A Biodegradable Microparticle Vaccine Platform Using Femtomole Peptide Antigen Doses to Elicit T-Cell Immunity Against Chlamydia Abortus

Total Page:16

File Type:pdf, Size:1020Kb

A Biodegradable Microparticle Vaccine Platform Using Femtomole Peptide Antigen Doses to Elicit T-Cell Immunity Against Chlamydia Abortus A Biodegradable Microparticle Vaccine Platform using Femtomole Peptide Antigen Doses to Elicit T-cell Immunity against Chlamydia abortus by Erfan Ullah Chowdhury A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 10, 2016 Keywords: Chlamydia abortus, T-cell Vaccine, Low Antigen Dose, Peptide Antigens, Microparticle Delivery, Spray Drying Copyright, 2016 by Erfan Ullah Chowdhury Approved by Bernhard Kaltenboeck, Chair, Professor, Pathobiology Zhanjiang Liu, Assoc. Vice President and Assoc. Provost, Professor, School of Fisheries Stuart B. Price, Associate Professor, Pathobiology Chengming Wang, Professor, Pathobiology Abstract Successful vaccination against Chlamydia spp. has remained elusive, largely due to a lack of vaccine platforms for the required Th1 immunization. Modeling of T helper cell immunity indicates that Th1 immunity requires antigen concentrations that are orders of magnitude lower than those required for Th2 immunity and antibody production. We hypothesized that the C. abortus vaccine candidate proteins that we identified earlier, DnaX2, GatA, GatC, Pmp17G, and Pbp3, mediated protection in an A/J mouse model of C. abortus lung infection if administered each at low, 1-20 femtoMole doses per mouse. This immunization significantly protected the mice from lethal challenge with 108 C. abortus organisms. Additional experiments proved that particulate delivery of antigens was required for optimum immunity. As a delivery vehicle, we constructed spray-dried microparticles of 1-3 µm diameter that were composed of biodegradable poly-lactide-co-glycolide polymers and the poloxamer adjuvant Pluronic L121. These microparticles, when administered at 10 µg per mouse dose, were effectively phagocytosed by macrophages and protected C3H/HeJ mice from lethal challenge with C. abortus, and thus were effective immune stimulators (biological response modifiers). We further hypothesized that i) 20-mer peptides overlapping by 10 amino acids could substitute for whole protein antigens when embedded in a 1-3 µm diameter microparticulate vaccine; ii) such phagocytosed biodegradable microparticles would ii intracellularly release peptides and adjuvant from such microspheres in antigen presenting cells and would enable controlled generation of Th1 immunity; and iii) inclusion of Q-VD- OPh, an inhibitor of apoptosis, could suppress a co-emerging inflammatory Th17 response and enhance a protective Th1 response. A dose of 2.00 femtoMoles of each peptide per mouse significantly reduced disease after lethal C. abortus challenge inoculation, but failed to effectively eliminate chlamydiae. In contrast, the inclusion of Q-VD-OPh in the subcutaneously or intranasally administered 0.20 femtoMoles peptide vaccine resulted in effective elimination of C. abortus and completely reversed the disease outcome to a fully protected healthy phenotype. We hypothesized that the 50:50DL-PLG-PEG lactide-co-glycolide polymer, used as rapidly degrading vaccine carrier, had released substantial acidity intracellualry in antigen presenting cells that induced an immunosuppressive apoptotic signal. Thus, the enhanced apoptosis of antigen presenting cells required release of Q-VD-OPh from vaccine microparticles to abolish apoptosis and Th1 immunosuppression. Therefore, we investigated the use of an alternative polymer carrier, the slowly degrading and minimally acid-releasing polylactide polymer DL-PL R202S. This carrier, when used with 0.5-1.25 femtoMole dosage of C. abortus peptide antigens, induced highly significant protection against chlamydial challenge without triggering an unwanted Th1 suppressive or inflammatory immune response in the C. abortus respiratory mouse disease model. In summary, we have developed a fully synthetic biodegradable microsphere vaccine for controlled release of adjuvant and ultralow doses of peptide antigens. This vaccine platform may be commercially useful for discovery and