Phd Birgitte Nilsson.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Phd Birgitte Nilsson.Pdf Roskilde University Molecular Stress Physiology in the Calanoid Copepod Acartia tonsa Nilsson, Birgitte Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Citation for published version (APA): Nilsson, B. (2018). Molecular Stress Physiology in the Calanoid Copepod Acartia tonsa. Roskilde Universitet. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Molecular Stress Physiology in the Calanoid copepod Acartia tonsa Ph.D. thesis by Birgitte Nilsson Department of Science and Environment Universitetsvej 1, DK-4000 Roskilde, Denmark Supervisor: Professor Benni Winding Hansen This thesis has been submitted to the Doctoral School of Science and Environment, Roskilde University on the 22nd of December 2017. Molecular Stress Physiology in the Calanoid Copepod Acartia tonsa Ph.D. dissertation by Birgitte Nilsson Department of Science and Environment Universitetsvej 1, DK-4000 Roskilde, Denmark Supervisor: Professor Benni Winding Hansen This dissertation has been submitted to the Doctoral School of Science and Environment, Roskilde University on the 30th of December 2017. ISBN: 978-87-7349-997-9 1 2 Preface This Ph.D. dissertation is a part of the project: Acartia tonsa Molecular PHysiology Imple- mentation of novel and fast tools to assess COPepod physiological states (AMPHICOP). The project was supported by a research grant (No. 8689) from VILLUM FONDEN. Roskilde University Department of Science and Environment and Graduate School of En- vironmental Stress Studies (GESS) was responsible for hosting me during the Ph.D. jour- ney. University of Connecticut Department of Marine Sciences and Professor Ann Bucklin hosted me during my research stay in the U.S. The research group included following members: Ph.D. student Birgitte Nilsson, Roskilde University Professor Benni Winding Hansen, Roskilde University Post-doctoral fellow Tue Sparholdt Jørgensen, Roskilde University Professor Lars Hestbjerg Hansen, Aarhus University Professor Ann Bucklin provided supervision at the University of Connecticut. Research field: Molecular stress physiology 3 4 Abstract The human population is growing which causes major changes in marine ecosystems in terms of thermal stress, acidification, and pollution. This is and will inevitably have a nega- tive impact on marine plants and animals. Copepods are intermediaries of the marine food web, providing a link of energy transfer from phytoplankton to higher trophic levels. If copepods suffer due to environmental changes, it will affect the whole food web negatively. It is, thus, important to understand how stressors are affecting copepods. The aim of the present Ph.D. dissertation is to provide new information for understanding how environmental stress affects the calanoid copepod, Acartia tonsa, at the transcriptional level. Targeted - (i.e. real-time quantitative PCR) and transcriptome-wide methods for ex- amining gene expression are able to give an early indication of when organisms experience a condition as stressful. The three produced manuscripts of the present Ph.d. dissertation covers different aspects of molecular stress physiology in Acartia tonsa: Producing Acartia tonsa in high densities, as live feed for fish-larvae, is a major obstacle in the aquaculture industries. In manuscript I, Acartia tonsa was exposed to very high densities (up to 10,000 ind. L-1) for 12 h. The short-term exposure to elevated densities did not cause any significant changes in swimming behavior, respiration, or gene expression of heat shock protein 70, and 90 kDa, as well as ferritin. In gene expression studies, handling has the potential of affecting the transcription of stress-related biomarkers. In manuscript II, the whole-transcriptome response towards handling stress and salinity shock (i.e., positive control) were examined in comparison to a negative control for Acartia tonsa. The effect of the treatments were evaluated 15 min and 24 h post-exposure, since it was not clear when to expect a transcriptional response. Han- dling did affect the transcriptional pattern in Acartia tonsa, especially after 24 h. Among the differential expressed genes, a number of commonly-used copepod biomarkers were identi- fied. Thus, the biomarkers for stress-related studies should be chosen carefully. Acartia tonsa is capable of producing embryonic quiescence in response to unfavorable envi- ronmental conditions. Manuscript III, provides a detailed description of subitaneous devel- opment and quiescence in Acartia tonsa eggs. Furthermore, it was demonstrated that timing of quiescence determines egg viability. 