B. L184 R. L. H. M179 A. S. H. A. M213 W. H. C. P. T

Total Page:16

File Type:pdf, Size:1020Kb

B. L184 R. L. H. M179 A. S. H. A. M213 W. H. C. P. T NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia Quarterly Report October 1, 1983 - December 31, 1983 RESEARCH PROGRAMS 140-foot Telescope Hours Scheduled observing 1750.75 Scheduled maintenance and equipment changes 247.75 Scheduled tests and calibration 75.50 Time lost due to: equipment failure 24.00 power 1.00 weather 48.75 interference 0.50 The following line programs were conducted during this quarter: No. Observer Program B410 L. Avery (Herzberg) Observations over the range 19.6-21 GHz N. Broten (Herzberg) to search for carbon molecules in 0 J. MacLeod (Herzberg IRC+10 216. H184 D. Hegyi (Michigan) Observations at 10.7 GHz for small- M. Kutner (Rensselaer) scale anisotropy in the cosmic back- B. Rauscher (Rensselaer) ground radiation. L159 F. J. Lockman A deep, systematic recombination-line survey at 3 cm of continuum sources in the galaxy. L184 R. Loren (Texas) Search at 24.4 GHz for the symmetric L. Mundy (Texas) top molecule methldiacetylene. H. A. Wootten M179 A. Baudry (Bordeaux I) Observations of OH maser emission in 2 S. Guilloteau (Bordeaux I) the w3 /2, J = 7/2 lines at 13.4 GHz. H. Matthews (Herzberg) A. Winnberg (Chalmers) M213 W. Irvine (Massachusetts) Observations at 1.5 cm of interstellar H. Matthews (Herzberg) acetaldehyde and ketene. C. McGunigle (Massachusetts) P. Friberg (Massachusetts) T. Sears (Herzberg) No. Observer Program R175 L. Rickard (Howard) Search at 4 frequencies between 7274 B. Turner and 7396 MHz for the 2w1/2, J = 3/2 state of CH. Z45 L. Ziurys (Calif., Berkeley) Search at 2.97 GHz for interstellar K. Evenson (Calif., Berkeley) silicon hydride (SiH). G. Fuller (Calif., Berkeley) R. Saykally (Calif., Berkeley) J. Brown (Calif., Berkeley) The following Very Long Baseline programs were conducted, and the stations used in the observations are coded as follows: A Arecibo 1000 ft N NRL Maryland Point 85 ft B Effelsberg MPIR 100 m 0 Owens Valley 130 ft C Algonquin 150 ft P Penticton, B.C. 85 ft F Fort Davis 85 ft R Crimea USSR 30 m G Green Bank 140 ft Sk Kirunda, Sweden 60 ft H Hat Creek 85 ft Sn Onsala 20 min I Iowa 60 ft So Onsala 25 m Jb Jodrell Bank MK II Wd Dwingeloo 25 m Jm Jodrell Bank 250 ft Wn Westerbork n = 1 - 14x26 m Km Haystack 120 ft Yn Socorro n = 1 - 27x25 m L Bologna 25 m No. Observer Program B47V N. Bartel (CFA) Observations at 6 cm of SN 1979c, with telescopes B, G, Kin, 0, and Yn. B48V L. Baath (Chalmers) Observations at 6 cm of the Abell J. Campbell (Bonn) Cluster 2634, with telescopes B, F, D. Graham (MPIR, Bonn) G, Jb, Kin, L, 0, So, Wn, and Yn. B50OV A. de Bruyn (NFRA) Study at 6 cm of the core-jet S. Neff (NFRA) structure of the variable radio source in the Seyfert 2 galaxy Markarian 348, with telescopes B, F, G, Jb, Kin, L, 0, So, Wn, and Yn. B382V L. Baath (Chalmers) Monitoring the 932 MHz absorption F. Briggs (Pittsburgh) line in AO 0235+164, with telescopes M. Davis (NAIC) A, B, G, 0, and