Subject Index Thompson Cascade 343

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index Thompson Cascade 343 Subject Index Thompson Cascade 343 This index is based solely on the title of Galaxies the papers. Emission Lines 442 Interactions . 372, 499, 513, 519 Origin of the Magnetic Field . 486 AGN Continuum 5 IR Evolution 424, 504, 524 High Resolution 461 Formation 521 Origin 336 Gamma Rays 347 Spiral Galaxies 337 Spatial Distributions 512 Ultraluminous Galaxies 332 BL Lac Objects Jets CM/MM Emission 523 and Clouds 346 IR Emission 17, 400 and Stellar Winds 421 Models 473 Emission 257 Multiwavelength 506 Gamma Rays 381 Optical Emission 17 IR Emission 329 Selection Effects 515 MHD Models 249, 341, 360 UV Emission 17 Models . 233, 397, 428, 432, 433, 490 Variability 393, 394 Multiwavelength Emission . 333, 397 X-Ray Emission 377, 384 Particle Acceleration 29 Blazars Radio Emission 428 Energy Distribution .... 221, 320 Structure 257, 341 High-Energy Emission 29 VLBI 187 IR Emission 321, 392 MM Emission 328 Lines Multiwavelength 155, 505 LyQ Forest 509 Optical Emission 321, 392 BAL 450 X-Ray Emission 383 BLR 399,444,446,453 BLR and Stars 437 Central Regions 233, 351, 375, 405, 431, BLR Structure 163, 457 441, 454, 479 from Disks 463 Cosmology 293, 361, 509, 520 IR 335, 447, 462 Kinematics 441, 446 Disks Models 452, 453 Emission 261, 484, 492 Narrow Emission 372 MHD Models 480, 485, 492 Ne Emission 356 Models .... 349, 477, 482, 491, 493 NLR 445, 449 Reprocessing 489 Profile 395, 456, 462 Structure . 478, 479, 483, 484, 488 Variability .... 403, 439, 444, 459 Variability 487 Luminosity Function 498 Emission Objects Auger Process 356 0235+16 397 Dust 355 3C 273 . 193, 323, 327, 333, 382 Electron Energy Distribution . 358 3C 279 323, 413 Free-Free 344 3C 345 390, 391, 413, 432 Neutrons 345 CEN A 323 Synchrotron 320, 358, 485 CYG A 375 525 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 30 Sep 2021 at 20:49:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090017696X 526 Ε 1615+061 317 IR 470 M 87 329 Models 472 MRK 335 408 Multiwavelength 471 MRK 421 404 Optical 469, 470, 474 MRK 474 366 VLBI 469 NGC 1068 422 NGC 1365 431, 448 Quasars NGC 1808 461 and Fundamental Constants . .361 NGC 3227 429,457 Emission 203 NGC 3516 464 Energy Distribution 516 NGC 3783 403,407 Extreme 25, 271 NGC 4051 335 Formation 279 NGC 4151 . 289,323,379,401,402, High ζ 318 405, 441, 458 IR Emission 350 NGC 4261 479 Lines 399 NGC 5055 . 454 MM Emission 324 NGC 5548 177,325 Multiwavelength 318, 450 NGC 5682 366 Optical Emission 518 NGC 5929 440 Optically-Quiet 419 NGC 5930 440 Radio-Loud 285, 503, 523 NGC 6814 127 Radio-Quiet . 285, 324, 414, 503 OJ 287 404, 409 Spatial Distribution 500 PG 1116+215 197 UV Emission 511 PKS 0109+224 474 Variability 518 PKS 2155-304 319,322 X-Ray Emission . 