Pioneering STEM Education for Pre-Service Teachers

Total Page:16

File Type:pdf, Size:1020Kb

Load more

PAPER PIONEERING STEM EDUCATION FOR PRE-SERVICE TEACHERS Pioneering STEM Education for Pre-Service Teachers https://doi.org/10.3991/ijep.v6i4.5965 Armando Paulino Preciado Babb, Miwa Aoki Takeuchi, Gabriela Alnoso Yáñez, Krista Francis, Dianne Gereluk, Sharon Friesen University of Calgary, Calgary, Alberta, Canada Abstract—While there have been numerous initiatives to targeted school teachers and comprised four components: promote and recruit students into postsecondary studies in conceptual knowledge; design process; systematic docu- science, technology, engineering and mathematics (STEM) mentation; and independent reflective learning. Programs around the world, traditional programs of studies for both for teacher professional learning involving similar com- K to 12 school and teacher education still lack an integrative ponents have engaged teachers in co-designing science approach to these disciplines. Addressing this concern, the projects based on the engineering design process. One Werklund School of Education of the University of Calgary example of this is a thermodynamics project for high started to offer a course in STEM education for the under- school reported in [5], where the authors proposed that graduate Bachelor of Education program. The purpose of teachers should be educated to conduct this type of project this article is to document the first iterations of this course. as part of their professional learning. We draw from narratives of four instructors, including the Although the examples of outreach initiatives and pro- coordinator of the course, and administrators who were grams described above have the potential of impacting on actively involved in creation and approval of the course. We many students, we know little about possibilities and chal- describe the course and its connection to the philosophy of the program, examine the context in which this course was lenges to make STEM education an integral part of teach- conceived—including both national and provincial policy— er preparation at the university level. This topic is under- and address some challenges and possibilities experienced explored because STEM education courses have not been by administrators, instructors and students during the crea- part of traditional pre-service teacher education. In the fall tion and implementation of the course. of 2014 the Werklund School of Education (WSE) at the University of Calgary pioneered a mandatory STEM Index Terms—STEM education; teacher education; curricu- course for all undergraduate students in the Bachelor of lum; soft skills. Education Program. National policy on STEM as well as regulations and directions on education at the provincial I. INTRODUCTION level were key factors in the creation of the course. Addi- tionally, the integrative approach to STEM and the philos- The interest in attracting students into science, technol- ophy behind the pre-service education program were high- ogy, engineering, and mathematics (STEM) postsecond- ly compatible. Yet, there were several challenges faced by ary studies permeates through academic journals and in- administrators, instructors and students in the implementa- ternational conferences. This interest has been evident in tion of the course. In this article we extend from a presen- recent and diverse interventions and outreach programs tation at the EDUCON conference ([6]) discussing possi- around the world. Some programs, for instance, have bilities and constraints in implementing this STEM educa- addressed the issue of stereotyped perceptions of the work tion course from the collective narratives of the authors. of engineering, which could impact students’ decisions to These narratives can inform other academics and leaders pursue STEM careers, such as the intervention described who are interested in the design of STEM education pro- in [1] that involved 565 students from Kindergarten to grams for future teachers. Grade 12. By presenting computer-based multimedia, this intervention showed that perceptions toward the work of The authors of this article were four instructors— engineering could be changed—especially among students including the course coordinator—the associate dean of in the early grades. Other outreach initiatives have in- the undergraduate program, and the vice dean of WSE. volved students in engineering-like activities, such as the We documented diverse perspectives unique to the roles summer camp organized by six European institutions that each of us played in the design and implementation of reported in [2]. The camp focused on team-oriented activi- the STEM education course. The administrators provided ties; a multidisciplinary and multicultural approach; prob- accounts of the creation of this new course in terms of lem-based learning; an intensive schedule; and contact provincial policy and tensions within faculty members. with and feedback from experts. Various partnerships They also commented on perceptions from students who between elementary and secondary schools and other participated in focus group conversation during the im- institutions have been implemented also as outreach pro- plementation of the course. The coordinator and the in- grams, as documented in [3]. These partnerships involved structors described some of the challenges and possibili- institutions such as provincial government, community ties of the collaborative work required to teach the course industry, small business, and global industries. Other and also provided some anecdotal evidences of students’ interventions have focused on teachers, such as the tech- experiences from their classrooms. nological projects for high school described in [4] that 4 http://www.i-jep.org PAPER PIONEERING STEM EDUCATION FOR PRE-SERVICE TEACHERS This article is organized as follows. We start by de- study concluded indicating that there was little evidence scribing STEM education in the Canadian context and that STEM education existed in the involved schools. In a defining its integrative approach. Then, we provide a different study involving 220 faculty members at institu- description of the Bachelor of Education program and the tions of higher education, reported in [14], authors found STEM Education course, with a rationale for its assign- that even within faculty members involved in STEM edu- ments and assessment. Subsequently, we discuss chal- cation, there was no operational definition or consistent lenges and possibilities we experienced in creation and conceptualization of STEM education. They also found implementation of the course. This article concludes with that faculty members with a negative perception on STEM some implications for teacher education and difficulties in education considered that STEM was encroaching their researching the impact of this course. funding and importance within the university. We situate the perspective adopted in the course de- II. STEM EDUCATION IN THE CANADIAN CONTEXT scribed in this article by drawing from the integrative Canada is not unique in promoting STEM education in approach to STEM education. While different authors recent years. However, the motivations and goals driving have proposed different classifications for the approaches the discourse in this emergent field differ from one coun- to STEM education, there is a consistency in one particu- try to another. A review of eight international journals in lar approach that combines STEM in a way that trans- 2012 found that the majority of research in STEM educa- cends individual disciplines. Bybee, for instance, de- tion was conducted in the United States [7]. The motiva- scribed five approaches to STEM education in [8]: tion in the United States has risen in eminence since the Coordinate - Two subjects taught in separate courses Sputnik-spurred education reforms during the 1960s ([8], are coordinated so content in one subject synchronizes [9]), which focused on science and mathematics. This with what is needed in another subject. focus is reflected in the current goals and plans that the Complete - While teaching the main content of one sub- US Department of Education published in its website. In ject, the content of another subject is introduced to com- February 2016 this website indicated that “few American plement the primary subject. students pursue expertise in STEM fields—and we have an inadequate pipeline of teachers skilled in those sub- Correlate - Two subjects with similar themes, contents, jects. That’s why President Obama has set a priority of or processes are taught so students understand their simi- increasing the number of students and teachers who are larities and differences. proficient in these vital fields” [10]. In the website it is Connections - Use one discipline to connect other dis- clear that STEM education is situated in relation to low ciplines, such as using technology as the connection be- academic scores in mathematics and science in interna- tween science and mathematics tional high-stakes testing. The goal remains focused on Combine - This approach combines two or more STEM mathematics and science: “move from the middle to the disciplines using projects, themes, procedures, or other top of the pack in science and math.” organizing foci. In contrast, the Canadian discourse around STEM edu- These approaches are similar to the levels of STEM in- cation is not necessarily situated in the performance in tegration described by Vasquez, Sneider and Comer, who international tests. Canadian students have historically proposed, in [15], four levels of
Recommended publications
  • Advances in Engineering Education