Sk. K. Johnston (NRL) D. Jones (Caltech) J. Romney (MPIR, Bonn) B. Ronnang (Chalmers) S. Unwin (Caltech) A. Wolfe (Pittsburgh) No . Observer Program B385V L. Baath (Chalmers) Monitoring of low-frequency variables F. Briggs (Pittsburgh) at 932 MHz, with telescopes A, B, G, M. Davis (NAIC) O, and Sk. K. Johnston (NRL) D. Jones (Caltech) J. Romney (MPIR, Bonn) B. Ronnang (Chalmers) S. Unwin (Caltech) A. Wolfe (Pittsburgh) D2V G. de Waard (Leiden) Observations at 6 cm, with telescopes G. Miley (Leiden) B, G, So, and Yn. E. Preuss (MPIR, Bonn) R. Schilizzi (NFRA) D3V R. Booth (Chalmers) Global VLBI observations at 1.3 cm P. Diamond (Chalmers) of the H2 0 masers associated with D. Graham (MPIR, Bonn) evolved stars, with telescopes B, G, K. Johnston (NRL) Jb, Kin, N, R, and Sn. R. Norris (Manchester) E7V A. Eckart (MPIR, Bonn) Observations of complete sample of K. Johnston (NRL) extragalactic sources at 6 cm, with A. Witzel (MPIR, Bonn) telescopes B, G, Jb, Kin, O, So, and Wn. G35V B. Geldzahler (NRL) Observations of CTA 26 at 18 cm, with K. Johnston (NRL) telescopes B, F, G, H, I, Km, N, 0, J. Spencer (NRL) P, and Yn. E. Waltman (NRL) H8V D. Hough (Caltech) Mapping at 2.8 cm the central com- A. Readhead (Caltech) ponents of the double-lobed quasars 3C 245 and 3C 249.1, with telescopes B, F, G, Kin, and 0. H9V M. Hodges (Iowa) Observations at 18 cm to the "Cork- S. Novotny (Massachusetts) screw" source NRAO 150, with R. Phillips (Haystack) telescopes B, F, G, H, I, Jm, Kin, N, 0, P, So, Wn. L22V R. Linfield (Calif., Berkeley) Mapping at 90 cm of the lobes of R. Simon (NRL) 3C 234, with telescopes F, G, H, I, Jm, Km, N, 0, and Yn. L25V J. Lestrade (JPL) Observations of RSCVn binary systems J. Doiron (Iowa) at 18 cm, with telescopes B, F, G, R. Mutel (Iowa) Km, 0, and Yn. A. Niell (JPL) R. Preston (JPL) 4 No. Observer Program M47V R. Moore (Caltech) Observations at 1.3 cm of the L. Baath (Chalmers) structure and alignment of 3C 345, A. Readhead (Caltech) with telescopes B, C, G, Kin, O, Sn, and Yn. M50V A. Marscher (Boston) Search at 1.3 cm for the "cores" of B. Geldzahler (NRL) the subluminal quasars 4C 39.25 and R. Booth (Chalmers) PKS 2134+004, with telescopes B, G, D. Shaffer (Interferometrics) Kin, N, O, Sn, and Yn. M51V L. Molnar (CFA) Polarization synthesis of "core-jet M. Reid (CFA) sources" at 18 cm, with telescopes B, J. Romney (MPIR, Bonn) F, G, Kin, O, N, and Yn. N7V R. Norris (Manchester) Observations at 1612 MHz of the com- P. Diamond (Chalmers) pact OH maser in OH 127.8, with tele- D. Graham (MPIR, Bonn) scopes B, G, Jmn, O, R, and So. K. Johnston (NRL) R. Booth (Chalmers) T. Perry (Manchester) N8V S. Neff (NFRA) Observations at 6 cm of proper T. Muxlow (NFRA) motions in 3C 418, with telescopes B, F, G, Jb, Kin, 0, So, and Yn. P42V R. Phillips (Haystack) Observations at 2.8 cm to study a new R. Mutel (Iowa) BL Lacertae outburst, with telescopes M. Hodges (Iowa) B, F, G, H, Kin, and 0. P44V I. Pauliny-Toth (MPIR, Bonn) Observations of 3C 454.3 at 1.3 cm, L. Baath (Chalmers) with telescopes