5 Resumé (Danish abstract) Væksten af den menneskelige population er årsag til store ændringer i det marine økosy- stem, såsom termisk stress, forsuring og forurening. Dette vil unægtelig resultere i en nega- tiv påvirkning af marine planter og dyr. Vandlopper er et mellemled i den marine fødekæde, hvor de kobler energi fra fytoplankton til højere trofiske niveauer. Hvis vandlopperne bliver belastet af miljømæssige ændringer vil det påvirke den marine fødekæde negativt. Formålet med Ph.D. afhandlingen var at bidrage med ny viden til at kunne forstå hvordan miljømæssig stress påvirker vandloppen, Acartia tonsa, på gen-niveau. Målrettede – (dvs. re- al-time quantitative PCR), såvel som ”whole-transcriptome” metoder blev benyttet for at undersøge gen-ekspression. Gen-ekspression kan give en tidlig indikation på hvornår en or- ganisme oplever stress. De tre producerede manuskripter af denne Ph.D. afhandling dækker forskellige aspekter indenfor molekylær stress-fysiologi af Acartia tonsa. Produktionen af Acartia tonsa i høje densiteter, til brug som levende foder for fiskelarver, er en stor hindring i akvakultur-industrien. I manuskript I blev Acartia tonsa udsat for høje densiteter (op til 10,000 ind. L-1) i 12 timer. Den kortvarige eksponering til øgede densiteter gav ikke nogen signifikante ændringer i svømme-adfærd, respiration, eller gen-ekspression af heat-shock protein 70-, og 90 kDa, så vel som ferritin. Håndtering af dyr har potentialet til at påvirke gen-ekspression af stress-relaterede biomar- kører. I manuskript II blev stress-responsen mod håndterings - og salt stress undersøgt med RNA-sekvensering. Effekten af behandlingerne blev evalueret 15 min og 24 timer efter ek- sponering da det var uklart hvornår der kunne forventes en respons på det molekylære ni- veau. Håndtering havde en klar påvirkning på gen-ekspression for Acartia tonsa, specielt 24 timer efter eksponering. Blandt de differentierede udtrykte gener blev der identificeret et antal biomarkører som typisk bliver brugt i vandloppe-studier. Valget af biomarkører i gen- ekspressions studier bør derfor vælges nøje for at undgå en håndterings-effekt. Acartia tonsa er i stand til at inducere et embryonisk hvilestadie, kaldt quiescens, i respons til ugunstige forhold. Manuskript III giver en detaljeret beskrivelse af den subitane udvikling, såvel som quiescens i Acartia tonsa æg. Det var desuden demonstreret at timing for indukti- on af quiescens bestemmer æggenes levedygtighed. 6 Acknowledgements My dissertation was about stressing copepods in different ways to uncover what happens at the molecular level – and thereby provide cues to how this tiny creature “works” and copes with its surroundings. But to be honest, sometimes the copepods were stressing me more than I was stressing them. This work is a part of the AMPHICOP project and was carried out at Roskilde University (Roskilde, Denmark) for three years, with a six months research stay at the University of Connecticut (UConn, Groton, USA). Many people have supported my journey, and I would like to thank them with gratitude. Especially I would like to thank: • Professor Benni W. Hansen for supervision and guidance during this amazing journey. • Professor Ann Bucklin for taking me in and introducing me to her network at UConn. Thanks for helping me with all the practical and personal issues there is when moving to another country, and for all your useful feedback and support. • My big brother in science, Per M. Jepsen. Thank you for always being helpful in professional relations, but besides that also being a very dear friend. I like how we cooperate and create magic in the lab. • Jennifer M. Questel. Thank you for all your help in the U.S. and for being an amaz- ing person. Also thanks to Odin for cuddly support. • My amazing co-authors! Especially thanks to Peter Stief for the visit at University of Southern Denmark (Department of Biology, Odense, Denmark), and Hans H. Jakobsen for letting me borrow your epi-fluorescence microscope at Institute for Bioscience (Aarhus University, Roskilde, Denmark), for bringing me coffee and be- ing just as excited about pictures of copepod eggs as I am. • Hans Ramløv.
