Packaging Ics to Survive the Automotive Environment

Total Page:16

File Type:pdf, Size:1020Kb

Packaging Ics to Survive the Automotive Environment Packaging ICs to survive the automotive environment By Prasad Dhond [Amkor Technology®] lectronic systems in cars safety mandates and and trucks represent some consumer demand for E of the harshest application more convenience and conditions for integrated circuits comfort features. (ICs). The packaging for these ICs In addition to the must withstand a variety of tests that increasing electronic go well beyond conditions prevalent content, the number of in consumer, commercial and vehicles sold is increasing industrial qualifications. globally, especially in To survive these tests and operate China and emerging reliably over their expected lifetime markets. In the last decade, in a variety of vehicles and systems, new vehicle sales in China assembly processes for automotive ICs have grown at a rate of have several unique aspects to ensure almost 12% per year. Figure 1: Market experts forecast consistent growth for automotive ICs. packaging reliability and durability. The Increasing vehicle sales SOURCE: IC Insights. extent of unique processing and tests and higher electronic depends upon the vehicle system where systems penetration are the IC is employed. driving the automotive IC market, which is Getting electronics into approximately $24B production vehicles in 2015, with a 5-year Some electronics in vehicles are CAGR of about 9% to obvious, while others are somewhat 10% (Figure 1). Over 70% of the automotive hidden. The obvious systems include AEC-Q100 grades vary based on the operating environment total available market Table 1: infotainment systems, digital displays, temperature range. instrument cluster, voice/data (TAM) is in the area of communications, back-up warning, analog (including linear AEC-Q100 grades adaptive cruise control, advanced driver regulators, power components, DC-DC The Automotive Electronics Council assistance systems (ADAS), cabin converters, LED drivers and interface (AEC) has established AEC-Q100, environmental controls, navigation components, such as USB drivers) and “Failure Mechanism Based Stress Test systems, lane departure warning, and microcontrollers (MCUs). Qualification for Integrated Circuits” others in the passenger compartment. The automotive market is an attractive [1], to provide standardized test The hidden vehicle systems include segment for most semiconductor methodologies for reliable, high-quality engine control, cylinder deactivation, companies as it provides a more stable electronic components. electric power steering, electronic application base compared to cyclical Many of the tests in AEC-Q100 throttle control, airbag deployment, mobile or consumer applications, are performed by the IC suppliers transmission control, anti-lock brakes, longer product life cycles, and higher themselves, but packaging-related electronic stability systems, and more. returns on investment. However, there tests may be performed by an OSAT Many of these hidden systems are are barriers to entry with very high as part of the IC qualification. mounted under the hood of the vehicle expectations of quality, reliability, The test requirements vary from where the ambient temperature can be handling and processing, all of which “under-the-hood” applications, 150˚C or higher. must be achieved at reasonable costs. to passenger compartment, and There are also continuously evolving other vehicle locations. The part Vehicle electronics growth quality and reliability requirements operating temperature grades are Over 50 different electronic systems that drive significant capital purchases. shown in Table 1. can be found in today’s high-end Working with the right outsourced The grades reflect different vehicles that implement the most semiconductor assembly and test application profiles from under the advanced technologies. In fact, the (OSAT) partner can help address many hood to inside the cabin mounting number of automotive electronic of these challenges effectively. locations and apply to IC products systems is increasing due to government including microelectromechanical REPRINT from Chip Scale Review September • October • 2015 [ChipScaleReview.com] systems (MEMS) sensors, power equipped with higher end models of array (FCBGA), flip-chip chip-scale devices, signal conditioning, MCUs and machines that are maintained at a package (fcCSP), system-in-package more. While Grade 1 is most commonly different standard and subject to tighter (SiP), etc., which are relatively new to used in automotive, Grade 0 is for Cpk process capability requirements. automotive applications. For example, the more stringent applications, while Certified operators are specially trained during the assembly process of Grades 2 and 3 are more equivalent to to handle automotive devices and have FCBGA packages, safe launch could commercial qualifications. to meet certain minimum requirements include examining cross sections at to achieve and maintain certification. several different locations after the Special considerations for Process control automation can help solder ball attach process to make sure ensure that automotive devices are that the metallurgy of the solder joints automotive ICs is robust. Although this represents processed only on designated automotive Semiconductor suppliers are not extra work and time during pre- equipment by certified operators. always aware that a particular IC will production runs, the benefit is better end up being used in an automotive quality and a more robust process. It application – especially if it’s a Additional process steps also gives more confidence to both catalog IC being used in Grade 2 or Depending