B, F, G, H, Kin, and R. Porcas (MPIR, Bonn) 0. W. Sheng-Yin (MPIR, Bonn) A. Zensus (MPIR, Bonn) K. Kellermann P45V R. Porcas (MPIR, Bonn) Observations of 3C 179 at 1.3 cm, with telescopes B, G, Kin, and 0. P46V T. Pearson (Caltech) Second epoch observations at 6 cm A. Readhead (Caltech) of a complete sample of radio sources, with telescopes B, G, I, Kin, 0, and Yn. P49V I. Pauliny-Toth (MPIR, Bonn) Observations at 6 cm of the 3C 454.3 R. Porcas (MPIR, Bonn) jet, with telescopes B, F, G, I, Jb, W. Sheng-Yin (MPIR, bonn) Kin, 0, So, and Wn. A. Zensus (MPIR, Bonn) K. Kellermann 5 No. Observer Program P5OV G. Pilbratt (Chalmers) High-resolution monitoring at 6 cm of R. Booth (Chalmers) 3C 279, with telescopes B, G, Jb, Kin, I. Browne (Manchester) N, 0, So, Wn, and Yn. L. Baath (Chalmers) R. Porcas (MPIR, Bonn) R26V D. Roberts (Brandeis) Linear polarization measurements at R. Potash (Brandeis) 6 cm of strong extragalactic radio B. Burke (MIT) sources, with telescopes G, Kin, 0, and A. Rogers (Haystack) Yn. J. Wardle (Brandeis) S33V R. Simon (NRL) Observations at 90 cm of compact A. Readhead (Caltech) extragalactic radio sources, with M. Chown (Caltech) telescopes F, G, H, I, Jb, Kin, N, O, R. Spencer (Manchester) and Yn. P. Wilkinson (Manchester) T3V J. Taylor Princeton) Pulsar astrometry observations at C. Gwinn (Princeton) 18 cm, with telescopes A, G, and 0. J. Weisberg (Princeton) W23V R. C. Walker Monitor 3C 120 at 6 cm, with tele- S. Unwin (Caltech) scopes A, B, F, G, H, I, Kin, and So. J. Benson G. Seielstad (Caltech) W24V J. Wrobel (Caltech) Observations at 90 cm of compact radio R. Simon (NRL) sources in galaxy pairs, with tele- scopes F, G, H, I, Kin, N, O, and Yn. X14V L. Baath (Chalmers) Observations at 18 cm of the R. Estalella (Barcelona) "optically quiet quasar" 1958+171, A. Rius (Madrid) with telescopes B, G, Jb, So, and Wd. J. Romney (MPIR, Bonn) M. Sanroma (Barcelona) W. Cotton X15V B. Dennison (VPI & SU) Observations at 2.8 cm to observe B. Geldzahler (NRL) sources 1819-096 and 1829-106, with telescopes F, 0, G, and Km. X16V B. Geldzahler (NRL) Observations at 1.3 cm of CTA 26, K. Johnston (NRL) with telescopes G, Kin, N, 0, and Yn. J. Spencer (NRL) E. Waltman (NRL) No. Observer Program X19V N. Bartel (MIT) Observations at 6 cm of 2016+112A,B,C, C. Bennett (MIT) with telescopes B, F, G, Kin, and So. R. Bonometti (MIT) B. Burke (MIT) E. Falco (CFA) M. Gorenstein (CFA) J. Hewitt (MIT) C. Lawrence (Caltech) L. Molnar (CFA) M. Reid (CFA) A. Rogers (Haystack) J. Romney (MPIR) I. Shapiro (CFA) E. Turner (Princeton) X21V S. Neff (NFRA) Observations at 6 cm of MK 231, with telescopes I, G, K, and 0. Z6V A. Zensus (MPIR, Bonn) Observations at 2.8 cm of 1206+43, R. Porcas (MPIR, Bonn) with telescopes B, G, Kin, and 0. 300-foot Telescope Hours Scheduled observing 1877.50 Scheduled maintenance and equipment changes 128.50 Scheduled test and calibration 0.00 Time lost due to: equipment failure 37.25 power 0.00 weather 2.00 interference 0.00 The following continuum programs were conducted during this quarter.