production of vaccines. iii Acknowledgments I have completed this dissertation with the direct and indirect contribution of many people, whom I would like to thank sincerely. Dr. Bernhard Kaltenboeck, my major advisor in the PhD dissertation committee. I would like to express the deepest appreciation to him for his unmeasurable help, guidance, and support throughout my doctoral studies. Dr. Kaltenboeck has the attitude and substance of a genius and is able to convey convincing spirit of adventure in regards to scientific research. My research project based on completely novel ideas and I started from a black hole. Since we had to go through with many optimization approaches and conducted many experiments to confirm the findings, it took a lot of time to complete the study. During this time the motivation and support as I received from Dr. Kaltenboeck was unutterable. Dr. Kaltenboeck, thank you so much for your knid support and I will always be grateful for having the opportunity to study under you supervision. Dr. Stuart B Price, who is an advisor in my graduate committee. He was also my mentor in the Bacterial Pathogenesis course. I learned a lot from him and I would like to thank him for his advice and suggestions throughout my doctoral studies. Dr. Zhanjiang Liu is on my graduate committee and was my mentor in the Molecular Genetics and Biotechnology course. I highly appreciate his guidance throughout this study. Dr. Chengming Wang is also on my graduate committee. Since I joined Dr. Kaltenboeck’s lab as graduate student, I have been learning from Dr. Wang in many ways. Thank you so much Dr. Wang for all of your suggestions and advice. iv Dr. Frederik van Ginkel, who had been on my graduate committee, has recently passed away completely unexpectedly. He was also my mentor in the Cellular and Molecular Immunology course. I would like to thank him a lot for his guidance in my designing immunological studies. Dr. Joseph Giambrone, who is the University Reader of my dissertation and is also one of our collaborators in the vaccine research. I learned a lot from him about chicken disease models. I also highly appreciate his time to review this dissertation. Drs. Ram Gupta and Courtney Ann Ober from the Auburn University Department of Chemical Engineering were extremely helpful in getting us started in spray drying the vaccine microparticles. And Drs. Fernando Osorio and Hiep Vu at the Virology Center of the University of Nebraska in Lincoln were outstanding collaborators in conducting the pig PRRSV vaccine trials. Mrs. Dongya Gao, Dr. Kh Shamsur Rahman, and Dr. Yen-Chen Juan, who are my wonderful current colleagues. Their immense help and support throughout my doctoral study, particularly with the mouse work, was beyond the level of expression. I especially thank Dongya for her help with PCR, Shamsur for his help with ELISAs, and Yen-Chen for her help with the immunofluorescence study. I would also like to thank to all of my previous lab colleagues - Drs. Anil Poudel, Yihang Li, and SudhirAhluwalia for their help and support. I especially thank Anil for his tremendous support in mouse studies. Lastly, and most importantly, I want to thank my father – Azhar Chowdhury, my mother – Masia Chowdhury, and my brothers – Ekram Chowdhury, Zafar Chowdhury, Samim Chowdhury, and Ershad Chowdhury. They have always been there for me and I am thankful for everything they have helped me to achieve. I especially want to thank to my mother, with her tireless efforts, after the death of my father, has allowed me to reach my current position. I want to give special thanks to my wife Shamima Chowdhury for her continued love, care, and support to make this possible. I also want give special thanks to my daughter Eshal Chowdhury, her warm affection gave me the spirit to complete this study. v Table of Contents Abstract ............................................................................................................................... ii Acknowledgments.............................................................................................................. iv List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix List of Abbreviations ......................................................................................................... xi Chapter 1 ............................................................................................................................1 1.1. Chlamydia – Background and taxonomy .........................................................1 1.2. Biology and molecular pathogenesis ...............................................................6 1.3. Chlamydial infection and significance...........................................................20 1.4. Host immunity against chlamydial infection .................................................30 1.5. Chlamydial vaccine .........................................................................................44 1.6. Research rationale and objective ...................................................................55 References ..............................................................................................................59 Chapter 2 ........................................................................................................................120
Recommended publications
  • Aus Dem Institut Für Molekulare Pathogenese Des Friedrich - Loeffler - Instituts, Bundesforschungsinstitut Für Tiergesundheit, Standort Jena
    Aus dem Institut für molekulare Pathogenese des Friedrich - Loeffler - Instituts, Bundesforschungsinstitut für Tiergesundheit, Standort Jena eingereicht über das Institut für Veterinär - Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Evaluation and pathophysiological characterisation of a bovine model of respiratory Chlamydia psittaci infection Inaugural - Dissertation zur Erlangung des Grades eines Doctor of Philosophy (PhD) an der Freien Universität Berlin vorgelegt von Carola Heike Ostermann Tierärztin aus Berlin Berlin 2013 Journal-Nr.: 3683 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Prof. Dr. Petra Reinhold, PhD Zweiter Gutachter: Univ.-Prof. Dr. Kerstin E. Müller Dritter Gutachter: Univ.-Prof. Dr. Lothar H. Wieler Deskriptoren (nach CAB-Thesaurus): Chlamydophila psittaci, animal models, physiopathology, calves, cattle diseases, zoonoses, respiratory diseases, lung function, lung ventilation, blood gases, impedance, acid base disorders, transmission, excretion Tag der Promotion: 30.06.2014 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86387-587-9 Zugl.: Berlin, Freie Univ., Diss., 2013 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • By Emaan M. Khan a THESIS Submitted to Oregon State University Honors College in Partial Fulfillment of the Requirements For
    Polymorphic Membrane Protein-13G Expression Variation Demonstrated between Chlamydia abortus Culture Conditions and Strains by Emaan M. Khan A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Microbiology (Honors Associate) Presented May 18, 2017 Commencement June 2017 AN ABSTRACT OF THE THESIS OF Emaan Khan for the degree of Honors Baccalaureate of Science in Microbiology presented on May 18, 2017. Title: Polymorphic Membrane Protein-13G Expression Variation Demonstrated between Chlamydia abortus Culture Conditions and Strains Abstract approved: _____________________________________________________ Daniel Rockey Chlamydiae encode a family of proteins named the polymorphic membrane proteins, or Pmps, whose role in infection and pathogenesis is unclear. The Rockey Laboratory is studying polymorphic membrane protein expression in Chlamydia abortus, a zoonotic pathogen that causes abortions in ewes. C. abortus contains 18 pmp genes, some of which carry internal homopolymeric repeat sequences (poly-G) that may have a role in controlling protein expression within infected cells. The goal of this project was to elucidate the role of Pmps in the pathogenesis of C. abortus by evaluating patterns of Pmp expression and of the length of a poly-G region within pmp13G. Previous research in the Rockey Laboratory showed a variation in Pmp13G expression and suggested that expression of the pmp13G gene is required under certain culture conditions and not in others. It was hypothesized that this variation was due to changes in culture conditions and may have been linked to the necessity of the pmp13G gene only under certain stages of growth or certain culture conditions.