123, 368, 369, 373 The Milky Way 351 Observations Radio 326 ASCA 383 GHz-Peaked Spectrum . 424, 425 C-GRO 39, 49, 379 High Resolution . 189, 389, 390, 419, EUVE 105, 322, 325 422, 423, 425-427, 429-431, 455 EXOSAT 505 Outbursts 397, 420 GINGA 73, 330, 383 Spiral Galaxies 337 GRANAT 63, 379 Radio Galaxies HST 83, 177, 289, 318, 440, 450, 479 Connection to Quasars . .'.21, 522 IUE 159, 177, 318, 330 Polarisation 468, 470 MERLIN 430 X-Ray Emission 385 Multiwavelength . 159, 323, 327, 332, 404, 409 ROSAT 53, 197, 318, 330, 338, 366, Seyfert Galaxies 368-370,372, 374, 377, 384,450, Emission 203 508, 517 Gamma Ray Emission 379 SEST 410,431 IR Emission 355 VLA 431 Lines 445 VLBI . 181, 187, 423, 425, 469, 490 Multiwavelength 330, 502 Optical Optical Emission 275 High Resolution 455 Radio Emission 430, 514 Starbursts . 351, 365, 438, 460, 461 Particle Acceleration 379 Wolf-Rayet 451 Plasmas 346, 357 Surveys Polarisation Optical 275, 368 Faraday Rotation 467 X-Rays 217, 374, 517 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 30 Sep 2021 at 20:49:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090017696X 527 Unified Models . 289, 301, 427, 458, 501 Variability Accretion Disks 253 CM 497 Emission Lines ..... 163, 173, 395 High Energy 113 IR 392,400 MM 145, 193, 410 Models 239 Multiwavelength . 131, 401, 407, 413 Optical. 391-394, 408, 411, 412, 414, 415 Periodicity 127, 390 Radio . 145,396,398,410,411,420 Supernovae 371 UV 331, 403, 408 VLBI 181,389 X-Rays 193,371,382,402 X-Rays Cosmic Background 378 Einstein Sources 370 Emission 213 Luminous Galaxies 311 Optical Properties 508 Origin 33, 380 Reflection 213, 348 Soft Spectrum 197, 217, 317, 338, 373, 382 X-ray Loud AGN 365 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 30 Sep 2021 at 20:49:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S007418090017696X.
Recommended publications
  • Arxiv:1705.04776V1 [Astro-Ph.HE] 13 May 2017 Aaua M
    White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS Editors Asada, K.1, Kino, M.2,3, Honma, M.3, Hirota, T.3, Lu, R.-S.4,5, Inoue, M.1, Sohn, B.-W.2,6, Shen, Z.-Q.4, and Ho, P. T. P.1,7 Authors Akiyama, K.3,8, Algaba, J-C.2, An, T.4, Bower, G.1, Byun, D-Y.2, Dodson, R.9, Doi, A.10, Edwards, P.G.11, Fujisawa, K.12, Gu, M-F.4, Hada, K.3, Hagiwara, Y.13, Jaroenjittichai, P.15, Jung, T.2,6, Kawashima, T.3, Koyama, S.1,5, Lee, S-S.2, Matsushita, S.1, Nagai, H.3, Nakamura, M.1, Niinuma, K.12, Phillips, C.11, Park, J-H.15, Pu, H-Y.1, Ro, H-W.2,6, Stevens, J.11, Trippe, S.15, Wajima, K.2, Zhao, G-Y.2 1 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan 2 Korea Astronomy and Space Science Institute, Daedukudae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 5 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 6 University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea 7 East Asian Observatory, 660 N.
