Unraveling the Basic Biology and Clinical Significance of the Chlamydial Plasmid

Total Page:16

File Type:pdf, Size:1020Kb

Unraveling the Basic Biology and Clinical Significance of the Chlamydial Plasmid Minireview Unraveling the basic biology and clinical significance of the chlamydial plasmid Daniel D. Rockey Chlamydial plasmids are small, highly conserved, nonconjugative, and non­ syndromes caused by otherwise related integrative DNA molecules that are nearly ubiquitous in many chlamydial strains and species. species, including Chlamydia trachomatis. There has been significant recent Such variability is not found in progress in understanding chlamydial plasmid participation in host–microbe chlamydia. Several chlamydial species interactions, disease, and immune responses. Work in mouse model systems contain one of a homologous set of and, very recently, in nonhuman primates demonstrates that plasmid- 7,500 base pair plasmids with a copy deficient chlamydial strains function as live attenuated vaccines against number that is approximately four­ genital and ocular infections. Collectively, these studies open new avenues fold greater than that of the chromo­ of research into developing vaccines against trachoma and sexually transmitted some (Thomas et al., 1997; Pickett et al., chlamydial infections. 2005; Fig. 1). Within C. trachomatis clinical isolates, the plasmid is virtually Human pathogenic chlamydiae are These obligate intracellular bacteria ubiquitous. There are occasional stud­ members of a successful and unique develop within a membrane-bound ies showing plasmid-negative clinical lineage of bacteria (Collingro et al., vacuole termed the inclusion (Fig. 1), strains, but little is known about the 2011), which infect and cause disease in and existence within the inclusion de­ epidemiology and significance of these a wide variety of animals (Longbottom fines much about the biology of the relatively rare isolates (Peterson et al., and Coulter, 2003). Although anti­ lineage. The challenges to understanding 1990; An et al., 1992; Farencena et al., biotic chemotherapy is quite effective in and preventing chlamydial disease are 1997). Chlamydial plasmids are non­ treating diagnosed primary uncompli­ amplified by the difficulties of work­ conjugative and nonintegrative. They cated ocular and urogenital chlamydial ing with an obligate intracellular bacte­ do not encode antibiotic resistance infections, prevention of the serious rial species, in which the development genes and do not show signs of genetic pathological sequelae, which can de­ of a practical system of genetic manipu­ flexibility. This plasmid and the equally velop after infection, and prevention lation is only in its infancy. (Binet and curious chlamydiaphage found in some of reinfection are much more difficult Maurelli, 2009; Kari et al., 2011). strains (Storey et al., 1989) represent tasks (Byrne, 2010). Most chlamydial the entire complement of extrachro­ mosomal elements carried by Chla- infections are asymptomatic and thus The chlamydial plasmid mydia spp. There is a single example of go undiagnosed and untreated, which In most microbial systems, autono­ an integrated plasmid in Chlamydia suis can lead to chronic inflammation and mously replicating plasmids function as (Dugan et al., 2004), but this is clearly irreversible tissue and organ pathology. tools of genetic variation and are built the exception and not the rule. The Journal of Experimental Medicine In some countries and communities, with replicative backbones associated Nucleotide sequence identity among limited access to medical care and in­ with a variety of functional cassettes plasmids from Chlamydia spp. ranges fection screening technologies further encoding niche-specific genes or gene from 69 to 99%, with very high identity hampers timely diagnosis and treat­ sets. Often these plasmids can be hori­ within C. trachomatis (Thomas et al., ment (Centers for Disease Control zontally transferred, which leads to 1997; Seth-Smith et al., 2009). Sequence and Prevention [CDC], 2011). Repeat rapid distribution or reassociation of comparisons suggest that the plasmids infections are common, and the risk phenotypes among strains (Koonin et al., evolved in parallel with the different of developing