Recommended publications
  • The Bone Marrow Niche in the Pathogenesis of Multiple Myeloma a Role for Wnt Signaling and Adrenomedullin
    A role for Wnt signaling and Adrenomedullin and signaling Wnt for A role Myeloma Multiple of niche in the pathogenesis marrow The bone The bone marrow niche in the pathogenesis of Multiple Myeloma A role for Wnt signaling and Adrenomedullin pracownia DTP i grafiki www.przygotowalniaDTP.pl ISBN 978-83-63861-16-2 Kinga Anna Kocemba okladka_nowa.indd 1-3 2014-01-20 11:57:46 The bone marrow niche in the pathogenesis of Multiple Myeloma A role for Wnt signaling and Adrenomedullin The bone marrow niche in the pathogenesis of Multiple Myeloma A role for Wnt signaling and Adrenomedullin Kinga Anna Kocemba The research described in this thesis was funded by the Dutch Cancer Society Editing Przygotowalnia Pracownia DTP i Grafiki Graphic design and typesetting Przygotowalnia Pracownia DTP i Grafiki Cover: Antelope Canyon, Arizona, USA by Kinga Anna Kocemba © Copyright by Kinga Anna Kocemba ISBN 978-83-63861-16-2 Amsterdam–Kraków 2014 Pracownia DTP i Grafiki ul. Łużycka 71c/9 30–693 Kraków [email protected] www.przygotowalniaDTP.pl Moim rodzicom To my parents The bone marrow niche in the pathogenesis of Multiple Myeloma A role for Wnt signaling and Adrenomedullin academisch proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op donderdag 6 maart 2014, te 14:00 uur door Kinga Anna Kocemba geboren te Oświęcim, Polen Promotiecommissie promotor Prof.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Identification of QTL for Resistance Against Two Fungal Pathogens, Pyrenophora Teres F
    Fluturë Novakazi Institut für Resistenzforschung und Stresstoleranz Identification of QTL for resistance against two fungal pathogens, Pyrenophora teres f. teres and Bipolaris sorokiniana, in a barley (Hordeum vulgare L.) diversity set Dissertationen aus dem Julius Kühn-Institut Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen Kontakt | Contact: Fluturë Novakazi Beethovenstraße 24 18069 Rostock Die Schriftenreihe ,,Dissertationen aus dem Julius Kühn-lnstitut“ veröffentlicht Doktorarbeiten, die in enger Zusammenarbeit mit Universitäten an lnstituten des Julius Kühn-lnstituts entstan- den sind. The publication series „Dissertationen aus dem Julius Kühn-lnstitut“ publishes doctoral disser- tations originating from research doctorates and completed at the Julius Kühn-Institut (JKI) either in close collaboration with universities or as an outstanding independent work in the JKI research fields. Der Vertrieb dieser Monographien erfolgt über den Buchhandel (Nachweis im Verzeichnis liefer- barer Bücher - VLB) und OPEN ACCESS unter: https://www.openagrar.de/receive/openagrar_mods_00005667 The monographs are distributed through the book trade (listed in German Books in Print - VLB) and OPEN ACCESS here: https://www.openagrar.de/receive/openagrar_mods_00005667 Wir unterstützen den offenen Zugang zu wissenschaftlichem Wissen. Die Dissertationen aus dem Julius Kühn-lnstitut erscheinen daher OPEN ACCESS. Alle Ausgaben stehen kostenfrei im lnternet zur Verfügung: http://www.julius-kuehn.de Bereich Veröffentlichungen. We advocate open access to scientific knowledge. Dissertations from the Julius Kühn-lnstitut are therefore published open access. All issues are available free of charge under http://www.julius-kuehn.de (see Publications). Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation In der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im lnternet über http://dnb.d-nb.de abrufbar.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0304845 A1 Loboda Et Al