    [Show full text]
  • First Report of Caprine Abortions Due to Chlamydia Abortus in Argentina
    DOI: 10.1002/vms3.145 Case Report First report of caprine abortions due to Chlamydia abortus in Argentina † ‡ Leandro A. Di Paolo*, Marıa F. Alvarado Pinedo*, Javier Origlia , Gerardo Fernandez , § Francisco A. Uzal and Gabriel E. Traverıa* † *Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CEDIVE, La Plata, Argentina, Facultad de Ciencias Veterinarias, Catedra de Aves ‡ § y Pilıferos, Universidad Nacional de La Plata, La Plata, Argentina, Coprosamen, Mendoza, Argentina and California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, San Bernardino branch, University of California, Davis, California, USA Abstract Infectious abortions of goats in Argentina are mainly associated with brucellosis and toxoplasmosis. In this paper, we describe an abortion outbreak in goats caused by Chlamydia abortus. Seventy out of 400 goats aborted. Placental smears stained with modified Ziehl-Neelsen stain showed many chlamydia-like bodies within trophoblasts. One stillborn fetus was necropsied and the placenta was examined. No gross lesions were seen in the fetus, but the inter-cotyledonary areas of the placenta were thickened and covered by fibrino-sup- purative exudate. The most consistent microscopic finding was found in the placenta and consisted of fibrinoid necrotic vasculitis, with mixed inflammatory infiltration in the tunica media. Immunohistochemistry of the pla- centa was positive for Chlamydia spp. The results of polymerase chain reaction targeting 23S rRNA gene per- formed on placenta were positive for Chlamydia spp. An analysis of 417 amplified nucleotide sequences revealed 99% identity to those of C. abortus pm225 (GenBank AJ005617) and pm112 (GenBank AJ005613) isolates. To the best of our knowledge, this is the first report of abortion associated with C.
    [Show full text]
  • In Vitro Analysis of Genetically Distinct Chlamydia Pecorum Isolates Reveals Key Growth Differences in Mammalian Epithelial and Immune Cells T ⁎ Md
    Veterinary Microbiology 232 (2019) 22–29 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic In vitro analysis of genetically distinct Chlamydia pecorum isolates reveals key growth differences in mammalian epithelial and immune cells T ⁎ Md. Mominul Islama, , Martina Jelocnika, Susan Ansteya, Bernhard Kaltenboeckb, Nicole Borelc, Peter Timmsa, Adam Polkinghorned a Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia b Department of Pathobiology, Auburn University, Auburn, USA c Institute of Veterinary Pathology, University of Zurich, Switzerland d Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia ARTICLE INFO ABSTRACT Keywords: Chlamydia (C.) pecorum is an obligate intracellular bacterium that infects and causes disease in a broad range of Chlamydia pecorum animal hosts. Molecular studies have revealed that this pathogen is genetically diverse with certain isolates In vitro growth linked to different disease outcomes. Limited in vitro or in vivo data exist to support these observations, further Genetically distinct hampering efforts to improve our understanding of C. pecorum pathogenesis. In this study, we evaluated whether Developmental cycle genetically distinct C. pecorum isolates (IPA, E58, 1710S, W73, JP-1-751) display different in vitro growth phenotypes in different mammalian epithelial and immune cells. In McCoy cells, shorter lag phases were ob- served for W73 and JP-1-751 isolates. Significantly smaller inclusions were observed for the naturally plasmid- free E58 isolate. C. pecorum isolates of bovine (E58) and ovine origin (IPA, W73, JP-1-751) grew faster in bovine cells compared to a porcine isolate (1710S).
