Oral-Facial-Digital Syndromes by Joseph R Siebert Phd (Dr

Total Page:16

File Type:pdf, Size:1020Kb

Oral-Facial-Digital Syndromes by Joseph R Siebert Phd (Dr Oral-facial-digital syndromes By Joseph R Siebert PhD (Dr. Siebert of the University of Washington has no relevant financial relationships to disclose.) Originally released February 12, 1996; last updated July 1, 2017; expires July 1, 2020 Introduction This article includes discussion of oral-facial-digital syndromes, dysplasia linguofacialis, Mohr syndrome, Mohr- Majewski syndrome, orodigitofacial dysostosis, orofaciodigital syndrome, oro-facio-digital syndrome, Thurston syndrome, Varadi syndrome, oral-facial-digital syndrome type I, oral-facial-digital syndrome type II, oral-facial-digital syndrome type III, oral-facial-digital syndrome type IV, oral-facial-digital syndrome type IX, oral-facial-digital syndrome type V, oral-facial-digital syndrome type VI, oral-facial-digital syndrome type VII, oral-facial-digital syndrome type VIII, and oral-facial-digital syndrome type X. The foregoing terms may include synonyms, similar disorders, variations in usage, and abbreviations. Overview Oral-facial-digital syndrome represents a spectrum of extremely variable congenital conditions whose diversity has engendered considerable discussion. Major changes include hypertrophic frenula, lingual hamartomas, cleft lip or palate, ocular hypertelorism, brachydactyly, polydactyly, and syndactyly. Other organ systems are affected as well, especially the central nervous system and urinary tract. Mutations in the OFD1 gene have a deleterious effect on primary cilia and alter several signaling pathways during development, thus, accounting for the wide variation in phenotypes and association with Joubert, Meckel-Gruber, and related ciliopathies. Careful physical and genetic workups are, therefore, necessary. As the delineation of syndromes continues, the classification of this complex condition will evolve. Key points • Oral-facial-digital syndrome is an extremely variable congenital condition whose diversity has engendered widespread investigation and debate. • Major changes include hypertrophic frenula, lingual hamartomas, cleft lip or palate, ocular hypertelorism, brachydactyly, polydactyly, and syndactyly. • The brain may be normal or altered by agenesis of the corpus callosum, cerebral dysgenesis, porencephaly, or midline cerebral and cerebellar defects. • Research has shown that mutations in the OFD1 gene alter a centrosomal protein in the basal body of primary cilia and influence multiple signalling pathways during development. This accounts for the association of oral-facial-digital syndrome with Joubert, Meckel-Gruber, and related syndromes. • As the delineation of syndromes continues, the classification of this complex condition will evolve. Historical note and terminology Papillon-Léage and Psaume are credited with the first description of patients with oral-facial-digital syndrome (Papillon-Leage and Psaume 1954), although a case of apparent Mohr syndrome appears in the older literature (Case 460 of Otto monstrorum sexcentorum descriptio anatomica, 1841: Beckwith personal communication). Gorlin and colleagues published the first English report of the disorder (Gorlin et al 1961). Since then, several hundred patients have been reported and at least 12 variants have been proposed. The common findings are oral (hypertrophic frenula, lingual hamartomas, cleft palate), facial (cleft lip, ocular hypertelorism), and digital (brachydactyly, polydactyly, syndactyly) malformations. The first reported cases were of females, an observation confirmed in large pedigrees containing fewer liveborn males than expected. These findings were interpreted as evidence for X-linked dominance with prenatal lethality in males. Rimoin and Edgerton called attention to other