the serious sequelae of 2001). The spread of antibiotic resis­ chlamydial species. The C. trachomatis ocular (e.g., blindness) or urogenital tance is often a function of sharing plasmid carries a set of five open reading infection (e.g., infertility) increases of plasmids (or other laterally trans­ frames (ORFs), which share identity with multiple infections (Darville and ferred genetic elements) among other­ with episomal maintenance genes com­ Hiltke, 2010). wise susceptible strains. Such plasmid mon to other plasmids, and a set of transfer is a major and evolving prob­ lem in infectious disease worldwide. D.D. Rockey is at the Department of Biomedical © 2011 Rockey This article is distributed under the terms of an Sciences, Oregon State University College of Many serious diseases are directly the Attribution–Noncommercial–Share Alike–No Mirror Sites license Veterinary Medicine, Corvallis, OR 97331 for the first six months after the publication date (see http://www result of virulence factors carried by plas­ .rupress.org/terms). After six months it is available under a Crea- mids, and variation in plasmid structure tive Commons License (Attribution–Noncommercial–Share Alike CORRESPONDENCE 3.0 Unported license, as described at http://creativecommons.org/ D.D.R.: [email protected] is often associated with different disease licenses/by-nc-sa/3.0/). The Rockefeller University Press $30.00 J. Exp. Med. Vol. 208 No. 11 2159-2162 2159 www.jem.org/cgi/doi/10.1084/jem.20112088 However, clinical isolates with a dele­ tion in the target sequence used in some diagnostic kits (the Swedish Vari­ ant) have been identified. This can lead to false negative test results in patients (Unemo and Clarke, 2011). Studies have reported an apparent clonal expan­ sion of C. trachomatis isolates carrying this deletion. It is possible that the in­ ability to detect infections caused by strains carrying the deleted plasmid has contributed to the rapid expansion of the variant strains in patient populations. As mentioned, the lack of routine genetic tools has been a significant bar­ rier to rapid progress in chlamydial re­ search. Manipulation of the chlamydial plasmid is a logical approach to intro­ duce DNA into these organisms, but such efforts have been frustrating and generally unproductive. However, a very recent study describes successful trans­ formation experiments using hybrid shut­ tle vectors built with pBR325 and the entire chlamydial plasmid (Wang et al., 2011). The vectors are propagated in both E. coli and C. trachomatis, and the system was used to generate green fluor­ escent C. trachomatis. This is an exciting and highly significant development in the study of chlamydiae. The chlamydial plasmid appears to be critical for growth in vivo (Russell et al., 2011), but it is not required for growth in vitro. Multiple laboratories have described phenotypic changes as­ sociated with plasmid­deficient strains as compared with closely related wild type strains. Creation of plasmid­deficient isogenic strains began with the careful Figure 1. Chlamydial growth and plasmid structure. The obligately intracellular chlamydiae work of Akira Matsumoto, who devel­ develop within a host vacuole termed the inclusion. The two developmental forms have different functions in growth. Elementary bodies (EB) are infectious but minimally metabolically active, oped a plaque­purification technique for whereas reticulate bodies (RB) grow and divide, but cannot infect. As shown in a magnified reticulate chlamydial strains (Matsumoto et al., body, the chlamydial plasmid has eight ORFs, which encode plasmid maintenance and chlamydia- 1998) and noted that unlike wild­type specific functions. ORF5 encodes Pgp3, which is secreted from the bacterium and the inclusion and C. trachomatis strains, three of his plaque­ accumulates in the cytosol of the host cell. Pgp3 is immunogenic in many host species. The chla- purified clones of C. trachomatis did not mydial plasmid is also associated with the accumulation of glycogen granules (purple) in the lumen accumulate glycogen within the inclu­ of the inclusion and, as discussed in the text, functions in virulence in animal model systems. sion. Each glycogen­negative clone was then shown to lack the chlamydial three genes encoding