    [Show full text]
  • The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope M
    The Astrophysical Journal, 810:14 (34pp), 2015 September 1 doi:10.1088/0004-637X/810/1/14 © 2015. The American Astronomical Society. All rights reserved. THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE M. Ackermann1, M. Ajello2, W. B. Atwood3, L. Baldini4, J. Ballet5, G. Barbiellini6,7, D. Bastieri8,9, J. Becerra Gonzalez10,11, R. Bellazzini12, E. Bissaldi13, R. D. Blandford14, E. D. Bloom14, R. Bonino15,16, E. Bottacini14, T. J. Brandt10, J. Bregeon17, R. J. Britto18, P. Bruel19, R. Buehler1, S. Buson8,9, G. A. Caliandro14,20, R. A. Cameron14, M. Caragiulo13, P. A. Caraveo21, B. Carpenter10,22, J. M. Casandjian5, E. Cavazzuti23, C. Cecchi24,25, E. Charles14, A. Chekhtman26, C. C. Cheung27, J. Chiang14, G. Chiaro9, S. Ciprini23,24,28, R. Claus14, J. Cohen-Tanugi17, L. R. Cominsky29, J. Conrad30,31,32,70, S. Cutini23,24,28,R.D’Abrusco33,F.D’Ammando34,35, A. de Angelis36, R. Desiante6,37, S. W. Digel14, L. Di Venere38, P. S. Drell14, C. Favuzzi13,38, S. J. Fegan19, E. C. Ferrara10, J. Finke27, W. B. Focke14, A. Franckowiak14, L. Fuhrmann39, Y. Fukazawa40, A. K. Furniss14, P. Fusco13,38, F. Gargano13, D. Gasparrini23,24,28, N. Giglietto13,38, P. Giommi23, F. Giordano13,38, M. Giroletti34, T. Glanzman14, G. Godfrey14, I. A. Grenier5, J. E. Grove27, S. Guiriec10,2,71, J. W. Hewitt41,42, A. B. Hill14,43,68, D. Horan19, R. Itoh40, G. Jóhannesson44, A. S. Johnson14, W. N. Johnson27, J. Kataoka45,T.Kawano40, F. Krauss46, M. Kuss12, G. La Mura9,47, S. Larsson30,31,48, L.
    [Show full text]
  • Counting Gamma Rays in the Directions of Galaxy Clusters
    A&A 567, A93 (2014) Astronomy DOI: 10.1051/0004-6361/201322454 & c ESO 2014 Astrophysics Counting gamma rays in the directions of galaxy clusters D. A. Prokhorov1 and E. M. Churazov1,2 1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute (IKI), Profsouznaya 84/32, 117997 Moscow, Russia Received 6 August 2013 / Accepted 19 May 2014 ABSTRACT Emission from active galactic nuclei (AGNs) and from neutral pion decay are the two most natural mechanisms that could establish a galaxy cluster as a source of gamma rays in the GeV regime. We revisit this problem by using 52.5 months of Fermi-LAT data above 10 GeV and stacking 55 clusters from the HIFLUCGS sample of the X-ray brightest clusters. The choice of >10 GeV photons is optimal from the point of view of angular resolution, while the sample selection optimizes the chances of detecting signatures of neutral pion decay, arising from hadronic interactions of relativistic protons with an intracluster medium, which scale with the X-ray flux. In the stacked data we detected a signal for the central 0.25 deg circle at the level of 4.3σ. Evidence for a spatial extent of the signal is marginal. A subsample of cool-core clusters has a higher count rate of 1.9 ± 0.3 per cluster compared to the subsample of non-cool core clusters at 1.3 ± 0.2. Several independent arguments suggest that the contribution of AGNs to the observed signal is substantial, if not dominant.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • IAU Symp 269, POST MEETING REPORTS
    IAU Symp 269, POST MEETING REPORTS C.Barbieri, University of Padua, Italy Content (i) a copy of the final scientific program, listing invited review speakers and session chairs; (ii) a list of participants, including their distribution on gender (iii) a list of recipients of IAU grants, stating amount, country, and gender; (iv) receipts signed by the recipients of IAU Grants (done); (v) a report to the IAU EC summarizing the scientific highlights of the meeting (1-2 pages). (vi) a form for "Women in Astronomy" statistics. (i) Final program Conference: Galileo's Medicean Moons: their Impact on 400 years of Discovery (IAU Symposium 269) Padova, Jan 6-9, 201 Program Wednesday 6, location: Centro San Gaetano, via Altinate 16.0 0 – 18.00 meeting of Scientific Committee (last details on the Symp 269; information on the IYA closing ceremony program) 18.00 – 20.00 welcome reception Thursday 7, morning: Aula Magna University 8:30 – late registrations 09.00 – 09.30 Welcome Addresses (Rector of University, President of COSPAR, Representative of ESA, President of IAU, Mayor of Padova, Barbieri) Session 1, The discovery of the Medicean Moons, the history, the influence on human sciences Chair: R. Williams Speaker Title 09.30 – 09.55 (1) G. Coyne Galileo's telescopic observations: the marvel and meaning of discovery 09.55 – 10.20 (2) D. Sobel Popular Perceptions of Galileo 10.20 – 10.45 (3) T. Owen The slow growth of human humility (read by Scott Bolton) 10.45 – 11.10 (4) G. Peruzzi A new Physics to support the Copernican system. Gleanings from Galileo's works 11.10 – 11.35 Coffee break Session 1b Chair: T.