families in which males and females were affected; parents of affected individuals were often related, and autosomal recessive inheritance was assumed (Rimoin and Edgerton 1967). These authors suggested the existence of 2 phenotypically similar but genetically distinct, syndromes: (1) oral-facial-digital syndrome type I, which is X-linked dominant; and (2) oral-facial-digital syndrome type II, which is autosomal recessive. Oral-facial-digital syndrome type II has also been referred to as "Mohr syndrome," in deference to a report that may represent the first well-described cases. The concept of at least 2 genetically distinct variants of oral-facial-digital syndrome has persisted, and the spectrum of phenotypic features that may be associated with either oral-facial-digital syndrome type I or oral-facial-digital syndrome type II has grown. A number of additional variants of oral-facial-digital syndrome have been suggested based on the recognition of novel and presumed "distinctive" characteristics associated with those typical for oral- facial-digital syndrome (See Table 1). New cases continue to be added (Toriello 1993; Moran-Barroso et al 1998; Gurrieri et al 2007). Transmission in most (but not all) cases is autosomal recessive. Table 1. Variants of Oral-facial-digital Syndrome Oral-facial-digital syndrome I (aka, Papillon-Léage-Psaume syndrome) • Distinguishing feature: hyperplastic frenula; lobulated tongue; nasal cartilage hypoplasia; cleft lip; cleft palate; digital malformations; cutaneous milia; hypotrichosis; porencephaly; agenesis of corpus callosum; sparse brittle hair • Inheritance: X-linked dominant, lethal prenatally in males Oral-facial-digital syndrome II (aka, Mohr syndrome) • Distinguishing feature: ocular hypertelorism; micrognathia; hydrocephalus • Inheritance: autosomal recessive Oral-facial-digital syndrome III (aka, Sugarman syndrome) • Distinguishing feature: "see-saw" winking • Inheritance: autosomal recessive Oral-facial-digital syndrome IV (aka, Baraitser-Burn syndrome) • Distinguishing feature: skeletal dysplasia • Inheritance: autosomal recessive Oral-facial-digital syndrome V (aka, Thurston syndrome) • Distinguishing feature: cleft lip; postaxial polydactyly; early dental loss; Indian ethnic background • Inheritance: autosomal recessive Oral-facial-digital syndrome VI (aka, Varadi syndrome) • Distinguishing feature: central polydactyly (though not a uniform finding) (Darmency-Stamboul et al 2013); lingual and sublingual lumps; hypothalamic hamartoma; cerebellar dysgenesis with molar tooth sign; optochiasmatic pilocytic astrocytoma in 1 patient (Sarma et al 2015) • Inheritance: autosomal recessive Oral-facial-digital syndrome VII (aka, Whelan syndrome) • Distinguishing feature: facial asymmetry; hydronephrosis • Inheritance: autosomal dominant or X-linked dominant Oral-facial-digital syndrome VIII (aka, Edwards syndrome) (Edwards et al 1988) • Distinguishing feature: short tibiae or radii; bilateral preaxial and postaxial polydactyly • Inheritance: X-linked recessive, not lethal prenatally in either sex Oral-facial-digital syndrome IX (aka, Gurrieri syndrome) (Gurrieri et al 1992; Jamieson and Collins 1993; Nagai et al 1998; Erickson and Bodensteiner 2007; Adly et al 2014) • Distinguishing feature: retinochoroidal coloboma; severe microcephaly; Dandy-Walker malformation; retrobulbar cysts; short stature • Inheritance: autosomal recessive Oral-facial-digital syndrome X (aka, Figuera syndrome) (Figuera et al 1993) • Distinguishing feature: fibular aplasia • Inheritance: autosomal recessive Oral-facial-digital syndrome XI (aka, Gabrielli syndrome) (Gabrielli et al 1994; Guven et al 2009) • Distinguishing feature: postaxial polydactyly; ventriculomegaly; microcephaly; alar hypoplasia; duplicated vomer; cleft ethmoid; cleft vertebral bodies • Inheritance: autosomal recessive