proteins of The chlamydial plasmid also has a plasmid. Subsequent investigations of unknown function, each of which is practical side. It is a common target for plasmid­negative strains (O’Connell chlamydia specific. Human strains of nucleic acid amplification test (NAAT)– and Nicks, 2006; Carlson et al., 2008; Chlamydophila pneumoniae lack plasmid, based diagnostics of human infections O’Connell et al., 2011) confirmed the but equine C. pneumoniae strains and (Fredlund et al., 2004). NAAT­based absence of glycogen and examined other veterinary chlamydial species are tests have been, and remain, a valuable transcription across the chlamydial plasmid positive. aspect of chlamydial disease control. genome relative to wild­type strains. 2160 Emerging role for conserved chlamydial plasmids | Rockey Minireview Although the precise scope and nature of and it is hypothesized that Pgp3 serves question remains unaddressed, it appears plasmid­chromosome cross­regulation is a similar function. that some aspect of chlamydial plasmid not fully understood, transcription of a Chlamydial vaccine studies are com­ biology is strongly selected for during set of chlamydial chromosomal genes is plicated by
Recommended publications
  • Aus Dem Institut Für Molekulare Pathogenese Des Friedrich - Loeffler - Instituts, Bundesforschungsinstitut Für Tiergesundheit, Standort Jena
    Aus dem Institut für molekulare Pathogenese des Friedrich - Loeffler - Instituts, Bundesforschungsinstitut für Tiergesundheit, Standort Jena eingereicht über das Institut für Veterinär - Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Evaluation and pathophysiological characterisation of a bovine model of respiratory Chlamydia psittaci infection Inaugural - Dissertation zur Erlangung des Grades eines Doctor of Philosophy (PhD) an der Freien Universität Berlin vorgelegt von Carola Heike Ostermann Tierärztin aus Berlin Berlin 2013 Journal-Nr.: 3683 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Prof. Dr. Petra Reinhold, PhD Zweiter Gutachter: Univ.-Prof. Dr. Kerstin E. Müller Dritter Gutachter: Univ.-Prof. Dr. Lothar H. Wieler Deskriptoren (nach CAB-Thesaurus): Chlamydophila psittaci, animal models, physiopathology, calves, cattle diseases, zoonoses, respiratory diseases, lung function, lung ventilation, blood gases, impedance, acid base disorders, transmission, excretion Tag der Promotion: 30.06.2014 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86387-587-9 Zugl.: Berlin, Freie Univ., Diss., 2013 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch
    [Show full text]
  • Asymptomatic Infections with Highly Polymorphic Chlamydia Suis Are
    Li et al. BMC Veterinary Research (2017) 13:370 DOI 10.1186/s12917-017-1295-x RESEARCH ARTICLE Open Access Asymptomatic infections with highly polymorphic Chlamydia suis are ubiquitous in pigs Min Li1, Martina Jelocnik2, Feng Yang1, Jianseng Gong3, Bernhard Kaltenboeck4, Adam Polkinghorne2, Zhixin Feng5, Yvonne Pannekoek6, Nicole Borel7, Chunlian Song8, Ping Jiang9, Jing Li1, Jilei Zhang1, Yaoyao Wang1, Jiawei Wang1, Xin Zhou1 and Chengming Wang1,4* Abstract Background: Chlamydia suis is an important, globally distributed, highly prevalent and diverse obligate intracellular pathogen infecting pigs. To investigate the prevalence and genetic diversity of C. suis in China, 2,137 nasal, conjunctival, and rectal swabs as well as whole blood and lung samples of pigs were collected in 19 regions from ten provinces of China in this study. Results: We report an overall positivity of 62.4% (1,334/2,137) of C. suis following screening by Chlamydia spp. 23S rRNA-based FRET-PCR and high-resolution melting curve analysis and confirmatory sequencing. For C. suis-positive samples, 33.3 % of whole blood and 62.5% of rectal swabs were found to be positive for the C. suis tetR(C) gene, while 13.3% of whole blood and 87.0% of rectal swabs were positive for the C. suis tet(C) gene. Phylogenetic comparison of partial C. suis ompA gene sequences revealed significant genetic diversity in the C. suis strains. This genetic diversity was confirmed by C. suis-specific multilocus sequence typing (MLST), which identified 26 novel sequence types among 27 examined strains. Tanglegrams based on MLST and ompA sequences provided evidence of C.