    US 201403.04845A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0304845 A1 Loboda et al. (43) Pub. Date: Oct. 9, 2014 54) ALZHEMIERS DISEASE SIGNATURE Publicationublication ClassificatiClassification MARKERS AND METHODS OF USE (51) Int. Cl. (71) Applicant: MERCKSHARP & DOHME CORP, CI2O I/68 (2006.01) Rahway, NJ (US) AOIK 67/027 (2006.01) (52) U.S. Cl. (72) Inventors: SIES yet.sS); CPC .......... CI2O I/6883 (2013.01); A0IK 67/0275 Icnaei NepoZnyn, Yeadon, (2013.01) le.East,Italia; David J. Stone, Wyncote, USPC .............. 800/12:536/23.5:536/23.2:506/17 (US); Keith Tanis, Quakertown, PA (US); William J. Ray, Juniper, FL (US) (57) ABSTRACT (21) Appl. No.: 14/354,622 Methods, biomarkers, and expression signatures are dis 1-1. closed for assessing the disease progression of Alzheimer's (22) PCT Filed: Oct. 26, 2012 disease (AD). In one embodiment, BioAge (biological age), NdStress (neurodegenerative stress), Alz (Alzheimer), and (86). PCT No.: PCT/US12A62218 Inflame (inflammation) are used as biomarkers of AD pro S371 (c)(1), gression. In another aspect, the invention comprises a gene (2), (4) Date: Apr. 28, 2014 signature for evaluating disease progression. In still another Related U.S. Application Data abiliticises in (60) Provisional application No. 61/553,400, filed on Oct. used to identify animal models for use in the development and 31, 2011. evaluation of therapeutics for the treatment of AD. Patent Application Publication Oct. 9, 2014 Sheet 1 of 16 US 2014/0304845 A1 Y : : O O O O O O O O D O v v CN On cy Patent Application Publication Oct.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • On SARS-Cov-2, Tropical Medicine and Bioinformatics: Analysis of the SARS-Cov-2 Molecular Features and Epitope Prediction for Antibody Or Vaccine Development
    ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226) Volume 4 Issue 1 January 2021 Research Article On SARS-CoV-2, Tropical Medicine and Bioinformatics: Analysis of the SARS-Cov-2 Molecular Features and Epitope Prediction for Antibody or Vaccine Development Joshua Angelo Hermida Mandanas* Received: November 24, 2020 Tropical Medicine Scientist and Immunobiologist, Philippine Medical Technology Published: December 08, 2020 Professional/National Lecturer, University of the Philippines Manila, Philippines © All rights are reserved by Joshua Angelo *Corresponding Author: Joshua Angelo Hermida Mandanas, Tropical Medicine Hermida Mandanas. Scientist and Immunobiologist, Philippine Medical Technology Professional/National Lecturer, University of the Philippines Manila, Philippines. Abstract Introduction: SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the cause of COVID-19 which is the pandemic as of the current time. It is a global public health emergency and is still on the loose of spreading more infections and deaths. Bioinformat- ics offer extensive visualization and analysis of combined molecular, cellular, biochemical and immunobiologic aspects of SARS-CoV-2 which is indeed vital for antibody and vaccine development. Objectives: This paper presents the SARS-CoV-2 molecular virologic, biochemical, cellular and immunobiologic features and gives a basic B cell linear epitope prediction of the SARS-CoV-2 spike (S) glycoprotein using bioinformatics which both can serve as a guide for development of vaccines or antibody-based treatments. Methods: Several bioinformatic methods were used, from sequence analysis (Uniprot), structural correlation (PDB), molecular mod- elling (UCSF Chimera) and illustration (Biorender), B cell linear epitope prediction tools, conservancy analysis and search of related epitopes (IEDB) together with determination of disordered regions (GlobPlot and DisEMBL).