Recommended publications
  • Formation of an Ultra-Diffuse Galaxy in the Stellar Filaments of NGC 3314A
    A&A 652, L11 (2021) Astronomy https://doi.org/10.1051/0004-6361/202141086 & c ESO 2021 Astrophysics LETTER TO THE EDITOR Formation of an ultra-diffuse galaxy in the stellar filaments of NGC 3314A: Caught in the act? Enrichetta Iodice1 , Antonio La Marca1, Michael Hilker2, Michele Cantiello3, Giuseppe D’Ago4, Marco Gullieuszik5, Marina Rejkuba2, Magda Arnaboldi2, Marilena Spavone1, Chiara Spiniello6, Duncan A. Forbes7, Laura Greggio5, Roberto Rampazzo5, Steffen Mieske8, Maurizio Paolillo9, and Pietro Schipani1 1 INAF-Astronomical Observatory of Capodimonte, Salita Moiariello 16, 80131 Naples, Italy e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei Muenchen, Germany 3 INAF-Astronomical Observatory of Abruzzo, Via Maggini, 64100 Teramo, Italy 4 Instituto de Astrofísica, Facultad de Fisica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile 5 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 6 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 7 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 8 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 9 University of Naples “Federico II”, C.U. Monte Sant’Angelo, Via Cinthia, 80126 Naples, Italy Received 14 April 2021 / Accepted 9 July 2021 ABSTRACT The VEGAS imaging survey of the Hydra I cluster has revealed an extended network of stellar filaments to the south-west of the spiral galaxy NGC 3314A. Within these filaments, at a projected distance of ∼40 kpc from the galaxy, we discover an ultra-diffuse galaxy −2 (UDG) with a central surface brightness of µ0;g ∼ 26 mag arcsec and effective radius Re ∼ 3:8 kpc.
    [Show full text]
  • Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange
    Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange Atlas Karte (2000.0) Kulmination um Cambridge 10, 16, Mitternacht: Star Atlas 17 12, 13, Sky Atlas Benachbarte Sternbilder: 20, 21 Ant Cnc Cen Crv Crt Leo Lib 9. Februar Lup Mon Pup Pyx Sex Vir Deklinationsbereic h: -35° ... 7° Fläche am Himmel: 1303° 2 Mythologie und Geschichte: Bei der nördlichen Wasserschlange überlagern sich zwei verschiedene Bilder aus der griechischen Mythologie. Das erste Bild zeugt von der eher harmlosen Wasserschlange aus der Geschichte des Raben : Der Rabe wurde von Apollon ausgesandt, um mit einem goldenen Becher frisches Quellwasser zu holen. Stattdessen tat sich dieser an Feigen gütlich und trug bei seiner Rückkehr die Wasserschlange in seinen Fängen, als angebliche Begründung für seine Verspätung. Um jedermann an diese Untat zu erinnern, wurden der Rabe samt Becher und Wasserschlange am Himmel zur Schau gestellt. Von einem ganz anderen Schlag war die Wasserschlange, mit der Herakles zu tun hatte: In einem Sumpf in der Nähe von Lerna, einem See und einer Stadt an der Küste von Argo, hauste ein unsagbar gefährliches und grässliches Untier. Diese Schlange soll mehrere Köpfe gehabt haben. Fünf sollen es gewesen sein, aber manche sprechen auch von sechs, neun, ja fünfzig oder hundert Köpfen, aber in jedem Falle war der Kopf in der Mitte unverwundbar. Fürchterlich war es, da diesen grässlichen Mäulern - ob die Schlange nun schlief oder wachte - ein fauliger Atem, ein Hauch entwich, dessen Gift tödlich war. Kaum schlug ein todesmutiger Mann dem Untier einen Kopf ab, wuchsen auf der Stelle zwei neue Häupter hervor, die noch furchterregender waren. Eurystheus, der König von Argos, beauftragte Herakles in seiner zweiten Aufgabe diese lernäische Wasserschlange zu töten.