    [Show full text]
  • Asymptomatic Infections with Highly Polymorphic Chlamydia Suis Are
    Li et al. BMC Veterinary Research (2017) 13:370 DOI 10.1186/s12917-017-1295-x RESEARCH ARTICLE Open Access Asymptomatic infections with highly polymorphic Chlamydia suis are ubiquitous in pigs Min Li1, Martina Jelocnik2, Feng Yang1, Jianseng Gong3, Bernhard Kaltenboeck4, Adam Polkinghorne2, Zhixin Feng5, Yvonne Pannekoek6, Nicole Borel7, Chunlian Song8, Ping Jiang9, Jing Li1, Jilei Zhang1, Yaoyao Wang1, Jiawei Wang1, Xin Zhou1 and Chengming Wang1,4* Abstract Background: Chlamydia suis is an important, globally distributed, highly prevalent and diverse obligate intracellular pathogen infecting pigs. To investigate the prevalence and genetic diversity of C. suis in China, 2,137 nasal, conjunctival, and rectal swabs as well as whole blood and lung samples of pigs were collected in 19 regions from ten provinces of China in this study. Results: We report an overall positivity of 62.4% (1,334/2,137) of C. suis following screening by Chlamydia spp. 23S rRNA-based FRET-PCR and high-resolution melting curve analysis and confirmatory sequencing. For C. suis-positive samples, 33.3 % of whole blood and 62.5% of rectal swabs were found to be positive for the C. suis tetR(C) gene, while 13.3% of whole blood and 87.0% of rectal swabs were positive for the C. suis tet(C) gene. Phylogenetic comparison of partial C. suis ompA gene sequences revealed significant genetic diversity in the C. suis strains. This genetic diversity was confirmed by C. suis-specific multilocus sequence typing (MLST), which identified 26 novel sequence types among 27 examined strains. Tanglegrams based on MLST and ompA sequences provided evidence of C.
    [Show full text]
  • CHLAMYDIOSIS (Psittacosis, Ornithosis)
    EAZWV Transmissible Disease Fact Sheet Sheet No. 77 CHLAMYDIOSIS (Psittacosis, ornithosis) ANIMAL TRANS- CLINICAL FATAL TREATMENT PREVENTION GROUP MISSION SIGNS DISEASE ? & CONTROL AFFECTED Birds Aerogenous by Very species Especially the Antibiotics, Depending on Amphibians secretions and dependent: Chlamydophila especially strain. Reptiles excretions, Anorexia psittaci is tetracycline Mammals Dust of Apathy ZOONOSIS. and In houses People feathers and Dispnoe Other strains doxycycline. Maximum of faeces, Diarrhoea relative host For hygiene in Oral, Cachexy specific. substitution keeping and Direct Conjunctivitis electrolytes at feeding. horizontal, Rhinorrhea Yes: persisting Vertical, Nervous especially in diarrhoea. in zoos By parasites symptoms young animals avoid stress, (but not on the Reduced and animals, quarantine, surface) hatching rates which are blood screening, Increased new- damaged in any serology, born mortality kind. However, take swabs many animals (throat, cloaca, are carrier conjunctiva), without clinical IFT, PCR. symptoms. Fact sheet compiled by Last update Werner Tschirch, Veterinary Department, March 2002 Hoyerswerda, Germany Fact sheet reviewed by E. F. Kaleta, Institution for Poultry Diseases, Justus-Liebig-University Gießen, Germany G. M. Dorrestein, Dept. Pathology, Utrecht University, The Netherlands Susceptible animal groups In case of Chlamydophila psittaci: birds of every age; up to now proved in 376 species of birds of 29 birds orders, including 133 species of parrots; probably all of the about 9000 species of birds are susceptible for the infection; for the outbreak of the disease, additional factors are necessary; very often latent infection in captive as well as free-living birds. Other susceptible groups are amphibians, reptiles, many domestic and wild mammals as well as humans. The other Chlamydia sp.
    [Show full text]
  • Psittacosis/ Avian Chlamydiosis
    Psittacosis/ Importance Avian chlamydiosis, which is also called psittacosis in some hosts, is a bacterial Avian disease of birds caused by members of the genus Chlamydia. Chlamydia psittaci has been the primary organism identified in clinical cases, to date, but at least two Chlamydiosis additional species, C. avium and C. gallinacea, have now been recognized. C. psittaci is known to infect more than 400 avian species. Important hosts among domesticated Ornithosis, birds include psittacines, poultry and pigeons, but outbreaks have also been Parrot Fever documented in many other species, such as ratites, peacocks and game birds. Some individual birds carry C. psittaci asymptomatically. Others become mildly to severely ill, either immediately or after they have been stressed. Significant economic losses Last Updated: April 2017 are possible in commercial turkey flocks even when mortality is not high. Outbreaks have been reported occasionally in wild birds, and some of these outbreaks have been linked to zoonotic transmission. C. psittaci can affect mammals, including humans, that have been exposed to birds or contaminated environments. Some infections in people are subclinical; others result in mild to severe illnesses, which can be life-threatening. Clinical cases in pregnant women may be especially severe, and can result in the death of the fetus. Recent studies suggest that infections with C. psittaci may be underdiagnosed in some populations, such as poultry workers. There are also reports suggesting that it may occasionally cause reproductive losses, ocular disease or respiratory illnesses in ruminants, horses and pets. C. avium and C. gallinacea are still poorly understood. C. avium has been found in asymptomatic pigeons, which seem to be its major host, and in sick pigeons and psittacines.