    [Show full text]
  • Liverpool Telescope 2: a New Robotic Facility for Rapid Transient Follow-Up
    Noname manuscript No. (will be inserted by the editor) Liverpool Telescope 2: a new robotic facility for rapid transient follow-up C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D. Carter · N.R. Clay · C.A. Collins · M.J. Darnley · C.J. Davis · C.M. Gutierrez · D.J. Harman · P.A. James · J.H. Knapen · S. Kobayashi · J.M. Marchant · P.A. Mazzali · C.J. Mottram · C.G. Mundell · A. Newsam · A. Oscoz · E. Palle · A. Piascik · R. Rebolo · R.J. Smith Received: date / Accepted: date Abstract The Liverpool Telescope is one of the world’s premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of ‘multi-messenger astronomy’, wherein astro- physical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely C.M. Copperwheat · I.A. Steele · R.M. Barnsley · S.D. Bates · D. Bersier · M.F. Bode · D.
    [Show full text]
  • Jorstad01.Pdf
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 134:181È240, 2001 June V ( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. MULTIEPOCH VERY LONG BASELINE ARRAY OBSERVATIONS OF EGRET-DETECTED QUASARS AND BL LACERTAE OBJECTS: SUPERLUMINAL MOTION OF GAMMA-RAY BRIGHT BLAZARS SVETLANA G. JORSTAD,1,2,3 ALAN P. MARSCHER,1 JOHN R. MATTOX,1,4 ANN E. WEHRLE,5 STEVEN D. BLOOM,6 AND ALEXEI V. YURCHENKO2 Received 2000 November 1; accepted 2001 January 24 ABSTRACT We present the results of a program to monitor the structure of the radio emission in 42 c-ray bright blazars (31 quasars and 11 BL Lac objects) with the Very Long Baseline Array (VLBA) at 43, 22, and occasionally 15 and 8.4 GHz, over the period from 1993 November to 1997 July. We determine proper motions in 33 sources and Ðnd that the apparent superluminal motions in c-ray sources are much faster than for the general population of bright compact radio sources. This follows the strong dependence of the c-ray Ñux on the level of relativistic beaming for both external radiation Compton and synchrotron self-Compton emission. There is a positive correlation (correlation coefficient r \ 0.45) between the Ñux density of the VLBI core and the c-ray Ñux and a moderate correlation (partial correlation coefficient r \ 0.31) between c-ray apparent luminosity and superluminal velocities of jet components, as expected if the c-ray emission originates in a very compact region of the relativistic jet and is highly beamed. In 43% of the sources the jet bends by more than 20¡ on parsec scales, which is consistent with ampliÐca- tion by projection e†ects of modest actual changes in position angle.