    [Show full text]
  • CHLAMYDIOSIS (Psittacosis, Ornithosis)
    EAZWV Transmissible Disease Fact Sheet Sheet No. 77 CHLAMYDIOSIS (Psittacosis, ornithosis) ANIMAL TRANS- CLINICAL FATAL TREATMENT PREVENTION GROUP MISSION SIGNS DISEASE ? & CONTROL AFFECTED Birds Aerogenous by Very species Especially the Antibiotics, Depending on Amphibians secretions and dependent: Chlamydophila especially strain. Reptiles excretions, Anorexia psittaci is tetracycline Mammals Dust of Apathy ZOONOSIS. and In houses People feathers and Dispnoe Other strains doxycycline. Maximum of faeces, Diarrhoea relative host For hygiene in Oral, Cachexy specific. substitution keeping and Direct Conjunctivitis electrolytes at feeding. horizontal, Rhinorrhea Yes: persisting Vertical, Nervous especially in diarrhoea. in zoos By parasites symptoms young animals avoid stress, (but not on the Reduced and animals, quarantine, surface) hatching rates which are blood screening, Increased new- damaged in any serology, born mortality kind. However, take swabs many animals (throat, cloaca, are carrier conjunctiva), without clinical IFT, PCR. symptoms. Fact sheet compiled by Last update Werner Tschirch, Veterinary Department, March 2002 Hoyerswerda, Germany Fact sheet reviewed by E. F. Kaleta, Institution for Poultry Diseases, Justus-Liebig-University Gießen, Germany G. M. Dorrestein, Dept. Pathology, Utrecht University, The Netherlands Susceptible animal groups In case of Chlamydophila psittaci: birds of every age; up to now proved in 376 species of birds of 29 birds orders, including 133 species of parrots; probably all of the about 9000 species of birds are susceptible for the infection; for the outbreak of the disease, additional factors are necessary; very often latent infection in captive as well as free-living birds. Other susceptible groups are amphibians, reptiles, many domestic and wild mammals as well as humans. The other Chlamydia sp.
    [Show full text]
  • Title Pathogenesis of Chlamydial Infections( 本文(FULLTEXT) )
    Title Pathogenesis of Chlamydial Infections( 本文(FULLTEXT) ) Author(s) RAJESH, CHAHOTA Report No.(Doctoral Degree) 博士(獣医学) 甲第226号 Issue Date 2007-03-13 Type 博士論文 Version author URL http://hdl.handle.net/20.500.12099/21409 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 Pathogenesis of Chlamydial Infections !"#$%&'()*+%,-./0 2006 The United Graduate School of Veterinary Sciences, Gifu University, (Gifu University) RAJESH CHAHOTA Pathogenesis of Chlamydial Infections !"#$%&'()*+%,-./0 RAJESH CHAHOTA CONTENTS PREFACE……………………………………………………………………… 1 PART I Molecular Epidemiology, Genetic Diversity, Phylogeny and Virulence Analysis of Chlamydophila psittaci CHAPTER I: Study of molecular epizootiology of Chlamydophila psittaci among captive and feral avian species on the basis of VD2 region of ompA gene Introduction……………………………………………………………… 7 Materials and Methods…………………………………………………... 9 Results…………………………………………………………………… 16 Discussion……………………………………………………………….. 31 Summary……………………………………………………………….... 35 CHAPTER II: Analysis of genetic diversity and molecular phylogeny of the Chlamydophila psittaci strains prevalent among avian fauna and those associated with human psittacosis Introduction……………………………………………………………… 36 Materials and Methods…………………………………………………... 38 Results…………………………………………………………………… 42 Discussion……………………………………………………………….. 55 Summary………………………………………………………………… 59 CHAPTER III: Examination of virulence patterns of the Chlamydophila psittaci strains predominantly associated with avian chlamydiosis and human psittacosis using BALB/c mice Introduction………………………………………………………………
    [Show full text]
  • Bacteria of Ophthalmic Importance Diane Hendrix, DVM, DACVO Professor of Ophthalmology
    Bacteria of Ophthalmic Importance Diane Hendrix, DVM, DACVO Professor of Ophthalmology THE UNIVERSITY OF TENNESSEE COLLEGE OF VETERINARY MEDICINE DEPARTMENT OF <<INSERT DEPARTMENT NAME HERE ON MASTER SLIDE>> 1 Bacteria Prokaryotic organisms – cell membrane – cytoplasm – RNA – DNA – often a cell wall – +/- specialized surface structures such as capsules or pili. –lack a nuclear membrane or mitotic apparatus – the DNA is organized into a single circular chromosome www.norcalblogs.com/.../GeneralBacteria.jpg 2 Bacteria +/- smaller molecules of DNA termed plasmids that carry information for drug resistance or code for toxins that can affect host cellular functions www.fairscience.org 3 Variable physical characteristics • Mycoplasma lacks a rigid cell wall • Borrelia and Leptospira have flexible thin walls. • Pili are short, hair-like extensions at the cell membrane that mediate adhesion to specific surfaces. http://www.stopcattlepinkeye.com/about-cattle-pinkeye.asp 4 Bacteria reproduction • Asexual binary fission • The bacterial growth cycle includes: – the lag phase – the logarithmic growth phase – the stationary growth phase – the decline phase • Iron is essential for bacteria 5 Opportunistic bacteria • Staphylococcus epidermidis • Bacillus sp. • Corynebacterium sp. • Escherichia coli • Klebsiella sp. • Enterobacter sp. • Serratia sp. • Pseudomonas sp. (other than P aeruginosa). 6 Infectivity • Adhesins are protein determinates of adherence. Some are expressed in bacterial pili or fimbriae. • Flagella • Proteases, elastases, hemolysins, cytoxins degrade BM and extracellular matrix. • Secretomes and lipopolysaccharide core biosynthetic genes inhibit corneal epithelial cell migration 7 8 Normal bacterial and fungal flora Bacteria can be cultured from 50 to 90% of normal dogs. – Gram + aerobes are most common. – Gram - bacteria have been recovered from 8% of normal dogs.