    [Show full text]
  • Arxiv:1705.04776V1 [Astro-Ph.HE] 13 May 2017 Aaua M
    White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS Editors Asada, K.1, Kino, M.2,3, Honma, M.3, Hirota, T.3, Lu, R.-S.4,5, Inoue, M.1, Sohn, B.-W.2,6, Shen, Z.-Q.4, and Ho, P. T. P.1,7 Authors Akiyama, K.3,8, Algaba, J-C.2, An, T.4, Bower, G.1, Byun, D-Y.2, Dodson, R.9, Doi, A.10, Edwards, P.G.11, Fujisawa, K.12, Gu, M-F.4, Hada, K.3, Hagiwara, Y.13, Jaroenjittichai, P.15, Jung, T.2,6, Kawashima, T.3, Koyama, S.1,5, Lee, S-S.2, Matsushita, S.1, Nagai, H.3, Nakamura, M.1, Niinuma, K.12, Phillips, C.11, Park, J-H.15, Pu, H-Y.1, Ro, H-W.2,6, Stevens, J.11, Trippe, S.15, Wajima, K.2, Zhao, G-Y.2 1 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan 2 Korea Astronomy and Space Science Institute, Daedukudae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 5 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 6 University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea 7 East Asian Observatory, 660 N.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope M
    The Astrophysical Journal, 810:14 (34pp), 2015 September 1 doi:10.1088/0004-637X/810/1/14 © 2015. The American Astronomical Society. All rights reserved. THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE M. Ackermann1, M. Ajello2, W. B. Atwood3, L. Baldini4, J. Ballet5, G. Barbiellini6,7, D. Bastieri8,9, J. Becerra Gonzalez10,11, R. Bellazzini12, E. Bissaldi13, R. D. Blandford14, E. D. Bloom14, R. Bonino15,16, E. Bottacini14, T. J. Brandt10, J. Bregeon17, R. J. Britto18, P. Bruel19, R. Buehler1, S. Buson8,9, G. A. Caliandro14,20, R. A. Cameron14, M. Caragiulo13, P. A. Caraveo21, B. Carpenter10,22, J. M. Casandjian5, E. Cavazzuti23, C. Cecchi24,25, E. Charles14, A. Chekhtman26, C. C. Cheung27, J. Chiang14, G. Chiaro9, S. Ciprini23,24,28, R. Claus14, J. Cohen-Tanugi17, L. R. Cominsky29, J. Conrad30,31,32,70, S. Cutini23,24,28,R.D’Abrusco33,F.D’Ammando34,35, A. de Angelis36, R. Desiante6,37, S. W. Digel14, L. Di Venere38, P. S. Drell14, C. Favuzzi13,38, S. J. Fegan19, E. C. Ferrara10, J. Finke27, W. B. Focke14, A. Franckowiak14, L. Fuhrmann39, Y. Fukazawa40, A. K. Furniss14, P. Fusco13,38, F. Gargano13, D. Gasparrini23,24,28, N. Giglietto13,38, P. Giommi23, F. Giordano13,38, M. Giroletti34, T. Glanzman14, G. Godfrey14, I. A. Grenier5, J. E. Grove27, S. Guiriec10,2,71, J. W. Hewitt41,42, A. B. Hill14,43,68, D. Horan19, R. Itoh40, G. Jóhannesson44, A. S. Johnson14, W. N. Johnson27, J. Kataoka45,T.Kawano40, F. Krauss46, M. Kuss12, G. La Mura9,47, S. Larsson30,31,48, L.
    [Show full text]
  • Counting Gamma Rays in the Directions of Galaxy Clusters
    A&A 567, A93 (2014) Astronomy DOI: 10.1051/0004-6361/201322454 & c ESO 2014 Astrophysics Counting gamma rays in the directions of galaxy clusters D. A. Prokhorov1 and E. M. Churazov1,2 1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute (IKI), Profsouznaya 84/32, 117997 Moscow, Russia Received 6 August 2013 / Accepted 19 May 2014 ABSTRACT Emission from active galactic nuclei (AGNs) and from neutral pion decay are the two most natural mechanisms that could establish a galaxy cluster as a source of gamma rays in the GeV regime. We revisit this problem by using 52.5 months of Fermi-LAT data above 10 GeV and stacking 55 clusters from the HIFLUCGS sample of the X-ray brightest clusters. The choice of >10 GeV photons is optimal from the point of view of angular resolution, while the sample selection optimizes the chances of detecting signatures of neutral pion decay, arising from hadronic interactions of relativistic protons with an intracluster medium, which scale with the X-ray flux. In the stacked data we detected a signal for the central 0.25 deg circle at the level of 4.3σ. Evidence for a spatial extent of the signal is marginal. A subsample of cool-core clusters has a higher count rate of 1.9 ± 0.3 per cluster compared to the subsample of non-cool core clusters at 1.3 ± 0.2. Several independent arguments suggest that the contribution of AGNs to the observed signal is substantial, if not dominant.