Oral-facial-digital syndrome XII (aka, Moran-Barroso syndrome) (Moran-Barroso et al 1998) • Distinguishing feature: myelomeningocele; stenosis of aqueduct of Sylvius; dysplasia of atrioventricular valves • Inheritance: autosomal recessive Oral-facial-digital syndrome XIII (aka, Degner syndrome) (Degner et al 1999) • Distinguishing feature: brachyclinosyndactyly; leukoaraiosis • Inheritance: autosomal recessive Efforts to subtype oral-facial-digital syndrome into distinct phenotypic variants have met with criticism from those who believe that many, or perhaps all, of the autosomal recessive variants arise from a single gene mutation (Fenton and Watt-Smith 1985; Neri et al 1995). This criticism appears justified based on reported individuals or family members with "distinctive" findings characteristic of more than one variant of oral-facial-digital syndrome. At present, classification is complex, making the process of discerning new types of oral-facial-digital syndrome demanding (Gorlin et al 1990; Gurrieri et al 1992; Camera et al 1994; Toriello et al 1997; Moran-Barroso et al 1998). Distinction between autosomal recessive oral-facial-digital and other syndromes has also been challenged (Hingorani et al 1991; Lin et al 1991; Muenke et al 1991; Verloes et al 1992; Franceschini et al 1995; Neri et al 1995). In particular, some patients with Beemer-Langer syndrome, Pallister-Hall syndrome, and Majewski short-rib polydactyly syndrome have phenotypic features indistinguishable from variants of oral-facial-digital syndrome. Although detailed neuroanatomic studies were not part of older case reports, the spectrum of neuropathological findings has expanded in parallel with the diverse anatomic findings found in other organ systems. The phenotypic overlap of oral-facial-digital syndrome with Joubert, Meckel-Grüber, and like conditions appears to be a result of altered cilia function although the role of individual proteins remains to be clarified (Macca and Franco 2009). Mutations in OFD1 occur in familial
Recommended publications
  • Clinical Classification of Caroli's Disease: an Analysis of 30 Patients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector DOI:10.1111/hpb.12330 HPB ORIGINAL ARTICLE Clinical classification of Caroli's disease: an analysis of 30 patients Zhong-Xia Wang1,2*, Yong-Gang Li2*, Rui-Lin Wang2, Yong-Wu Li3, Zhi-Yan Li3, Li-Fu Wang2, Hui-Ying Yang2, Yun Zhu2, Yao Wang2, Yun-Feng Bai2, Ting-Ting He2, Xiao-Feng Zhang2 & Xiao-He Xiao1,2 1Department of Graduate School, 301 Hospital, 2Integrative Medical Centre, and 3Imaging Centre, 302 Hospital, Beijing, China Abstract Background: Caroli's disease (CD) is a rare congenital disorder. The early diagnosis of the disease and differentiation of types I and II are of extreme importance to patient survival. This study was designed to review and discuss observations in 30 patients with CD and to clarify the clinical characteristics of the disease. Methods: The demographic and clinical features, laboratory indicators, imaging findings and pathology results for 30 patients with CD were reviewed retrospectively. Results: Caroli's disease can occur at any age. The average age of onset in the study cohort was 24 years. Patients who presented with symptoms before the age of 40 years were more likely to develop type II CD. Approximately one-third of patients presented without positive signs at original diagnosis and most of these patients were found to have type I CD on pathology. Anaemia, leucopoenia and thrombocytopoenia were more frequent in patients with type II than type I CD. Magnetic resonance cholangiopancreatography (MRCP) and computed tomography (CT) examinations were most useful in diagnosing CD.
    [Show full text]
  • Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
    NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants.