    Advances in Engineering Education

    Advances in Engineering Education WINTER 2016 Guest Editorial: Entrepreneurship and Innovation in Engineering Education PHIL WEILERSTEIN VentureWell Hadley, MA AND TOM BYERS Stanford University Palo Alto, CA BACKGROUND AND CONTEXT This special issue of Advances in Engineering Education offers a selected group of papers that address key issues and questions in the development of Innovation and Entrepreneurship education for engineering students. The eight papers here present a useful and applied perspective on program construction, evaluation, impact and perspectives on how a focus on innovation and entrepreneurial learning can influence engagement and expand student participation. We solicited papers on the topic from the engineering education community and received 31 abstracts, 17 authors were invited to submit full papers for review ultimately yielding the eight papers selected for publication here. Advances in Engineering Education’s online format provides a rich forum for the documentation of effective examples of practice and research, supported by access to multimedia. We hope that this issue will prove useful to those already engaged in this field as well as those who are seeking effective models to develop and pursue. In this introductory essay we provide an overview of the growth of this dimension of engineering education, the development of the communities and organizations that have emerged to support it, and identify issues that the field faces as innovation and entrepreneurship become more ubiquitous in engineering education. THE INNOVATION AND ENTREPRENEURSHIP IMPERATIVE FOR ENGINEERING EDUCATION In recent decades focus has increased dramatically on technological innovation and entrepreneur- ship as fundamental drivers of American prosperity and global economic leadership.
  • Klagenfurt School of Engineering Pedagogy by Adolf Melezinek As