on the application semiconductor suppliers and Tier 1 Grade 3 applications such as after- profile, automotive devices could have suppliers about going into production market infotainment. If an IC is additional process steps compared to a with new technologies. designed explicitly for an automotive standard commercial IC to ensure the application, however, steps must be highest quality and reliability. These AEC-Q100 qualification taken to ensure that it is handled and typically include more stringent visual AEC-Q100 consists of a suite of processed differently than a standard inspections during assembly and 100% tests but only a subset of these tests commercial or industrial IC. Even a open-short testing at the end of the is directly related to the package 1ppm component failure rate translates assembly process. Some of the other and assembly. Some of these are “in into a 1.5% or 15000ppm failure rate additional process steps could be direct process” tests such as wire bond shear at the car level. To ensure the highest plasma cleaning before wire bonding (WBS), wire bond pull (WBP), and safety standards, we need to have a goal to ensure a higher quality bond and others that an OSAT can perform. As of zero defects. plasma cleaning before mold. shown in Figure 3, the reliability tests When a product is identified for in test group A are the most applicable automotive use, IC suppliers, especially Safe launch to an OSAT. those familiar with automotive Safe launch is a process during Traditional JEDEC and AEC-Q100 requirements, usually have specific the pre-production phase where Test group A have various tests expectations for processing and handling manufacturers or assemblers inspect including pre-conditioning, temperature during the assembly process. the process at each step and verify that cycling (TC), temperature humidity the particular step is done correctly bias (THB), unbiased highly accelerated Supplier management before the product moves to the next stress test (HAST) and high- one. This ensures that any issues with temperature storage life (HTSL). Table Early in the development process production processes are identified 2 shows the differences between the of an automotive IC, one of the major and addressed during the pre- standard JEDEC conditions vs. Grade considerations is business continuity production phase itself, before high- planning with respect to raw materials. volume production starts. Safe launch 0 and Grade 1 automotive reliability For instance, there have been major is even more important for advanced test conditions. An OSAT must have disruptions in the lead frame supply packages such as flip-chip ball grid reliability labs with capability and chain with recent accidents and some equipment to perform these tests. lead frame suppliers exiting the business. Supplier selection, redundancy, and process audits per automotive standards such as VDA6.3, are very important to ensure continuity and quality of supply for automotive ICs. Automotive controls In addition to ensuring that factories have automotive certifications such as TS16949, automotive products should be subject to tighter controls on the factory floor. Among other things, these controls might include designated automotive equipment (Figure 2), specially trained operators, error-proofing systems and hands-free processing systems. Designated automotive lines are usually Figure 2: Typical wire bond assembly process steps and special identification label for designated automotive equipment. REPRINT from Chip Scale Review September • October • 2015 [ChipScaleReview.com] A critical component in being able to achieve aggressive year-on-year cost reductions is to use copper wire on wire bond products. Traditionally, gold has been the wire of choice, but due to cost and high-temperature performance where Kirkendall voiding is observed between the gold and aluminum interface, most new wire bonded automotive devices
Recommended publications
  • Automotive Grade DO-218 Load Dump TVS Series
    Issue Number │001 May 2019 New Product Announcement DM5WxxAQ DM6WxxAQ DM8WxxAQ Automotive-Grade DO-218 Load Dump TVS Series Diodes Incorporated introduces a series of new high-temperature automotive-compliant load-dump transient voltage suppressors (TVS) packaged in DO-218. The devices are designed to protect sensitive semiconductors in electronic modules from load- dump surge transients, as defined in ISO16750-2, that generate if the battery is disconnected from the vehicle while the alternator charges. Featuring a choice of reverse stand-off voltage from 10V to 36V (or 43V for the DM8WxxAQ series), these new automotive- The Diodes Advantage compliant TVS devices are offered as unidirectional devices . AEC-Q101 Qualified and PPAP Supported and are able to dissipate up to These devices are qualified to high reliability qualification standards in 3600W (DM5WxxAQ), 4600W accordance with AEC-Q101 and supported by a production part approval (DM6WxxAQ), and 6600W procedure (PPAP). (DM8WxxAQ) per 10/1000µs . ISO 16750-2 Compliance pulse transient. These parts are suitable to protect sensitive automotive circuits against load- All devices are rated to +175ºC, dump surge defined in ISO16750-2 (Pulse A and B). and comply with the automotive . ISO 7637-2 Compliance standard ISO7637-2 (pulses 1, These parts are suitable to protect sensitive automotive circuits against surges 2a, 2b, 3) and load dump ISO defined in ISO7637-2 (pulses 1,2a, 2b and 3). 16750-2 (pulse A and B). High Forward Surge Current Capability and Excellent Clamping Capability The case material is composed of halogen-free “green” molding The high forward surge overload rating ensures more rugged applications and compound for protection of the improves device reliability.