    [Show full text]
  • Characteristics of Chlamydia Suis Ocular Infection in Pigs
    pathogens Article Characteristics of Chlamydia suis Ocular Infection in Pigs Christine Unterweger 1,* , Aleksandra Inic-Kanada 2 , Sara Setudeh 1, Christian Knecht 1, Sophie Duerlinger 1, Melissa Stas 1 , Daisy Vanrompay 3, Celien Kiekens 3, Romana Steinparzer 4, Wilhelm Gerner 5,† , Andrea Ladinig 1,‡ and Talin Barisani-Asenbauer 6,‡ 1 University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; [email protected] (S.S.); [email protected] (C.K.); [email protected] (S.D.); [email protected] (M.S.); [email protected] (A.L.) 2 Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; [email protected] 3 Laboratory for Immunology and Animal Biotechnology, Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, Coupure Links, 654, 9000 Ghent, Belgium; [email protected] (D.V.); [email protected] (C.K.) 4 Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Robert Koch Gasse 17, 2340 Moedling, Austria; [email protected] 5 Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; [email protected] 6 OCUVAC Centre of Ocular Inflammation and Infection, Laura Bassi Centre of Expertise, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; [email protected] * Correspondence: [email protected] † Present address: The Pirbright Institute, Woking, UK. Citation: Unterweger, C.; ‡ Equal contributors.
    [Show full text]
  • Amoebal Endosymbiont Neochlamydia Genome Sequence Illuminates the Bacterial Role in the Defense of the Host Title Amoebae Against Legionella Pneumophila
    Amoebal Endosymbiont Neochlamydia Genome Sequence Illuminates the Bacterial Role in the Defense of the Host Title Amoebae against Legionella pneumophila Ishida, Kasumi; Sekizuka, Tsuyoshi; Hayashida, Kyoko; Matsuo, Junji; Takeuchi, Fumihiko; Kuroda, Makoto; Author(s) Nakamura, Shinji; Yamazaki, Tomohiro; Yoshida, Mitsutaka; Takahashi, Kaori; Nagai, Hiroki; Sugimoto, Chihiro; Yamaguchi, Hiroyuki PLoS ONE, 9(4), e95166 Citation https://doi.org/10.1371/journal.pone.0095166 Issue Date 2014-04-18 Doc URL http://hdl.handle.net/2115/55248 Rights(URL) http://creativecommons.org/licenses/by/3.0/ Type article File Information pone9-4.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Amoebal Endosymbiont Neochlamydia Genome Sequence Illuminates the Bacterial Role in the Defense of the Host Amoebae against Legionella pneumophila Kasumi Ishida1, Tsuyoshi Sekizuka2, Kyoko Hayashida3, Junji Matsuo1, Fumihiko Takeuchi2, Makoto Kuroda2, Shinji Nakamura4, Tomohiro Yamazaki1, Mitsutaka Yoshida5, Kaori Takahashi5, Hiroki Nagai6, Chihiro Sugimoto3, Hiroyuki Yamaguchi1* 1 Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan, 2 Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan, 3 Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan, 4 Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan, 5 Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan, 6 Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Abstract Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown.