    Klagenfurt School of Engineering Pedagogy by Adolf Melezinek As

    PAPER KLAGENFURT SCHOOL OF ENGINEERING PEDAGOGY BY ADOLF MELEZINEK AS THE BASIS OF TEACHING ENGINEERING Klagenfurt School of Engineering Pedagogy by Adolf Melezinek as the Basis of Teaching Engineering http://dx.doi.org/10.3991/ijep.v6i3.5949 Tiia Rüütmann, Hants Kipper Tallinn University of Technology, Tallinn, Estonia Abstract—Engineering Pedagogy is an interdisciplinary spiritual scientific beginning during which methods based scientific subject and an essential element of the system of upon phenomenological understanding were applied in engineering education. The article is dedicated to the work order to get insight into the components of the instruction of Adolf Melezinek, the founder of Engineering Pedagogy process. The other stream is represented by scientists who and the main principles of Kalgenfurt School of Engineer- basically created the cybernetic beginning during which ing Pedagogy. Curriculum design and technical teacher calculation methods dominated. Although both the education in Estonia is based on Melezinek’s work. A deci- streams comprise a wide range of schools, they share sion-making model by Urve Läänemets, closely connected to certain key ideas which, at the same time, distinguish Melezinek’s work and the Model of Flexible Technical them from each other [3]. Teacher Education and contemporary methodology are The traditional, classical pedagogy did not meet specif- introduced. ic needs when used for education of engineers striving for Index Terms—engineering pedagogy; technical teacher the teaching profession. This was proved by experiences education; model; curriculum; teaching engineering. of different countries. The discrepancy was solved by setting up of special engineering-pedagogical institutes at some technical universities. The term “Ingenieurpädagog- I.
  • Global State of the Art in Engineering Education

    Global State of the Art in Engineering Education

    The global state of the art in engineering education The global state of the art in engineering education MARCH 2018 DR RUTH GRAHAM z Executive summary i The global state of the art in engineering education Copyright © 2018 by Massachusetts Institute of Technology (MIT) All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher, addressed “Attention: Permissions Coordinator,” at the address below. Printed in the United States of America First Printing, 2018 ISBN 13: 9780692089200 New Engineering Education Transformation Massachusetts Institute of Technology 77 Massachusetts Avenue Room 1-229B Cambridge, MA 02139 USA neet.mit.edu i The global state of the art in engineering education Executive summary The study considers the global state of the art in engineering undergraduate education. It was undertaken to inform Massachusetts Institute of Technology’s (MIT) New Engineering Education Transformation (NEET), an initiative charged with developing and delivering a world-leading program of undergraduate engineering education at the university. The study was structured in two phases, both of which used one-to-one interviews as the primary evidence gathering tool: Phase 1 conducted between September and November 2016, Phase 1 provided a snapshot of the cutting edge of global engineering education and a horizon scan of how the state of the art is likely to develop in the future.
  • University of Alberta

    University of Alberta

    -------f.,SJ ------=-------department ) UNIVERSITY OF ALBERTA Tradition I I ! • • I I I I I I I I I I I I I I I I I I I I I i I I and I I I I I j I I j 1, I I I I I I I I j I I I I I I I I Innovation I I I I , t ' I '-~-· 'I Chemical & Materials Engineering Building J. FRASER FORBES, SIEGHARD E. WANKE University ofAlberta • Edmonton, Alberta, Canada T6G 2G6 hemical engineering has played a key role in the the 1940s and the beginning of large-scale commercial de­ development of Canada's oil and gas and associated velopment of the oil sands in the 1970s had major impacts C petrochemical industries, and chemical engineering on chemical engineering education in Alberta. The evolution at the University of Alberta (UofA) has been an integral part and current state of the chemical engineering program, with of the growth of the petrochemical industry in western some gazing into the future, make up the heart of this article. Canada. The UofA is located in Edmonton, capital city of the Province of Alberta. The western part of the province is HISTORY part of the majestic Canadian Rockies - The Continental The UofA opened for classes in 1908, about three years Divide makes up a significant part of the western border after the western part of the Northwest Territories of Canada between Alberta and British Columbia. The southeastern became the Province of Alberta. The UofA campus is lo­ part of the province is part of the Canadian Prairies, while cated on the south bank of the North Saskatchewan River, the north is part of Canada's extensive boreal forest.
  • Examining Student and Teacher Talk Within Engineering Design in Kindergarten