    [Show full text]
  • Fibre Reinforced Plastic Concepts for Structural Chassis Parts
    Transport Research Arena 2014, Paris Fibre Reinforced Plastic Concepts for Structural Chassis Parts Oliver Deisser*, Prof. Dr. Horst E. Friedrich, Gundolf Kopp German Aerospace Center / Institute of Vehicle Concepts Pfaffenwaldring 38-40, 70569 Stuttgart Abstract Fibre reinforced plastics (FRP) have a high potential for reducing masses of automotive parts, but are seldom used for structural parts in the chassis. If the whole chassis concept is adapted to the new material, then a high weight saving potential can be gained and new body concepts can result. DLR Institute of Vehicle Concepts designed and dimensioned a highly stressed structural part in FRP. A topology optimisation of a defined working space with the estimated loads was performed. The results were analysed and fibre reinforced part concepts derived, detailed and evaluated. Especially by the use of the new FRP material system in the chassis area, a weight saving of more than 30% compared to the steel reference was realised. With the help of those concepts it is shown, that there is also a great weight saving potential in the field of chassis design, if the design fits with the material properties. The existing concepts still have to be detailed further, simulated and validated to gain the full lightweight potential. Keywords: Fibre Reinforced Plastics; Chassis Design; Lightweight Design Concepts; Finite Element Simulation; FEM. Résumé Plastiques renforcés de fibres (PRF) ont un fort potentiel de réduction des masses de pièces automobiles, mais sont rarement utilisés pour des pièces de structure du châssis. Si le concept de châssis est adapté au nouveau matériel, un potentiel élevé d'épargne de poids peut être acquis et de nouveaux concepts de construction peuvent en résulter.
    [Show full text]
  • Autonomous Vehicle Engineering Guide Top Breakthroughs & Resources in Autonomous and Connected Vehicles AUTONOMOUS VEHICLE ENGINEERING GUIDE
    EBOOK Autonomous Vehicle Engineering Guide Top Breakthroughs & Resources in Autonomous and Connected Vehicles AUTONOMOUS VEHICLE ENGINEERING GUIDE 5 Contents SENSORS 7 3 For Lidar, MEMs the Word 5 New Performance Metrics for Lidar 7 Detecting Pedestrians SOFTWARE AND AI/MACHINE LEARNING 12 9 Software Building Blocks for AV Systems 12 New Mobility’s Mega Mappers 15 Can Autonomous Vehicles Make the Right ‘Decision?’ 19 CONNECTED VEHICLE ELECTRONICS 17 Expanding the Role of FPGAs 19 Electronic Architectures Get Smart ABOUT ON THE COVER Autonomous Vehicle Engineering covers the In the article Software Building Blocks constantly-evolving field of autonomous and for AV Systems, Sebastian Klaas explores connected vehicles from end to end — covering how Elektrobit's unique software frame- key technologies and applications including work is designed to smooth develop- sensor fusion, artificial intelligence, smart cities, ment of automated driving functions. and much more. This Autonomous Vehicle Automated valet parking is an example Engineering Ebook is a compilation of some of of a practical application of the software the magazine's top feature articles from thought framework. Read more on page 9. leaders, and is your guide to designing the next (Image: Elektrobit) generation of vehicles. 2 AUTONOMOUS VEHICLE ENGINEERING SAE EBOOK SENSORS For Lidar, MEMS the Word by Charles Chung, Ph.D. Tiny gimballed mirrors on chips are being developed that could improve the form factor and cost of automotive lidar. As automakers and their technology partners develop lidar sensors to enable SAE Level 4-5 autonomous driving, some systems designers believe MEMS micromirrors have the potential to reduce overall size and cost—two major hurdles to widespread lidar adoption.