    [Show full text]
  • Emended Description of the Order Chlamydiales, Proposal of Parachlamydiaceae Fam. Nov. and Simkaniaceae Fam. Nov., Each Containi
    International Journal of Systematic Bacteriology (1 999), 49,415-440 Printed in Great Britain Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms Karin D. E. Everett,'t Robin M. Bush* and Arthur A. Andersenl Author for correspondence: Karin D. E. Everett. Tel: + 1 706 542 5823. Fax: + 1 706 542 5771. e-mail : keverett@,calc.vet.uga.edu or kdeeverett @hotmail.com 1 Avian and Swine The current taxonomic classification of Chlamydia is based on limited Respiratory Diseases phenotypic, morphologic and genetic criteria. This classification does not take Research Unit, National Animal Disease Center, into account recent analysis of the ribosomal operon or recently identified Agricultural Research obligately intracellular organisms that have a chlamydia-like developmental Service, US Department of cycle of replication. Neither does it provide a systematic rationale for Agriculture, PO Box 70, Ames, IA 50010, USA identifying new strains. In this study, phylogenetic analyses of the 165 and 235 rRNA genes are presented with corroborating genetic and phenotypic * Department of Ecology & Evolutionary Biology, information to show that the order Chlamydiales contains at least four distinct University of California groups at the family level and that within the Chlamydiaceae are two distinct at Irvine, Irvine, lineages which branch into nine separate clusters. In this report a reclassification CA 92696, USA of the order Chlamydiales and its current taxa is proposed. This proposal retains currently known strains with > 90% 165 rRNA identity in the family Chlamydiaceae and separates other chlamydia-like organisms that have 80-90% 165 rRNA relatedness to the Chlamydiaceae into new families.
    [Show full text]
  • Study Objectives
    Promotor: Prof. dr. Daisy Vanrompay Laboratory of Immunology and Animal Biotechnology Department of Animal Production Faculty of Bioscience Engineering Ghent University Belgium Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe Kristien DE PUYSSELEYR Development and implementation of novel diagnostic tests for epidemiological and zoonotic research on Chlamydia suis Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Nederlandse vertaling titel: Ontwikkeling en implementatie van diagnostische testen voor epidemiologisch en zoönotisch onderzoek naar Chlamydia suis. Refer to this thesis: De Puysseleyr, K. (2015). Development and implementation of novel diagnostic tests for epidemiological and zoonotic research on Chlamydia suis. PhD thesis, Ghent University, Ghent, Belgium ISBN-nummer: 978-90-5989-796-0 The author and the promotor give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Members of the examination committee Prof. dr. Anita Van Landschoot (Chairman) Department of Applied Biosciences Faculty of Bioscience Engineering Ghent University Prof. dr. Nico Boon (Secretary) Department of Biochemical and Microbial Technology Faculty of Bioscience Engineering Ghent University Prof. dr. Daisy Vanrompay(Promotor) Department of Animal Production Faculty of Bioscience Engineering Ghent University Prof. dr. Eric Cox (Co-promotor) Department of Virology, Parasitology and Immunology Faculty of Veterinary Medicine Ghent University Prof. dr. Frank Pasmans Department of Pathology, Bacteriology and Poultry Disease Faculty of Veterinary Medicine Ghent University Prof. dr. Bruno Goddeeris Department of Biosystems Faculty of Bioscience Engineering KU Leuven Department of Virology, Parasitology and Immunology Faculty of Veterinary Medicine Ghent University Dr.