    Examining Student and Teacher Talk Within Engineering Design in Kindergarten

    European Journal of STEM Education, 2018, 3(3), 10 ISSN: 2468-4368 Examining Student and Teacher Talk Within Engineering Design in Kindergarten Kristina M. Tank 1*, Anastasia M. Rynearson 2, Tamara J. Moore 3 1 Iowa State University, 0624C Lagomarcino, 901 Stange Rd, 50011 Ames, USA 2 Campbell University, USA 3 Purdue University, USA *Corresponding Author: [email protected] Citation: Tank, K. M., Rynearson, A. M. and Moore, T. J. (2018). Examining Student and Teacher Talk Within Engineering Design in Kindergarten. European Journal of STEM Education, 3(3), 10. https://doi.org/10.20897/ejsteme/3870 Published: September 6, 2018 ABSTRACT Quality science, technology, engineering, and mathematics (STEM) experiences during the early years provide young learners with a critical foundation for future learning and development. Engineering design is a context that can be used to facilitate connections and learning across STEM, however there is limited research examining the use of engineering design-based STEM integration within the early childhood classroom. This study examines how an engineering design-based STEM integration unit was enacted across three kindergarten classrooms. Classroom observation and video data were collected and a coding scheme was used to document the ways that engineering and engineering design were enacted as well as the role of the teacher and students within the lessons. Results suggest that kindergarten students were able to meaningfully engage in and with multiple stages of an engineering design process while also building understanding of scientists and engineers related to teacher and student interactions, there were multiple instances of student-initiated talk, student to student response, the use of explicit engineering language and of students making connections to prior learning.
  • Faculty and Student Perceptions of the Content of Entrepreneurship Courses in Engineering Education

    Faculty and Student Perceptions of the Content of Entrepreneurship Courses in Engineering Education

    Advances in Engineering Education WINTER 2016 Faculty and Student Perceptions of the Content of Entrepreneurship Courses in Engineering Education MARY BESTERFIELD-SACRE University of Pittsburgh Pittsburgh, PA SARAH ZAPPE The Pennsylvania State University University Park, PA ANGELA SHARTRAND VentureWell Amherst, MA AND KIRSTEN HOCHSTEDT The Pennsylvania State University University Park, PA ABSTRACT Entrepreneurship programs and courses in engineering education have steadily increased in the United States over the past two decades. However, the nature of these entrepreneurship courses and programs and the characteristics of the instructors who teach them are not yet well understood. The paper explores three research questions: 1) What content is typically included in engineering entrepreneurship courses and how is this content taught?; 2) What are instructors’ beliefs about how entrepreneurship should be taught in the engineering context; and 3) How are instructors’ beliefs actuated within a particular class related to students’ self-reported perceptions of their entrepreneurial knowledge and abilities? The study shows that content associated with different course types, such as Becoming an Entrepreneur, New Venture Development, and Product Ideation and Development, often overlaps substantially, suggesting a lack of clarity in how these types of courses are defined. Second, instructors who teach entrepreneurship to engineering students believe that programs and courses should focus equally on both teaching skills and developing values and
  • Building an Engaged, Collaborative, and Inspired Teaching Culture

    Building an Engaged, Collaborative, and Inspired Teaching Culture

    AC 2011-1269: BUILDING AN ENGAGED, COLLABORATIVE, AND IN- SPIRED TEACHING CULTURE Suzanne M. Kresta, University of Alberta co-authors John Nychka, Uttandaraman Sundararaj, and Suzanne Kresta led the Teaching Enhancement Committee at the University of Alberta which implemented a number of empowering changes to the teaching culture in the department and the faculty. Drs Sundararaj and Kresta initiated a number of early changes before Dr Nychka joined us from Kentucky, where he had a substantial impact. Uttandaraman Sundararaj, University of Calgary Uttandaraman (U.T.) Sundararaj is Professor and the Head of the Department of Chemical and Petroleum Engineering at the University of Calgary. Previously he was Professor at the University of Alberta for 12 years. He received his PhD from the University of Minnesota (1994) and his BSc from the University of Alberta, both in Chemical Engineering. He worked 4 years in R&D with the General Electric Company (GE Plastics) and was a Visiting Researcher at DuPont Experimental Station. In 2010, he won the highest post-secondary teaching honor in Canada, the 3M National Teaching Fellow- ship from the Society for Teaching and Learning in Higher Education and 3M Company. He has received several other teaching awards, including the University of Alberta’s Rutherford Award for Excellence in Undergraduate Teaching, the Excellence in Education Award from the Association of Professional Engi- neers of Alberta, and the Medal of Distinction for Engineering Education from the Canadian Council of Professional Engineers. Dr. Sundararaj’s main research interests are in polymer blend and nanocomposite structure generation in twin-screw extruders, and modeling of polymer processes.
  • Implementing STEAM in the Early Childhood Classroom