    [Show full text]
  • Event Horizon Telescope Fact Sheet
    Event Horizon Telescope Fact Sheet The Event Horizon Telescope Collaboration The Event Horizon Telescope (EHT) is an international collaboration aiming to capture the first ever image of a black hole by creating a virtual Earth-sized telescope. This will test Einstein’s Theory of General Relativity in an extreme regime. The EHT consortium consists of 13 stakeholder institutes with about 200 participants in Europe, Asia, Africa, North and South America. The director of the EHT project is Dr. Sheperd S. Doeleman (Harvard- Smithsonian Center for Astrophysics). The technique applied for the EHT observations is called very-long-baseline interferometry (VLBI). VLBI enables the highest resolutions in astronomy by coupling a number of radio telescopes distributed across the Earth. This method is used for the investigation of the direct environment of supermassive black holes in the heart of active galaxies, in particular jets of high-energy particles emitted from the central regions. In the framework of the EHT project it will become possible to directly image the central black holes in addition to the jets. This is achieved by observations at shorter radio waves of only 1.3 mm wavelength. The resolution of the world-wide network of radio telescopes at that wavelength corresponds to the size of a tennis ball in the distance of the moon. To minimize the impact of the Earth’s atmosphere at that wavelength, the observations are only possible at high-altitude and dry sites like the Atacama desert in Chile, the Sierra Nevada in southern Spain, high volcanoes at Hawaii or even the South Pole.
    [Show full text]
  • The 22 Month Swift-Bat All-Sky Hard X-Ray Survey
    The Astrophysical Journal Supplement Series, 186:378–405, 2010 February doi:10.1088/0067-0049/186/2/378 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY J. Tueller1, W. H. Baumgartner1,2,3, C. B. Markwardt1,3,4,G.K.Skinner1,3,4, R. F. Mushotzky1, M. Ajello5, S. Barthelmy1, A. Beardmore6, W. N. Brandt7, D. Burrows7, G. Chincarini8, S. Campana8, J. Cummings1, G. Cusumano9, P. Evans6, E. Fenimore10, N. Gehrels1, O. Godet6,D.Grupe7, S. Holland1,3,J.Kennea7,H.A.Krimm1,3,M.Koss1,3,4, A. Moretti8, K. Mukai1,2,3, J. P. Osborne6, T. Okajima1,11, C. Pagani7, K. Page6, D. Palmer10, A. Parsons1, D. P. Schneider7, T. Sakamoto1,12, R. Sambruna1, G. Sato13, M. Stamatikos1,12, M. Stroh7, T. Ukwata1,14, and L. Winter15 1 NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771, USA; [email protected] 2 Joint Center for Astrophysics, University of Maryland-Baltimore County, Baltimore, MD 21250, USA 3 CRESST/ Center for Research and Exploration in Space Science and Technology, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044, USA 4 Department of Astronomy, University of Maryland College Park, College Park, MD 20742, USA 5 SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 6 X-ray and Observational Astronomy Group/Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 7 Department of Astronomy & Astrophysics, Pennsylvania
    [Show full text]
  • Arxiv:2105.02272V1 [Astro-Ph.GA] 5 May 2021 Dominic W