    [Show full text]
  • Seroprevalence and Risk Factors Associated with Chlamydia Abortus Infection in Sheep and Goats in Eastern Saudi Arabia
    pathogens Article Seroprevalence and Risk Factors Associated with Chlamydia abortus Infection in Sheep and Goats in Eastern Saudi Arabia Mahmoud Fayez 1,2,† , Ahmed Elmoslemany 3,† , Mohammed Alorabi 4, Mohamed Alkafafy 4 , Ibrahim Qasim 5, Theeb Al-Marri 1 and Ibrahim Elsohaby 6,7,*,† 1 Al-Ahsa Veterinary Diagnostic Lab, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; [email protected] (M.F.); [email protected] (T.A.-M.) 2 Department of Bacteriology, Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo 131, Egypt 3 Hygiene and Preventive Medicine Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; [email protected] 4 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] (M.A.); [email protected] (M.A.) 5 Department of Animal Resources, Ministry of Environment, Water and Agriculture, Riyadh 12629, Saudi Arabia; [email protected] 6 Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt 7 Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada * Correspondence: [email protected]; Tel.: +1-902-566-6063 † These authors contributed equally to this work. Citation: Fayez, M.; Elmoslemany, Abstract: Chlamydia abortus (C. abortus) is intracellular, Gram-negative bacterium that cause enzootic A.; Alorabi, M.; Alkafafy, M.; Qasim, abortion in sheep and goats. Information on C. abortus seroprevalence and flock management risk I.; Al-Marri, T.; Elsohaby, I. factors associated with C. abortus seropositivity in sheep and goats in Saudi Arabia are scarce.
    [Show full text]
  • Efficacy of Two Chlamydia Abortus Subcellular Vaccines in a Pregnant Ewe Challenge Model for Ovine Enzootic Abortion
    Article Efficacy of Two Chlamydia abortus Subcellular Vaccines in a Pregnant Ewe Challenge Model for Ovine Enzootic Abortion Morag Livingstone 1, Sean Ranjan Wattegedera 1 , Javier Palarea-Albaladejo 2,† , Kevin Aitchison 1, Cecilia Corbett 1,‡, Michelle Sait 1,§, Kim Wilson 1,k, Francesca Chianini 1 , Mara Silvia Rocchi 1 , Nicholas Wheelhouse 1,¶ , Gary Entrican 1,** and David Longbottom 1,* 1 Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; [email protected] (M.L.); [email protected] (S.R.W.); [email protected] (K.A.); [email protected] (C.C.); [email protected] (M.S.); [email protected] (K.W.); [email protected] (F.C.); [email protected] (M.S.R.); [email protected] (N.W.); [email protected] (G.E.) 2 Biomathematics and Statistics Scotland, Edinburgh EH9 3FD, UK; [email protected] * Correspondence: [email protected] † Current address: Department of Computer Science, Applied Mathematics and Statistics, University of Girona, 17003 Girona, Spain. ‡ Current address: Animal Plant and Health Agency Veterinary Investigation Centre, Thirsk YO7 1PZ, UK. § Current address: Microbiological Diagnostic Unit, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3010, Australia. Citation: Livingstone, M.; k Current address: Institute of Immunology and Infection Research, University of Edinburgh, Wattegedera, S.R.; Edinburgh EH9 3FL, UK. Palarea-Albaladejo, J.; Aitchison, K.; ¶ Current address: School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK. Corbett, C.; Sait, M.; Wilson, K.; ** Current address: The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
    [Show full text]