    Implementing STEAM in the Early Childhood Classroom

    European Journal of STEM Education, 2018, 3(3), 18 ISSN: 2468-4368 Implementing STEAM in the Early Childhood Classroom Nancy K. DeJarnette 1* 1 University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604, USA *Corresponding Author: [email protected] Citation: DeJarnette, N. K. (2018). Implementing STEAM in the Early Childhood Classroom. European Journal of STEM Education, 3(3), 18. https://doi.org/10.20897/ejsteme/3878 Published: September 6, 2018 ABSTRACT STEAM (Science, Technology, Engineering, Art, and Math) education has received growing attention over the past decade, primarily within the middle and high school levels. This article focuses on the need for STEAM education at the early childhood level. Preschool children have a natural disposition toward science with their sense of curiosity and creativity. This ethnographic research involved professional development for 50 in-service preschool teachers in an urban high-needs area of the northeastern United States. The researcher explored how providing hands-on professional development, consistent support, and rich resources for STEAM lesson implementation into the early childhood curriculum would impact the dispositions, self-efficacy, and rate of implementation for teachers. The study also involved observation of the reception of STEAM instruction by preschool children. Data was collected through pre and post surveys, teacher interviews, and field observations. Findings revealed an increase in positive dispositions and self-efficacy of preschool teachers, however, the rate of implementation of STEAM lessons by the teachers was initially limited. The reception of the STEAM lessons by these high-needs preschool children was phenomenal with high levels of engagement and cooperation. More research needs to be done in the area of STEAM implementation in the PK-12 classrooms to incorporate engineering education.
  • Developing an Engineering Identity in Early Childhood Michelle L

    Developing an Engineering Identity in Early Childhood Michelle L

    American Journal of Engineering Education – December 2015 Volume 6, Number 2 Developing An Engineering Identity In Early Childhood Michelle L. Pantoya, Ph.D., Texas Tech University, USA Zenaida Aguirre-Munoz, Ph.D., Texas Tech University, USA Emily M. Hunt, Ph.D., West Texas A&M University, USA ABSTRACT This project describes a strategy to introduce young children to engineering in a way that develops their engineering identity. The targeted age group is 3-7 year old students because they rarely experience purposeful engineering instruction. The curriculum was designed around an engineering storybook and included interactive academic discussions as well as a creative drawing activity. Results provide evidence that students developed an engineering identity based on their illustrations of themselves working as engineers. These findings lend support to the use of engineering-centered books to improve the impact of instructional strategies that emphasize the engineering design cycle. We show how both the curricular materials and the activities can work together to develop an engineering identity in this age group. Keywords: Literacy; Kindergarten; Engineering Education Engineering; STEM, STEM Education; Creativity; Identity; Children’s Books INTRODUCTION ngineers design technologies using an understanding of science and math. In this way engineering provides the glue to hold science and math together and provides meaningful situational context. When we asked over 300 3-7 year olds “What do engineers do?” the number one answer was: I don’t know. End The 2 most popular answer was: They drive a train. These responses reflect the nationwide fundamental lack of understanding of engineering. Yet, early Science, Technology, Engineering and Mathematics (STEM) education has become a major focus of the National Academies stimulated largely because research has shown that by 4th grade, students who have limited exposure to early STEM education are lacking key mathematics and science skills and background knowledge (STEM Smartbrief, 2011; National Academies Press 2011, 2014).
  • AP Classes and Their Impact on Engineering Education