    [Show full text]
  • A Search for Ram-Pressure Stripping in the Hydra I Cluster B.A. Brown
    A search for ram-pressure stripping in the Hydra I cluster B.A. Brown (NASA GSFC) Abstract Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X- ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chundru Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I. Introduction A thorough understanding of the processes that drive x-ray emission in elliptical and SO galaxies has been long sought after. Characteristics intrinsic of individual galaxies have been examined, as well as environmental influences. Of particular interest, is whether ram-pressure stripping (an environmental influence) is an observable process in early-type galaxies found in groups and clusters. Ram-pressure stripping is one possible mechanism by which hot interstellar gas is removed from a galaxy. In this process, a galaxy moving though a galaxy cluster experiences a pressure upon its interstellar medium (ISM) by the intracluster medium (ICM). Ram-pressure can be expressed by P, = p,v2, where pe is the density of the intracluster medium, and v is the galaxy’s velocity (Gunn & Gott, 1972). This pressure could be sufficient enough to remove a significant amount of the ISM from the galaxy.
    [Show full text]
  • The Dark Halo of the Hydra I Galaxy Cluster: Core, Cusp, Cosmological? ? Dynamics of NGC 3311 and Its Globular Cluster System
    Astronomy & Astrophysics manuscript no. N3311˙noletter˙V13˙astroph c ESO 2018 October 29, 2018 The dark halo of the Hydra I galaxy cluster: core, cusp, cosmological? ? Dynamics of NGC 3311 and its globular cluster system T. Richtler1, R. Salinas1;2, I. Misgeld3, M. Hilker4, G. K.T. Hau2, A.J. Romanowsky5, Y. Schuberth6, and M. Spolaor7 1 Departamento de Astronom´ıa, Universidad de Concepcion,´ Concepcion,´ Chile; [tom,rsalinas]@astro-udec.cl 2 European Southern Observatory, Alonso de Cordova´ 3107, Santiago, Chile 3 Sternwarte der Universitat¨ Munchen,¨ Scheinerstr.1, D-81679, Munchen,¨ Germany; [email protected] 4 European Southern Observatory, Karl-Schwarzschild-Str.2, Garching, Germany; [email protected] 5 UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA; [email protected] 6 Argelander Institut fur¨ Astronomie, Auf dem Hugel¨ 71, 53121 Bonn, Germany; [email protected] 7 Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia; [email protected] Received / Accepted ABSTRACT Context. Some galaxy clusters exhibit shallow or even cored dark matter density profiles in their central regions rather than the pre- dicted steep or cuspy profiles, conflicting with the standard understanding of dark matter. NGC 3311 is the central cD galaxy of the Hydra I cluster (Abell 1060). Aims. We use globular clusters around NGC 3311, combined with kinematical data of the galaxy itself, to investigate the dark matter distribution in the central region of Hydra I . Methods. Radial velocities of 118 bright globular clusters, based on VLT/VIMOS mask spectroscopy, are used to calculate velocity dispersions which are well defined out to 100 kpc.
    [Show full text]
  • An Optical Spectroscopic Survey of the 3CR
    A&A 560, A81 (2013) Astronomy DOI: 10.1051/0004-6361/201322842 & c ESO 2013 Astrophysics An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3 V. Implications for the unified model for FR IIs Ranieri D. Baldi1, Alessandro Capetti2, Sara Buttiglione3, Marco Chiaberge4,5,6, and Annalisa Celotti1,7,8 1 SISSA-ISAS, via Bonomea 265, 34136 Trieste, Italy e-mail: [email protected] 2 INAF − Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy 3 INAF − Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 5 INAF − Istituto di Radio Astronomia, via P. Gobetti 101, 40129 Bologna, Italy 6 Center for Astrophysical Sciences, Johns Hopkins University, 3400 N. Charles Street Baltimore, MD 21218, USA 7 INAF − Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate, Italy 8 INFN − Sezione di Trieste, via Valerio 2, 34127 Trieste, Italy Received 14 October 2013 / Accepted 30 October 2013 ABSTRACT We explore the implications of our optical spectroscopic survey of 3CR radio sources with z < 0.3 for the unified model (UM) for radio-loud AGN, focusing on objects with a “edge-brightened” (FR II) radio morphology. The sample contains 33 high ionization galaxies (HIGs) and 18 broad line objects (BLOs). According to the UM, HIGs, the narrow line sources, are the nuclearly obscured counterparts of BLOs. The fraction of HIGs indicates a covering factor of the circumnuclear matter of 65% that corresponds, adopting a torus geometry, to an opening angle of 50◦ ± 5.