    [Show full text]
  • The Electric Vehicle Evolution
    THE ELECTRIC VEHICLE EVOLUTION Electric vehicles are a growing market for new car purchases with more and more people making the switch from the gas station to an electrical outlet to fuel their vehicles. Electric vehicles use electricity as their primary fuel or use electricity along with a conventional engine to improve efficiency (plug-in hybrid vehicles). Drivers are purchasing the vehicles for all kinds of reasons. Many decide to buy when they hear about the savings. Drivers see around $700 in savings a year in gasoline expenses when they drive an average of 12,000 miles. They also can realize substantial tax credits that encourage low-emission and emissions-free driving. Additional benefits include environmental improvements because of reduced vehicle emissions, energy independence by way of using locally-generated electricity and high quality driving performance. With the influx of electric vehicles comes a need for charging infrastructure. Throughout the country, businesses, governments and utilities have been installing electric vehicle charging stations. According to the U.S. Department of Energy’s Alternative Fuels Data Center, there are over tens of thousands of vehicle charging outlets across the country. This trend toward electric vehicles is expected to continue, especially with the billions of dollars that auto manufacturers are investing in these new vehicles. The list of manufacturer support is long with almost every large automobile manufacturer currently developing or selling an electric vehicle. But how and why did this all get started? Let’s step back and take a look at the history of electric transportation. 1 THE ELECTRIC VEHICLE EVOLUTION EARLY SUCCESS Electric vehicles actually have their origin in the 1800s.
    [Show full text]
  • Assignment of New Vehicle Identification Number Application
    APPLICATION AND ASSIGNMENT OF NEW VEHICLE IDENTIFICATION NUMBER SECRETARY OF STATE BUREAU OF MOTOR VEHICLES $33.00 FEE REQUIRED DIVISION OF TITLE SERVICES Make Checks payable to: SECRETARY OF STATE OWNERS LEGAL NAME DATE OF BIRTH CURRENT STREET ADDRESS CITY STATE ZIP APPLICATION DATE HOME PHONE WORK PHONE YEAR MAKE MODEL BODY TYPE MISSING VEHICLE IDENTIFICATION NUMBER – IF KNOWN EXACT CURRENT LOCATION OF VEHICLE –STREET ADDRESS CITY STATE ZIP NET WEIGHT - IF TRAILER CC - IF MOTORCYCLE ENGINE NUMBER – IF MOTORCYCLE Subject to inspection by a Bureau of Motor Vehicle detective, the undersigned makes this application for a new vehicle identification number, to be assigned permanently to the vehicle listed above. The applicant also agrees to submit an application for a title certificate (MVT-2) to bear the new number, if this vehicle is 1995 or newer and subject to Maine title law. I certify that I am the owner of the vehicle described above and that said Vehicle requires a Vehicle Identification Number because (CHECK ONE REASON BELOW): ❑ Number was destroyed or obliterated ❑ Homemade vehicle ❑ Other (Explain) _________________________________________________________________________________________ ______________________________________________________________________ OWNER’S SIGNATURE IMPORTANT – PLEASE ALSO READ AND COMPLETE THE BACK OF THIS FORM FOR BMV USE ONLY SPECIAL MOTOR VEHICLE CERTIFICATION FOR BMV USE ONLY This permanent Vehicle Identification Number has been properly affixed to the vehicle described above M E INSPECTOR’S NAME (PLEASE PRINT CLEARLY) INSPECTOR’S SIGNATURE DATE NUMBER AFFIXED ODOMETER READING COMMENTS 101 Hospital Street, #29 State House Station, Augusta, ME 04333-0029 Tel. (207) 624-9000 ext. 52138 Fax: (207) 624-9239 TTY Users call Maine Relay 711 MVT-6 Rev.
    [Show full text]
  • Automotive Electronics
    Automotive Electronics Amphenol Advanced Sensors Advanced Driver Assistance Systems (ADAS) Automotive Ethernet Body Control, Safety, Security, and Comfort Telematics, Multimedia, Infotainment, GPS, Navigation, and Camera Head & Interior LED Lighting Battery Management Systems and EV Charging Stations Enabling the Automotive Industry with our Connection Innovation and High Speed Technology 1 ABOUT AMPHENOL ICC AUTOMOTIVE Amphenol ICC brings a broad array of innovative technology and solutions to support the growth in the automotive industry, particularly in plating, signal integrity performance, and power management. As automobiles become more ADAS rich and head towards being a total autonomous operation, the key differentiator between suppliers will be their capabilities, and performance. Amphenol ICC's capable engineering team develops connector solutions according to customer needs, even during the design phase of application. INDUSTRY LEADER TECHNOLOGIES & SOLUTIONS CUSTOMER CAPABILITIES EXPERT SATISFACTION • Products accommodate standards like Open • Leverage in deploying • Automotive offerings in • Meet short lead time Alliance, USCAR, LV214, new solutions for WTB, BTB, I/O, and requirements ISO 8092, Kojiri,and Automotive applications: FFC/FPC • Advocate value-added SAE J 2223 - Signal integrity: • Strength of existing custom solutions • Solutions enable HS Signal Transmission portfolio in modular wherever possible signaling technologies and EMC BTB & WTB • Better value like LVDS and Ethernet - Power contact • Focus on new standard • Close proximity to • Leader in Automotive design and simulation IO connectors and customers’ location Ethernet and capabilities integration of new committed to Open - Contact and connector standard consumer Alliance TC2 / TC9 with miniaturization electronics IO 100 BASE-T1 (100 Mbps) - PCB contact • Interconnect solutions and 1000 BASE-T1 technologies for High Speed (1 Gbps).
