Richmond, Virginia August, 2009 Acknowledgement I would like to thank all the people who have supported and motivated me throughout my graduate studies. I had the great opportunity to work in Dr. Sarah Elsea‘s lab and I sincerely thank her for her willingness to help, patience and encouraging me after my failed experiments. I am also greatly thankful to Dr. Jim Lister for guiding and helping me every step of the way in finishing my zebrafish project. I also thank my third committee member, Dr. Andrew Davies for his project consultations, helpful alternatives and encouragement. -
Genes in a Refined Smith-Magenis Syndrome Critical Deletion Interval on Chromosome 17P11.2 and the Syntenic Region of the Mouse
Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Article Genes in a Refined Smith-Magenis Syndrome Critical Deletion Interval on Chromosome 17p11.2 and the Syntenic Region of the Mouse Weimin Bi,1,6 Jiong Yan,1,6 Paweł Stankiewicz,1 Sung-Sup Park,1,7 Katherina Walz,1 Cornelius F. Boerkoel,1 Lorraine Potocki,1,3 Lisa G. Shaffer,1 Koen Devriendt,4 Małgorzata J.M. Nowaczyk,5 Ken Inoue,1 and James R. Lupski1,2,3,8 Departments of 1Molecular & Human Genetics, 2Pediatrics, Baylor College of Medicine, 3Texas Children’s Hospital, Houston, Texas 77030, USA; 4Centre for Human Genetics, University Hospital Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium; 5Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4J9, Canada Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome associated with behavioral abnormalities and sleep disturbance. Most patients have the same ∼4 Mb interstitial genomic deletion within chromosome 17p11.2. To investigate the molecular bases of the SMS phenotype, we constructed BAC/PAC contigs covering the SMS common deletion interval and its syntenic region on mouse chromosome 11. Comparative genome analysis reveals the absence of all three ∼200-kb SMS-REP low-copy repeats in the mouse and indicates that the evolution of SMS-REPs was accompanied by transposition of adjacent genes. Physical and genetic map comparisons in humans reveal reduced recombination in both sexes. Moreover, by examining the deleted regions in SMS patients with unusual-sized deletions, we refined the minimal Smith-Magenis critical region (SMCR) to an ∼1.1-Mb genomic interval that is syntenic to an ∼1.0-Mb region in the mouse. -
Comparison of Orthologs Across Multiple Species by Various Strategies
COMPARISON OF ORTHOLOGS ACROSS MULTIPLE SPECIES BY VARIOUS STRATEGIES BY HUI LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biophysics and Computational Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Eric Jakobsson, Chair, Director of Research Professor Gene E. Robinson Associate Professor Saurabh Sinha Assistant Professor Jian Ma Abstract Thanks to the improvement of genome sequencing technology, abundant multi-species genomic data now became available and comparative genomics continues to be a fast prospering filed of biological research. Through the comparison of genomes of different organisms, we can understand what, at the molecular level, distinguishes different life forms from each other. It shed light on revealing the evolution of biology. And it also helps to refine the annotations and functions of individual genomes. For example, through comparisons across mammalian genomes, we can give an estimate of the conserved set of genes across mammals and correspondingly, find the species-specific sets of genes or functions. However, comparative genomics can be feasible only if a meaningful classification of genes exists. A natural way to do so is to delineate sets of orthologous genes. However, debates exist about the appropriate way to define orthologs. It is originally defined as genes in different species which derive from speciation events. But such definition is not sufficient to derive orthologous genes due to the complexity of evolutionary events such as gene duplication and gene loss. While it is possible to correctly figure out all the evolutionary events with the true phylogenetic tree, the true phylogenetic tree itself is impractical to be inferred. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Mouse Tom1l2 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Tom1l2 Knockout Project (CRISPR/Cas9) Objective: To create a Tom1l2 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tom1l2 gene (NCBI Reference Sequence: NM_153080 ; Ensembl: ENSMUSG00000000538 ) is located on Mouse chromosome 11. 15 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 15 (Transcript: ENSMUST00000102683). Exon 2~4 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a hypomorphic gene trap allele show malocclusion, kyphosis, hydrocephaly, patchy hair, splenomegaly, high B- and T-cell counts, thrombopenia, impaired humoral responses, a high frequency of infections and tumors, renal cysts, skin lesions, freezing behavior and sporadic bleeding. Exon 2 starts from about 3.48% of the coding region. Exon 2~4 covers 20.64% of the coding region. The size of effective KO region: ~9966 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 15 Legends Exon of mouse Tom1l2 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. -
Genomic Organization of the Approximately 1.5 Mb Smith