    [Show full text]
  • The Jets in Radio Galaxies
    The jets in radio galaxies Martin John Hardcastle Churchill College September 1996 A dissertation submitted in candidature for the degree of Doctor of Philosophy in the University of Cambridge i `Glaucon: ª...But how did you mean the study of astronomy to be reformed, so as to serve our pur- poses?º Socrates: ªIn this way. These intricate traceries on the sky are, no doubt, the loveliest and most perfect of material things, but still part of the visibleworld, and therefore they fall far short of the true realities Ð the real relativevelocities,in theworld of purenumber and all geometrical ®gures, of the movements which carry round the bodies involved in them. These, you will agree, can be conceived by reason and thought, not by the eye.º Glaucon: ªExactly.º Socrates: ªAccordingly, we must use the embroidered heaven as a model to illustrateour study of these realities, just as one might use diagrams exquisitely drawn by some consummate artist like Daedalus. An expert in geometry, meeting with such designs, would admire their ®nished workmanship, but he wouldthink it absurd to studythem in all earnest with the expectation of ®nding in their proportionsthe exact ratio of any one number to another...º ' Ð Plato (429±347 BC), The Republic, trans. F.M. Cornford. ii Contents 1 Introduction 1 1.1 Thisthesis...................................... ... 1 1.2 Abriefhistory................................... .... 2 1.3 Synchrotronphysics........ ........... ........... ...... 4 1.4 Currentobservationalknowledgeintheradio . ............. 5 1.4.1 Jets ........................................ 6 1.4.2 Coresornuclei ................................. 6 1.4.3 Hotspots ..................................... 7 1.4.4 Largescalestructure . .... 7 1.4.5 Theradiosourcemenagerie . .... 8 1.4.6 Observationaltrends .
    [Show full text]
  • Extragalactic Radio Jets
    Annual Reviews www.annualreviews.org/aronline Ann. Rev. Astron.Astrophys. 1984. 22 : 319-58 Copyright© 1984 by AnnualReviews Inc. All rights reserved EXTRAGALACTIC RADIO JETS Alan H. Bridle National Radio AstronomyObservatory, 1 Charlottesville, Virginia 22901 Richard A. Perley National Radio Astronomy Observatory, Socorro, New Mexico 87801 1. INTRODUCTION Powerful extended extragalactic radio sources pose two vexing astro- physical problems [reviewed in (147) and (157)]. First, from what energy reservoir do they draw their large radio luminosities (as muchas 10a8 W between 10 MHzand 100 GHz)?Second, how does the active center in the parent galaxy or QSOsupply as muchas 10~4 J in relativistic particles and fields to radio "lobes" up to several hundredkiloparsecs outside the optical object? Newaperture synthesis arrays (68, 250) and new image-processing algorithms (66, 101, 202, 231) have recently allowed radio imaging subarcsecond resolution with high sensitivity and high dynamicrange; as a result, the complexityof the brighter sources has been revealed clearly for the first time. Manycontain radio jets, i.e. narrow radio features between compact central "cores" and more extended "lobe" emission. This review examinesthe systematic properties of such jets and the dues they give to the by PURDUE UNIVERSITY LIBRARY on 01/16/07. For personal use only. physics of energy transfer in extragalactic sources. Wedo not directly consider the jet production mechanism,which is intimately related to the Annu. Rev. Astro. Astrophys. 1984.22:319-358. Downloaded from arjournals.annualreviews.org first problemnoted above--for reviews, see (207) and (251). 1. i Why "’Jets"? Baade & Minkowski(3) first used the term jet in an extragalactic context, describing the train of optical knots extending ,-~ 20" from the nucleus of M87; the knots resemble a fluid jet breaking into droplets.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]