    [Show full text]
  • Forms of Supplemental Selenium in Vitamin-Mineral
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2019 FORMS OF SUPPLEMENTAL SELENIUM IN VITAMIN-MINERAL MIXES DIFFERENTIALLY AFFECT SEROLOGICAL AND HEPATIC PARAMETERS OF GROWING BEEF STEERS GRAZING ENDOPHYTE-INFECTED TALL FESCUE Yang Jia University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.028 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jia, Yang, "FORMS OF SUPPLEMENTAL SELENIUM IN VITAMIN-MINERAL MIXES DIFFERENTIALLY AFFECT SEROLOGICAL AND HEPATIC PARAMETERS OF GROWING BEEF STEERS GRAZING ENDOPHYTE- INFECTED TALL FESCUE" (2019). Theses and Dissertations--Animal and Food Sciences. 97. https://uknowledge.uky.edu/animalsci_etds/97 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Identifying Protein Partners of the Neuronal Transmembrane Protein Neto2
    IDENTIFYING PROTEIN PARTNERS OF THE NEURONAL TRANSMEMBRANE PROTEIN NETO2 BY VIVEK MAHADEVAN A thesis submitted in conformity with the requirements for the degree of Master of Science, Department of Molecular Genetics, University of Toronto © Copyright by Vivek Mahadevan 2010 Abstract IDENTIFYING PROTEIN PARTNERS OF THE NEURONAL TRANSMEMBRANE PROTEIN NETO2 Vivek Mahadevan Master of Science, Department of Molecular Genetics University of Toronto, Copyright by Vivek Mahadevan 2010 The neuronal transmembrane proteins Neto1 and Neto2, along with different protein partners, are known to perform multiple roles in diverse processes including axon guidance in the developing nervous system and synaptic plasticity in the adult brain. My project focuses on identifying the membrane bound interacting partners of Neto2 using Membrane Yeast Two Hybrid (MYTH). By performing MYTH screens for the Neto2 molecule using human adult and embryonic whole brain cDNA libraries, I have identified several novel membrane bound putative interacting partners including VAMP associated protein B (VAPB) and Glutamate transporter EAAT3-associated protein (GTRAP3-18), which play diverse functions during the glutamatergic neurotransmission. Initial studies to validate these interactions in vivo are currently underway by co-immunoprecipitation approach using mouse brain tissue. If these two candidate proteins are confirmed to be true interactors, it will open important avenues of research for the Neto2 protein during excitatory neurotransmission in the mammalian central nervous system. ii Acknowledgements First and foremost, my deepest gratitude goes to my supervisor Dr. Roderick McInnes, for giving me a wonderful opportunity to be a part of an exciting project in his exciting lab! Thanks Rod, for sharing your experience, motivation and the quest for excellence.
    [Show full text]
  • Sc-154478-SH
    SANTA CRUZ BIOTECHNOLOGY, INC. TMEM53 shRNA Plasmid (m): sc-154478-SH BACKGROUND CHROMOSOMAL LOCATION TMEM53 (transmembrane protein 53) is a 247 amino acid protein encoded by Genetic locus: Tmem53 (mouse) mapping to 4 D1. a gene mapping to human chromosome 1. Chromosome 1 is the largest human chromosome spanning about 260 million base pairs and making up 8% of the PRODUCT human genome. There are about 3,000 genes on chromosome 1, and consider- TMEM53 shRNA Plasmid (m) is a pool of 3 target-specific lentiviral vector ing the great number of genes there are also a large number of diseases asso- plasmids each encoding 19-25 nt (plus hairpin) shRNAs designed to knock ciated with chromosome 1. Notably, the rare aging disease Hutchinson-Gilford down gene expression. Each plasmid contains a puromycin resistance gene progeria is associated with the LMNA gene which encodes Lamin A. When for the selection of cells stably expressing shRNA. Each vial contains 20 µg defective, the LMNA gene product can build up in the nucleus and cause char- of lyophilized shRNA plasmid DNA. Suitable for up to 20 transfections. Also acteristic nuclear blebs. The mechanism of rapidly enhanced aging is unclear see TMEM53 siRNA (m): sc-154478 and TMEM53 shRNA (m) Lentiviral and is a topic of continuing exploration. The MUTYH gene is located on chro- Particles: sc-154478-V as alternate gene silencing products. mosome 1 and is partially responsible for familial adenomatous polyposis. Stickler syndrome, Parkinson’s, Gaucher disease and Usher syndrome are also STORAGE AND RESUSPENSION associated with chromosome 1. A breakpoint has been identified in 1q which disrupts the DISC1 gene and is linked to schizophrenia.
    [Show full text]