    [Show full text]
  • Biliary Tract
    2016-06-16 The role of cytology in management of diseases of hepatobiliary ducts • Diagnosis in patients with radiologically/clinically detected lesions • Screening of dysplasia/CIS/cancer in risk groups biliary tract cytology • Preoperative evaluation of the candidates for liver transplantation (Patients with cytological low-grade and high-grade Mehmet Akif Demir, MD dysplasia/adenocarcinoma are currently referred for liver transplantation Sahlgrenska University Hospital in some institutions). Gothenburg Sweden Sarajevo 18th June 2016 • Diagnosis of the benign lesions and infestations False positive findings • majority of false positive cases have a Low sensitivity but high specificity! background of primary sclerosing cholangitis. – lymphoplasmacytic sclerosing pancreatitis and cholangitis, – primary sclerosing cholangitis, – granulomatous disease, – non-specific fibrosis/inflammation – stone disease. False negative findings • Repeat brushing increases the diagnostic yield and should be performed when sampling • Poor sampling biliary strictures with a cytology brush at ERCP. • Lack of diagnostic criteria for dysplasia-carcinoma in situ • Difficulties in recognition of special tumour types – well-differentiated cholangiocarcinoma with tubular architecture • Predictors of positive yield include – gastric foveolar type cholangiocarcinoma with mucin-producing – tumour cells. older age, •Underestimating the significance of the smear background – mass size >1 cm, and – stricture length of >1 cm. •The causes of false negative cytology –sampling
    [Show full text]
  • Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
    Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression.
    [Show full text]
  • The Hydrolethalus Syndrome Protein HYLS-1 Regulates Formation of the Ciliary Gate
    ARTICLE Received 8 Sep 2015 | Accepted 30 Jun 2016 | Published 18 Aug 2016 DOI: 10.1038/ncomms12437 OPEN The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate Qing Wei1,2,*, Yingyi Zhang1,*, Clementine Schouteden3, Yuxia Zhang1, Qing Zhang1, Jinhong Dong1, Veronika Wonesch3, Kun Ling1, Alexander Dammermann3 & Jinghua Hu1,4,5 Transition fibres (TFs), together with the transition zone (TZ), are basal ciliary structures thought to be crucial for cilium biogenesis and function by acting as a ciliary gate to regulate selective protein entry and exit. Here we demonstrate that the centriolar and basal body protein HYLS-1, the C. elegans orthologue of hydrolethalus syndrome protein 1, is required for TF formation, TZ organization and ciliary gating. Loss of HYLS-1 compromises the docking and entry of intraflagellar transport (IFT) particles, ciliary gating for both membrane and soluble proteins, and axoneme assembly. Additional depletion of the TF component DYF-19 in hyls-1 mutants further exacerbates TZ anomalies and completely abrogates ciliogenesis. Our data support an important role for HYLS-1 and TFs in establishment of the ciliary gate and underline the importance of selective protein entry for cilia assembly. 1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA. 2 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China. 3 Max F. Perutz Laboratories, Vienna Biocenter (VBC), University of Vienna, A-1030 Vienna, Austria. 4 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA. 5 Mayo Translational PKD Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
    [Show full text]
  • Unraveling the Genetics of Joubert and Meckel-Gruber Syndromes
    Journal of Pediatric Genetics 3 (2014) 65–78 65 DOI 10.3233/PGE-14090 IOS Press Unraveling the genetics of Joubert and Meckel-Gruber syndromes Katarzyna Szymanska, Verity L. Hartill and Colin A. Johnson∗ Department of Ophthalmology and Neuroscience, University of Leeds, Leeds, UK Received 27 May 2014 Revised 11 July 2014 Accepted 14 July 2014 Abstract. Joubert syndrome (JBTS) and Meckel-Gruber syndrome (MKS) are recessive neurodevelopmental conditions caused by mutations in proteins that are structural or functional components of the primary cilium. In this review, we provide an overview of their clinical diagnosis, management and molecular genetics. Both have variable phenotypes, extreme genetic heterogeneity, and display allelism both with each other and other ciliopathies. Recent advances in genetic technology have significantly improved diagnosis and clinical management of ciliopathy patients, with the delineation of some general genotype-phenotype correlations. We highlight those that are most relevant for clinical practice, including the correlation between TMEM67 mutations and the JBTS variant phenotype of COACH syndrome. The subcellular localization of the known MKS