    [Show full text]
  • A Biodegradable Microparticle Vaccine Platform Using Femtomole Peptide Antigen Doses to Elicit T-Cell Immunity Against Chlamydia Abortus
    A Biodegradable Microparticle Vaccine Platform using Femtomole Peptide Antigen Doses to Elicit T-cell Immunity against Chlamydia abortus by Erfan Ullah Chowdhury A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 10, 2016 Keywords: Chlamydia abortus, T-cell Vaccine, Low Antigen Dose, Peptide Antigens, Microparticle Delivery, Spray Drying Copyright, 2016 by Erfan Ullah Chowdhury Approved by Bernhard Kaltenboeck, Chair, Professor, Pathobiology Zhanjiang Liu, Assoc. Vice President and Assoc. Provost, Professor, School of Fisheries Stuart B. Price, Associate Professor, Pathobiology Chengming Wang, Professor, Pathobiology Abstract Successful vaccination against Chlamydia spp. has remained elusive, largely due to a lack of vaccine platforms for the required Th1 immunization. Modeling of T helper cell immunity indicates that Th1 immunity requires antigen concentrations that are orders of magnitude lower than those required for Th2 immunity and antibody production. We hypothesized that the C. abortus vaccine candidate proteins that we identified earlier, DnaX2, GatA, GatC, Pmp17G, and Pbp3, mediated protection in an A/J mouse model of C. abortus lung infection if administered each at low, 1-20 femtoMole doses per mouse. This immunization significantly protected the mice from lethal challenge with 108 C. abortus organisms. Additional experiments proved that particulate delivery of antigens was required for optimum immunity. As a delivery vehicle, we constructed spray-dried microparticles of 1-3 µm diameter that were composed of biodegradable poly-lactide-co-glycolide polymers and the poloxamer adjuvant Pluronic L121. These microparticles, when administered at 10 µg per mouse dose, were effectively phagocytosed by macrophages and protected C3H/HeJ mice from lethal challenge with C.
    [Show full text]
  • Chlamydial Plasmids and Bacteriophages Małgorzata Pawlikowska-Warych, Joanna Śliwa-Dominiak and Wiesław Deptuła*
    Vol. 62, No 1/2015 1–6 http://dx.doi.org/10.18388/abp.2014_764 Review Chlamydial plasmids and bacteriophages Małgorzata Pawlikowska-Warych, Joanna Śliwa-Dominiak and Wiesław Deptuła* Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland Chlamydia are absolute pathogens of humans and ani- development cycle, lasting 48–72 hours, with three forms mals; despite being rather well recognised, they are still that include an infectious elementary body (EB), a non- open for discovery. One such discovery is the occurrence infectious reticulate body (RB), as well as intermediate of extrachromosomal carriers of genetic information. In body (IB) (Horn, 2012; Pawlikowska & Deptuła, 2012). prokaryotes, such carriers include plasmids and bacterio- Their genetic information, as in all prokaryotes, is writ- phages, which are present only among some Chlamydia ten in a rather small bacterial chromosome (approx. 1 species. Plasmids were found exclusively in Chlamydia Mbp) (Nunes et al., 2013), but some of their genotypic (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. fe- and phenotypic features are supplemented with extra- lis, C. muridarum and C. caviae. In prokaryotic organisms, chromosomal carriers, that is plasmids (Song et al., 2013, plasmids usually code for genes that facilitate survival of 2014) and bacteriophages (Hsia et al., 2000). the bacteria in the environment (although they are not Plasmids are small, usually circular DNA particles essential). In chlamydia, their role has not been definite- which coexist in bacterial cells, carrying genetic infor- ly recognised, apart from the fact that they participate in mation apart from the bacterial chromosome, and they the synthesis of glycogen and encode proteins respon- are capable of independent replication (Petersen, 2011).
    [Show full text]
  • Peptide ELISA and FRET-Qpcr Identified a Significantly Higher Prevalence of Chlamydia Suis in Domestic Pigs Than in Feral Swine from the State of Alabama, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2021 Peptide ELISA and FRET-qPCR Identified a Significantly Higher Prevalence of Chlamydia suis in Domestic Pigs Than in Feral Swine from the State of Alabama, USA Md Monirul Hoque Folasade Adekanmbi Subarna Barua Kh. Shamsur Rahman Virginia Aida See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Zoology Commons This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Md Monirul Hoque, Folasade Adekanmbi, Subarna Barua, Kh. Shamsur Rahman, Virginia Aida, Brian Anderson, Anil Poudel, Anwar Kalalah, Sara Bolds, Steven Madere, Steven Kitchens, Stuart Price, Vienna Brown, B. Graeme Lockaby, Constantinos S. Kyriakis, Bernhard Kaltenboeck, and Chengming Wang pathogens Article Peptide ELISA and FRET-qPCR Identified a Significantly Higher Prevalence of Chlamydia suis in Domestic Pigs Than in Feral Swine from the State of Alabama, USA Md Monirul Hoque 1 , Folasade Adekanmbi 1, Subarna Barua 1, Kh.
    [Show full text]