    [Show full text]
  • History of Intelligent Transportation Systems Publication Number
    HISTORY OF INTELLIGENT TRANSPORTATION SYSTEMS WWW.ITS.DOT.GOV/INDEX.HTM PUBLICATION NUMBER WWW.ITS.DOT.GOV/INDEX.HTM PUBLICATION NUMBER: FHWA-JPO-16-329 U.S. DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS JOINT PROGRAM OFFICE B U.S. DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS JOINT PROGRAM OFFICE Produced by Booz Allen Hamilton U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The U.S. Government is not endorsing any manufacturers, products, or services cited herein and any trade name that may appear in the work has been included only because it is essential to the contents of the work. C U.S. DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS JOINT PROGRAM OFFICE Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-JPO-16-329 4. Title and Subtitle 5. Report Date History of Intelligent Transportation Systems May 2016 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Ashley Auer, Shelley Feese, and Stephen Lockwood 9. Performing Organization Name And Address 10. Work Unit No. (TRAIS) Booz Allen Hamilton 8283 Greensboro Drive 11. Contract or Grant No. McLean, VA 22102 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office 1200 New Jersey Ave SE 14. Sponsoring Agency Code Washington, DC 20590 15.
    [Show full text]
  • The Autonomous Vehicle Revolution Fostering Innovation with Smart Regulation
    THE AUTONOMOUS VEHICLE REVOLUTION FOSTERING INNOVATION WITH SMART REGULATION MARCH 2017 The Center for the Study of the Presidency and Congress, founded in 1965, is a nonprofit, nonpartisan 501(c)(3) organization. The Center’s mission is to utilize the lessons of history to address the challenges of today; serve as a strategic honest broker for discussions with leaders from government, the private sector, and the policy community; and to educate the next generation of leaders through the Presidential and International Fellows Program. THE AUTONOMOUS VEHICLE REVOLUTION: FOSTERING INNOVATION WITH SMART REGULATION March 2017 Copyright © 2017 CENTER FOR THE STUDY OF THE PRESIDENCY & CONGRESS All rights reserved. No portion of this report may be reproduced, by any process or technique, without the express written consent of the publisher. Published in the United States of America. Selected Cover Image Credits: Silver Blue, Flickr; Jennifer Morrow, Flickr; Wikimedia Commons 601 Thirteenth Street, NW – Suite 1050N Washington, D.C. 20005 Phone: 202-872-9800 Fax: 202-872-9811 www.thePresidency.org Copyright © 2017 All rights reserved THE AUTONOMOUS VEHICLE REVOLUTION: FOSTERING INNOVATION WITH SMART REGULATION PROJECT DIRECTORS: MAXMILLIAN ANGERHOLZER III DAN MAHAFFEE LEAD RESEARCHER: MADELINE VALE PROJECT ADVISORS: JAMES KITFIELD HURST RENNER WASHINGTON, D.C. MARCH 2017 TABLE OF CONTENTS INTRODUCTION .................................................................................................................. 1 REPORT FINDINGS .............................................................................................................