    Draft version May 7, 2021 Typeset using LATEX twocolumn style in AASTeX62 Polarimetric properties of Event Horizon Telescope targets from ALMA Ciriaco Goddi,1, 2 Ivan´ Mart´ı-Vidal,3, 4 Hugo Messias,5 Geoffrey C. Bower,6 Avery E. Broderick,7, 8, 9 Jason Dexter,10 Daniel P. Marrone,11 Monika Moscibrodzka,1 Hiroshi Nagai,12, 13 Juan Carlos Algaba,14 Keiichi Asada,15 Geoffrey B. Crew,16 Jose´ L. Gomez´ ,17 C. M. Violette Impellizzeri,2, 5 Michael Janssen,18 Matthias Kadler,19 Thomas P. Krichbaum,18 Rocco Lico,17, 18 Lynn D. Matthews,16 Antonios Nathanail,20, 21 Angelo Ricarte,22, 23 Eduardo Ros,18 Ziri Younsi,24, 20 Kazunori Akiyama,16, 12, 22, 25 Antxon Alberdi,17 Walter Alef,18 Richard Anantua,22, 23, 26 Rebecca Azulay,3, 4, 18 Anne-Kathrin Baczko,18 David Ball,11 Mislav Balokovic´,27, 28 John Barrett,16 Bradford A. Benson,29, 30 Dan Bintley,31 Lindy Blackburn,22, 23 Raymond Blundell,23 Wilfred Boland,32 Katherine L. Bouman,22, 23, 33 Hope Boyce,34, 35 Michael Bremer,36 Christiaan D. Brinkerink,1 Roger Brissenden,22, 23 Silke Britzen,18 Dominique Broguiere,36 Thomas Bronzwaer,1 Do-Young Byun,37, 38 John E. Carlstrom,39, 30, 40, 41 Andrew Chael,42 Chi-kwan Chan,11, 43 Shami Chatterjee,44 Koushik Chatterjee,45 Ming-Tang Chen,6 Yongjun Chen (H8军 ),46, 47 Paul M. Chesler,22 Ilje Cho,37, 38 Pierre Christian,48 John E. Conway,49 James M. Cordes,44 Thomas M. Crawford,30, 39 Alejandro Cruz-Osorio,20 Yuzhu Cui,50, 13 Jordy Davelaar,51, 26, 1 Mariafelicia De Laurentis,52, 20, 53 Roger Deane,54, 55, 56 Jessica Dempsey,31 Gregory Desvignes,57 Sheperd S.
    [Show full text]
  • Towards Multi-Wavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations a Dissertat
    TOWARDS MULTI-WAVELENGTH OBSERVATIONS OF RELATIVISTIC JETS FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Richard Jude Anantua August 2016 © 2016 by Richard Anantua. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/sh254xw9430 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Roger Blandford, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Steven Allen I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Grzegorz Madejski Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract A methodology for reverse engineering current and anticipated observations of astrophysical rel- ativistic jets using self-consistent, general relativistic magnetohydrodynamic (GRMHD) simulations is detailed from data-hosting and manipulation to mimicking instrument-specific properties such as point spread function convolution.
    [Show full text]
  • Day-Scale Variability of 3C 279 and Searches for Correlations In
    Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray, and Optical Bands R. C. Hartman 1'2, M. Villata 3, T. J. Balonek 4, D. L. Bertsch 1, H. Bock 5, M. BSttcher 6'7, M. T. Carini is, W. Collmar 8, G. De Francesco 3, E. C. Ferrara 9, J. Heidt 5, G. Kanbach s, S. Katajainen 1°, M. Koskimies l°, O. M. Kurtanidze 1T, L. Lanteri 3, A. Lawson 1_, Y. C. Lin 13, A. P. Marscher TM, J. P. McFarland 9, I. M. McHardy 1_, H. R. Miller 9, M. Nikolashvili 11, K. Nilsson l°, J. C. Noble 14, G. Nucciarelli 1S, L. Ostorero 3, T. Pursimo 1°, C. M. Raiteri 3, R. Rekola m, T. Savolainen 1°, A. Sillanp££ 1°, A. Smale 16, G. Sobrito 3, L. O. Takalo 1°, D. J. Thompson l, G. Tosti 15, S. J. Wagner 5, J. W. Wilson 9 2 Received ; accepted 1Code 661, NASA/GSFC, Greenbelt, MD 20771 2rch_egret.gsfc.nasa.gov 3Osservatorio Astronomico di Torino, Strada Osservatorio 20, 1-10025 Pino Torinese, Italy 4Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346-1398 SLandessternwarte KSnigstuhl, 69117 Heidelberg, Germany 6Department of Space Physics and Astronomy, Rice University, Houston, TX 77005-1892 7Chandra Fellow SMax-Planck-Institut f/Jr Extraterrestrische Physik, P.O. Box 1603, 85740 Garching, Germany 9Department of Physics and Astronomy, Georgia State University Atlanta, GA 30303 X°Tuorla Observatory, V/iis/il£ntie 20, FIN-21500 Piikki6, Finland llAbastumani Observatory, 383762 Abastumani, Republic of Georgia 12Department of Physics and Astronomy, University of Southampton, UK 13W.
    [Show full text]