    AP Classes and Their Impact on Engineering Education

    1 Session #2002-195 AP Classes and Their Impact on Engineering Education Mike Robinson, M. S. Fadali, George Ochs University of Nevada/University of Nevada/Washoe County School District Abstract Many US schools offer students the opportunity to take college level classes in mathematics and science. Studies have shown that students who take these classes are more likely to succeed in college. Other studies have shown that failure in engineering education is strongly correlated to deficiencies in mathematics and science. This paper surveys the history of Advanced Placement (AP) classes and their impact on college education in general and engineering and science education in particular. We also survey AP class offerings in a large Western county school district where a major state university is located. We estimate the number of AP classes offered in mathematics and science, and the percentage of students opting to take these classes. Our results confirm that students who take AP classes are likely to select a major in engineering, science or mathematics. Fifty per cent of students who took AP Physics said they would seek a college major in engineering. Based on the results of the school district surveyed in this study, size, location and socio economic class all affect the number of AP classes offered in high schools. I. Introduction A problem with many high schools is that challenging courses are not offered, especially in mathematics and the sciences. In its final report of 2001, The National Commission on the High School Senior Year urged states to offer challenging alternatives to the traditional high school senior year.
  • Advancing Engineering Education in P-12 Classrooms

    Advancing Engineering Education in P-12 Classrooms

    Advancing Engineering Education in P-12 Classrooms SEAN BROPHY Council, 1996; International Technology Education Association, School of Engineering Education 2002). Technology development and industrial growth are in- Purdue University creasing at an exponential rate with expanding global application. Driven by the rapid development of enabling technologies, indus- STACY KLEIN tries must become much more flexible and adaptive to remain Department of Biomedical Engineering competitive. Therefore, industry requires a workforce that is Vanderbilt University equally nimble at adapting to changing conditions so they can uti- lize newly available technologies and generate innovations of their MERREDITH PORTSMORE own. This rapid evolution of technology suggests that students en- Department of Education tering higher education must be prepared differently at P-12 if Tufts University they are to be ready for the transition into undergraduate institu- tions working to provide a diverse STEM talent pool. However, CHRIS ROGERS enrollment in undergraduate engineering programs is declining Department of Mechanical Engineering and often lacks gender and ethnic diversity. Studies have indicated Tufts University that interest in science, engineering, and mathematics as career options peaks during middle school years (Cummings and Taebel, 1980) for young women and minorities. New studies indicate that ABSTRACT while young women are as competent as young men in the STEM disciplines they often tend to believe that science and technology Engineering as a profession faces the challenge of making the are not relevant to their future career goals or they do not find the use of technology ubiquitous and transparent in society while at learning contexts inviting (Hsi, Linn, and Bell, 1997; Lent et al., the same time raising young learners’ interest and understand- 2005; Seymour and Hewitt, 1997; Linn, 2003).
  • Enhancing Engineering Education in the Elementary School (PDF)

    Enhancing Engineering Education in the Elementary School (PDF)

    Enhancing engineering education in the elementary school Authors: Juliana Utley, Toni Ivey, Rebekah Hammack, and Karen High This is the peer reviewed version of the following article: see full citation below, which has been published in School Science and Mathematics, found in final form at DOI: 10.1111/ssm.12332. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Utley, Juliana, Toni Ivey, Rebekah Hammack, and Karen High. "Enhancing engineering education in the elementary school." School Science and Mathematics 119, no. 4 (April 2019): 203-212. DOI:10.1111/ssm.12332. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Engineering Education in the Elementary School Enhancing Engineering Education in the Elementary School Abstract The Next Generation Science Standards emphasize the inclusion of engineering practices throughout the K-12 science curriculum. Therefore, elementary educators need to be knowledgeable about engineering and engineering careers so that they can expose their students to engineering. The purpose of this study was to examine the effect of engineering professional development on in-service elementary teachers’: (a) knowledge and perceptions regarding engineering and (b) self-efficacy of teaching engineering. This quantitative study revealed that even one professional development opportunity can help to alleviate some misconceptions about the work of engineers and what constitutes technology, as well as increase teachers’ confidence to teach engineering concepts. Keywords: engineering education, professional development, elementary, self-efficacy 1 Engineering Education in the Elementary School Enhancing Engineering Education in the Elementary School Introduction The United States’ economy is dependent on technological development and engineering is critical to the nation’s capacity for innovation (National Research Council, 2010).