European Journal of Human Genetics (2001) 9, 892 ± 902 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Genomic organisation of the ~1.5 Mb Smith-Magenis syndrome critical interval: Transcription map, genomic contig, and candidate gene analysis Rebecca E Lucas1, Christopher N Vlangos1, Parimal Das4, Pragna I Patel4 and Sarah H Elsea*,1,2,3 1Genetics Graduate Program, Michigan State University, East Lansing, Michigan, MI 48824, USA; 2Department of Zoology, Michigan State University, East Lansing, Michigan, MI 48824, USA; 3Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, MI 48824, USA; 4Department of Neurology, Baylor College of Medicine, Houston, Texas, TX 77030, USA Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome associated with an interstitial deletion of chromosome 17 involving band p11.2. SMS is hypothesised to be a contiguous gene syndrome in which the phenotype arises from the haploinsufficiency of multiple, functionally-unrelated genes in close physical proximity, although the true molecular basis of SMS is not yet known. In this study, we have generated the first overlapping and contiguous transcription map of the SMS critical interval, linking the proximal 17p11.2 region near the SMS-REPM and the distal region near D17S740 in a minimum tiling path of 16 BACs and two PACs. Additional clones provide greater coverage throughout the critical region. Not including the repetitive sequences that flank the critical interval, the map is comprised of 13 known genes, 14 ESTs, and six genomic markers, and is a synthesis of Southern hybridisation and polymerase chain reaction data from gene and marker localisation to BACs and PACs and database sequence analysis from the human genome project high-throughput draft sequence. -
Supporting Information
Supporting Information Collin et al. 10.1073/pnas.1220864110 SI Materials and Methods Mutation Analysis of PASK and ZNF408. The two candidate variants Human Subjects. A detailed clinical description of familial exudative that were left after linkage and exome analysis were analyzed in vitreoretinopathy (FEVR) family W05-215 has been reported family W05-215 with Sanger sequencing of exon 6 of proline- previously (1), and clinical details of the affected individuals alanine-rich ste20-related kinase (PASK) and exon 5 of zinc studied using next-generation sequencing (NGS) (III:5 and V:2) finger protein 408 (ZNF408). Primer sequences are available are summarized below. Eight affected individuals, three un- on request. The presence of these two changes in additional affected individuals, and three spouses participated in the ge- Dutch FEVR probands and 110 control individuals was ana- netic analysis (Fig. S1A). After linkage and exome sequencing lyzed via restriction fragment length polymorphism analysis, analysis were performed, three additional affected relatives using AflIII for the c.791dup change in PASK and SfaNI for the (IV:10, IV:11, and V:7) were sampled. Clinical details of the c.1363C>T change in ZNF408. All exons and intron–exon two individuals with FEVR from family W05-220 (IV:3 and boundaries of ZNF408 were amplified under standard PCR V:2) are summarized below. Furthermore, 132 individuals with conditions using primers that are available on request. Sanger FEVR (8 from The Netherlands, 64 from the United Kingdom, sequence analysis was performed with the ABI PRISM Big Dye 55 from Japan, and 5 from Switzerland) participated in this Terminator Cycle Sequencing V2.0 Ready Reaction Kit and study, along with 110 ethnically matched Dutch and 191 eth- an ABI PRISM 3730 DNA analyzer (Applied Biosystems). -
Evolution and Diversity of Copy Number Variation in the Great Ape Lineage
Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution and diversity of copy number variation in the great ape lineage Peter H. Sudmant1, John Huddleston1,7, Claudia R. Catacchio2, Maika Malig1, LaDeana W. Hillier3, Carl Baker1, Kiana Mohajeri1, Ivanela Kondova4, Ronald E. Bontrop4, Stephan Persengiev4, Francesca Antonacci2, Mario Ventura2, Javier Prado-Martinez5, Tomas 5,6 1,7 Marques-Bonet , and Evan E. Eichler 1. Department of Genome Sciences, University of Washington, Seattle, WA, USA 2. University of Bari, Bari, Italy 3. The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA 4. Department of Comparative Genetics, Biomedical Primate Research Centre, Rijswijk, The Netherlands 5. Institut de Biologia Evolutiva, (UPF-CSIC) Barcelona, Spain 6. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 7. Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA Correspondence to: Evan Eichler Department of Genome Sciences University of Washington School of Medicine Foege S-413A, Box 355065 3720 15th Ave NE Seattle, WA 98195 E-mail: [email protected] 1 Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Copy number variation (CNV) contributes to the genetic basis of disease and has significantly restructured the genomes of humans and great apes. The diversity and rate of this process, however, has not been extensively explored among the great ape lineages. We analyzed 97 deeply sequenced great ape and human genomes and estimate that 16% (469 Mbp) of the hominid genome has been affected by recent copy number changes. -
NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment. -
Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.