and JBTS proteins is now well-described, and we discuss some of the contemporary ideas about ciliopathy disease pathogenesis. Most JBTS and MKS proteins localize to a discrete ciliary compartment called the transition zone, and act as structural components of the so-called “ciliary gate” to regulate the ciliary trafficking of cargo proteins or lipids. Cargo proteins include enzymes and transmembrane proteins that mediate intracellular signaling. The disruption of transition zone function may contribute to the ciliopathy phenotype by altering the composition of the ciliary membrane or axoneme, with impacts on essential developmental signaling including the Wnt and Shh pathways as well as the regulation of secondary messengers such as inositol-1,4,5-trisphosphate (InsP3) and cyclic adenosine monophosphate (cAMP).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter
    New Developments Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter Niccolo` Bacchi,1 Simona Casarosa,1,2 and Michela A. Denti1,3 1Centre for Integrative Biology (CIBIO) - University of Trento, Trento, Italy 2Neuroscience Institute - National Research Council (CNR), Pisa, Italy 3Neuroscience Institute - National Research Council (CNR), Padova, Italy Correspondence: Simona Casarosa, Splicing is an important and highly regulated step in gene expression. The ability to modulate Centre for Integrative Biology it can offer a therapeutic option for many genetic disorders. Antisense-mediated splicing- (CIBIO) - University of Trento, Via correction approaches have recently been successfully exploited for some genetic diseases, Sommarive 9, 38123 Trento, Italy; and are currently demonstrating safety and efficacy in different clinical trials. Their [email protected]. application for the treatment of retinal dystrophies could potentially solve a vast panel of Michela A. Denti, Centre for Inte- grative Biology (CIBIO) - University cases, as illustrated by the abundance of mutations that could be targeted and the versatility of ofTrento,ViaSommarive9,38123 the technique. In this review, we will give an insight of the different therapeutic strategies, Trento, Italy; focusing on the current status of their application for retinal dystrophies. [email protected]. Keywords: splicing correction, antisense oligonucleotides, retinal dystrophy, gene therapy SC and MAD contributed equally to the work presented here and should therefore be regarded as equivalent authors. Submitted: April 8, 2014 Accepted: April 11, 2014 Citation: Bacchi N, Casarosa S, Denti MA. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Invest Oph- thalmol Vis Sci.
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Crouzon Syndrome with Ophthalmological Complications
    Journal of Rawalpindi Medical College (JRMC); 2012;16(1):80-81 Case Report Crouzon Syndrome With Ophthalmological Complications Rahela Nasir Paediatric Department, Capital Hospital, CDA Islamabad. Crouzon Syndrome is characterized by premature bilateral optic atrophy. Other facial features included a craniosynostosis. It has an autosomal dominant inheritance prominent nose and deep and narrow palate. No but represents fresh mutation also. Other craniofacial digital abnormalities were seen. No dental aplasia was abnormalities include ocular proptosis caused by shallow present. Systemic examination revealed no orbits with or without divergent strabismus. There may be abnormality. increased intracranial pressure for which surgical morcellation procedures are indicated. A case of He was diagnosed as a case of Crouzon syndrome craniosynostosis is reported which is diagnosed as Crouzon with ocular complications on clinical basis. He was Syndrome with ocular complications on clinical grounds. investigated for microcephaly and suspected Split craniotomy was performed by a neurosurgeon to craniosynostosis. Radiographs of skull showed small relieve raised intracranial pressure and to enhance brain sized skull with early closure of sutures and fontanelle growth. Crouzon Syndrome was originally described in 1912 suggestive of craniosynstosis(Fig 2). A hammered- by Crouzon in a mother and her daughter. It is an autosomal silver (beaten metal/ copper beaten) appearance was dominant inherited disorder but represents fresh mutation also seen due to raised intracranial pressure and also. Crouzon syndrome is characterized by premature compression of the developing brain on the fused craniosynostosis which is quite variable but the coronal suture is nearly always bilaterally involved. Craniofacial bone. CT scan brain with contrast was done which abnormalities include brachycephaly, shallow orbits and confirmed the features suggestive of craniosynostosis maxillary hypoplasia.