  • Seroprevalence of Antibodies to Chlamydophila Abortus Shown in Awassi Sheep and Local Goats in Jordan
    Original Paper Vet. Med. – Czech, 49, 2004 (12): 460–466 Seroprevalence of antibodies to Chlamydophila abortus shown in Awassi sheep and local goats in Jordan K. M. A�-Q����1, L. A. S�����2, R. Y. R����3, N. Q. H�����2, F. M. A�-D���4 1Department of Veterinary Clinical Sciences, 2Department of Pathology and Animal Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan 3Faculty of Veterinary Medicine, Cairo University, Gizza, Egypt 4Department of Animal Health, Ministry of Agriculture, Amman, Jordan ABSTRACT: A cold complement fixation test (CFT) was used to identify C. abortus infection in ewes and does in northern Jordan. Sera from 36 flocks of sheep and 20 flocks of goats were collected randomly. The results showed that 433 (21.8%) out of 1 984 ovine sera, and 82 (11.4%) out of 721 caprine sera, were seropositive for C. abortus infec- tion, as indicated by a titre ≥ 1:40. However, all the tested sheep flocks and goat flocks (100%) revealed at least one seropositive animal. There was a strong association (P < 0.05) between the rate of C. abortus infection and the size of the sheep flock, when larger flocks had higher infection rates. However, in goats, the flock size had no relation- ship with seropositivity. Age had no significant (P > 0.05) impact on C. abortus seropositivity. In sheep, there was a significant difference (P < 0.05) between the rates of the chlamydial infection in the four studied areas of northern Jordan. The highest infection rate in sheep (31.2%) was recorded in Mafraq area, while the rates in Irbid, Ajloun and Jerash were 18.5%, 11.2% and 13.9%, respectively.
    [Show full text]
  • Title Pathogenesis of Chlamydial Infections( 本文(FULLTEXT) )
    Title Pathogenesis of Chlamydial Infections( 本文(FULLTEXT) ) Author(s) RAJESH, CHAHOTA Report No.(Doctoral Degree) 博士(獣医学) 甲第226号 Issue Date 2007-03-13 Type 博士論文 Version author URL http://hdl.handle.net/20.500.12099/21409 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 Pathogenesis of Chlamydial Infections !"#$%&'()*+%,-./0 2006 The United Graduate School of Veterinary Sciences, Gifu University, (Gifu University) RAJESH CHAHOTA Pathogenesis of Chlamydial Infections !"#$%&'()*+%,-./0 RAJESH CHAHOTA CONTENTS PREFACE……………………………………………………………………… 1 PART I Molecular Epidemiology, Genetic Diversity, Phylogeny and Virulence Analysis of Chlamydophila psittaci CHAPTER I: Study of molecular epizootiology of Chlamydophila psittaci among captive and feral avian species on the basis of VD2 region of ompA gene Introduction……………………………………………………………… 7 Materials and Methods…………………………………………………... 9 Results…………………………………………………………………… 16 Discussion……………………………………………………………….. 31 Summary……………………………………………………………….... 35 CHAPTER II: Analysis of genetic diversity and molecular phylogeny of the Chlamydophila psittaci strains prevalent among avian fauna and those associated with human psittacosis Introduction……………………………………………………………… 36 Materials and Methods…………………………………………………... 38 Results…………………………………………………………………… 42 Discussion……………………………………………………………….. 55 Summary………………………………………………………………… 59 CHAPTER III: Examination of virulence patterns of the Chlamydophila psittaci strains predominantly associated with avian chlamydiosis and human psittacosis using BALB/c mice Introduction………………………………………………………………
    [Show full text]