    [Show full text]
  • Current Catalog
    YorkELECTRONIC Electronics SERVICE CENTRE Mobile Automotive Electronic Accessory Specialists Aftermarket Product Guide [email protected] 1-888-650-YORK (9675) www.yorkelec.com Press 1, 1 for Client Call Center Version:MMXXI YorkELECTRONIC Electronics SERVICE CENTRE Factory Navigation Upgrade • Available for most 2013 and up GM vehicles • Vehicles must be equipped with MyLink/Intellilink/CUE • Use factory GM parts to upgrade to Navigation NAVGM20 Kenwood Navigation • 6.8” WVGA Monitor • Apple CarPlay™ & Android Auto™ Ready • Garmin GPS built in with 3D Terrain View • Built in Bluetooth (Dual phone connection) & HD Radio • Sirius/XM ready with optional module • Dual USB, Audio/Video, mini jack inputs • 3 camera inputs • Dash Camera ready • DVD/CD/MP3/DIVX/MPEG/VCD compatible • Add or retain a backup camera, call for details NAVG20 XM Add On • Add XM (Subscription required) to your factory radio via USB • Vehicle applications may vary USBXM20 Dual USB Charger • Add USB charging to any vehicle • Charges two devices at one time • Dual 2.5A charge ports USBCH10 [email protected] 1-888-650-YORK (9675) www.yorkelec.com 1 Press 1, 1 for Client Call Center Version:MMXXI YorkELECTRONIC Electronics SERVICE CENTRE Advent Overhead DVD • Full colour monitor with built in DVD player • Available in black, pewter or shale colours Add extra headphones • Play audio through vehicle stereo to any video system • LED dome lights 1ch HP100 • 2 wireless headphones 2ch HP200 • Wireless remote controls • AUX input • Side load DVD mechanism • Available in 9”, 10” or
    [Show full text]
  • Autonomous Vehicle Technology: a Guide for Policymakers
    Autonomous Vehicle Technology A Guide for Policymakers James M. Anderson, Nidhi Kalra, Karlyn D. Stanley, Paul Sorensen, Constantine Samaras, Oluwatobi A. Oluwatola C O R P O R A T I O N For more information on this publication, visit www.rand.org/t/rr443-2 This revised edition incorporates minor editorial changes. Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-0-8330-8398-2 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2016 RAND Corporation R® is a registered trademark. Cover image: Advertisement from 1957 for “America’s Independent Electric Light and Power Companies” (art by H. Miller). Text with original: “ELECTRICITY MAY BE THE DRIVER. One day your car may speed along an electric super-highway, its speed and steering automatically controlled by electronic devices embedded in the road. Highways will be made safe—by electricity! No traffic jams…no collisions…no driver fatigue.” Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous.
    [Show full text]
  • 2Nd-Generation SJ-MOSFET for Automotive Applications
    2nd-Generation SJ-MOSFET for Automotive Applications “Super J MOS S2A Series” TABIRA, Keisuke * NIIMURA, Yasushi * MINAZAWA, Hiroshi * ABSTRACT There has been increasing demand for smaller power conversion equipment and better fuel efficiency in eco- friendly vehicles such as hybrid electric vehicles. Accordingly, power MOSFET products are being required to be compact, low loss and low noise. Fuji Electric has developed and launched the “Super J MOS S1A Series,” a product for automotive applications that adopt a superjunction structure characterized by their low on-state resistance and low switching loss. More recently, Fuji Electric has developed the 2nd-Generation SJ-MOSFET for automotive applica- tions “Super J MOS S1A Series,” which reduces conduction loss while improving the trade-off between switching loss and jumping voltage during turn-off switching. The use of this product contributes to size reduction and enhanced ef- ficiency of the power conversion equipment for automotive applications. 1. Introduction turn-off switching. Recently, in the automotive market, eco-friendly 2. Design Concept vehicles represented by hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (P-HEVs) and Figure 1 shows a breakdown of the loss generated electric vehicles (EVs) have been attracting atten- in a power MOSFET in a power factor correction (PFC) issue: Power Semiconductors Contributing in Energy Management issue: Power Semiconductors Contributing in Energy tion as environmental regulations become increasingly circuit of a charger for automotive applications. The stringent and users’ environmental awareness rises. generated loss of a power MOSFET can be roughly Efficient use of the electric power of the batteries classified into conduction loss Pon and switching loss mounted on these types of vehicles directly leads to an consisting of turn-on loss Pton and turn-off loss Ptoff.
    [Show full text]
  • Vehicle Technology Trends in Electronics for the North American Market; Opportunities for the Taiwanese Automotive Industry
    Vehicle Technology Trends in Electronics for the North American Market; Opportunities for the Taiwanese Automotive Industry by December 2006 The statements, findings, and conclusions herein are those of the authors and do not necessarily reflect the views of the project sponsor. Table of Contents Table of Contents........................................................................................................................... i List of Tables................................................................................................................................. ii List of Figures ............................................................................................................................... ii List of Charts................................................................................................................................. ii Acknowledgements...................................................................................................................... iii Introduction ...................................................................................................................................1 Active Safety .................................................................................................................................2 Safety Systems..........................................................................................................................................2 Infotainment...............................................................................................................................................5
    [Show full text]