    [Show full text]
  • Macrocephaly Information Sheet 6-13-19
    Next Generation Sequencing Panel for Macrocephaly Clinical Features: Macrocephaly refers to an abnormally large head, OFC greater than 98th percentile, inclusive of the scalp, cranial bone and intracranial contents. Megalencephaly, brain weight/volume ratio greater than 98th percentile, results from true enlargement of the brain parenchyma [1]. Megalencephaly is typically accompanied by macrocephaly, however macrocephaly can occur in the absence of megalencephaly [2]. Both macrocephaly and megalencephaly can been seen as isolated clinical findings as well as clinical features of a mutli-systemic syndromic diagnosis. Our Macrocephaly Panel includes analysis of the 36 genes listed below. Macrocephaly Sequencing Panel ASXL2 GLI3 MTOR PPP2R5D TCF20 BRWD3 GPC3 NFIA PTEN TBC1D7 CHD4 HEPACAM NFIX RAB39B UPF3B CHD8 HERC1 NONO RIN2 ZBTB20 CUL4B KPTN NSD1 RNF125 DNMT3A MED12 OFD1 RNF135 EED MITF PIGA SEC23B EZH2 MLC1 PPP1CB SETD2 Gene Clinical Features Details ASXL2 Shashi-Pena Shashi et al. (2016) found that six patients with developmental delay, syndrome macrocephaly, and dysmorphic features were found to have de novo truncating variants in ASXL2 [3]. Distinguishing features were macrocephaly, absence of growth retardation, and variability in the degree of intellectual disabilities The phenotype also consisted of prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties and hypotonia. BRWD3 X-linked intellectual Truncating mutations in the BRWD3 gene have been described in males with disability nonsyndromic intellectual disability and macrocephaly [4]. Other features include a prominent forehead and large cupped ears. CHD4 Sifrim-Hitz-Weiss Weiss et al., 2016, identified five individuals with de novo missense variants in the syndrome CHD4 gene with intellectual disabilities and distinctive facial dysmorphisms [5].
    [Show full text]
  • Intraflagellar Transport Proteins Are Essential for Cilia Formation and for Planar Cell Polarity
    BASIC RESEARCH www.jasn.org Intraflagellar Transport Proteins Are Essential for Cilia Formation and for Planar Cell Polarity Ying Cao, Alice Park, and Zhaoxia Sun Department of Genetics, Yale University School of Medicine, New Haven, Connecticut ABSTRACT The highly conserved intraflagellar transport (IFT) proteins are essential for cilia formation in multiple organisms, but surprisingly, cilia form in multiple zebrafish ift mutants. Here, we detected maternal deposition of ift gene products in zebrafish and found that ciliary assembly occurs only during early developmental stages, supporting the idea that maternal contribution of ift gene products masks the function of IFT proteins during initial development. In addition, the basal bodies in multiciliated cells of the pronephric duct in ift mutants were disorganized, with a pattern suggestive of defective planar cell polarity (PCP). Depletion of pk1, a core PCP component, similarly led to kidney cyst formation and basal body disorganization. Furthermore, we found that multiple ift genes genetically interact with pk1. Taken together, these data suggest that IFT proteins play a conserved role in cilia formation and planar cell polarity in zebrafish. J Am Soc Nephrol 21: 1326–1333, 2010. doi: 10.1681/ASN.2009091001 The cilium is a cell surface organelle that is almost In zebrafish, mutants of ift57, ift81, ift88, and ubiquitously present on vertebrate cells. Pro- ift172 have numerous defects commonly associated truding from the cell into its environment, the with ciliary abnormalities.13,14
    [Show full text]