Lupinus Albus L

Total Page:16

File Type:pdf, Size:1020Kb

Lupinus Albus L Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in three contrasting agroclimatic conditions of Chile Nallely Trejo1, Iván Matus2, Alejandro del Pozo1, Ingrid Walter3, and Juan Hirzel2* ABSTRACT INTRODUCTION The phytoextraction process implies the use of plants to Cadmium is one of the most important soil contaminants because promote the elimination of metal contaminants in the soil. In it is toxic for many living organisms, including cultivated plants. fact, metal-accumulating plants are planted or transplanted Human health is therefore threatened when Cd is bioaccumulated in metal-contaminated soil and cultivated in accordance in the food chain (UNEP, 2008). The World Health Organization with established agricultural practices. The objective of (WHO) considers toxic a daily intake of 1 µg kg-1 body weight or the present study was to evaluate the productivity and Cd 70 µg Cd for an average person (WHO, 2010). Cadmium exposure phytoextraction capacity of white lupine (Lupinus albus and accumulation mostly affects kidneys and liver in the human L.) and narrow-leafed lupine (Lupinus angustifolius L.), as body and it can also affect the skeletal system through a disease well as the effect on residual Cd concentration in the soil. called Itai-Itai that was first detected in Japan in individuals living Both species of lupines were grown at three CdCl2 rates near Cd contaminated rice fields (Phillips and Tudoreanu, 2011). -1 (0, 1, and 2 mg kg ), under three agroclimatic conditions Industrial and mining activities are the main sources of in Chile in 2013. In the arid zone (Pan de Azúcar, 73 Cd liberated into the air, water, and soil (UNEP, 2008). Some mm precipitation), narrow-leafed lupine production was agricultural practices, such as sustained application of P and vs significantly (P < 0.05) higher than white lupine (4.55 . N fertilizers with ammonium sources have also led to Cd 3.26 Mg DM ha-1, respectively). In locations with higher accumulation and increase availability on the soil surface (Chen precipitation (Santa Rosa, 670 mm; Carillanca, 880 mm), et al., 2008; Bhargava et al., 2012). Other factors affecting Cd narrow-leafed lupine DM production was slightly higher than in Pan de Azúcar, but white lupine was approximately availability and mobility in the soil are pH, moisture, organic three times higher. Total plant Cd concentrations in white matter, type and quantity of clay (Bhargava et al., 2012). and narrow-leafed lupine increased as Cd rates increased When soils and aquifers are contaminated with high in the three environments, but they were much higher in concentrations of heavy metals, bioremediation is one of the narrow-leafed lupine than white lupine; 150%, 58%, and natural alternatives for its restoration, as well as being the cleanest 344% higher in Pan de Azúcar, Santa Rosa, and Carillanca, and most economical (Sarma, 2011; Bhargava et al., 2012). respectively. Cadmium uptake (g Cd ha-1) and apparent Phytoremediation uses the capacity of certain plant species to recovery were also higher (P < 0.05) in narrow-leafed lupine survive in contaminated environments with synthetic organic in two environments (Pan de Azúcar and Carillanca). These compounds, xenobiotics, pesticides, hydrocarbons, and heavy results suggest that narrow-leafed lupine present higher metals as they extract, accumulate, immobilize, or transform the potential as phytoremediation species than white lupine. contaminants (Sarma, 2011). The quantities of Cd that can be absorbed by plants depend on species, age, and root development Key words: Cd recovery, Cd retention, Cd uptake, (Lux et al., 2011). Similarly, Cd concentration is not the same in legumes, phytostabilization, soil properties. different plant parts; the sequence is generally roots > stems > leaves > fruits > seeds (Lux et al., 2011; Bhargava et al., 2012). The four phytoremediation technologies are phytostabilization, phytofiltration, phytovolatilization, and phytoextraction; they are 1Universidad de Talca, Facultad de Ciencias Agrarias, Avenida Lircay based on plants and each one has a different action mechanism on S/N, Talca, Chile. soils, sediments, or water (Sarma, 2011). 2Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Avenida Vicente Méndez 515, Chillán, Chile. Plants can absorb metals from the soil through the root *Corresponding author ([email protected]). system and translocate them toward other structures where they 3Instituto Nacional de Investigación y Tecnología Agraria y are accumulated; the most commonly used plants are called Alimentaria, INIA, Apdo. Correos 8111, 28080 Madrid, España. hyperaccumulators. More than 450 species of vascular plants have Received: 30 November 2015. been reported with these characteristics in 45 angiosperm families, Accepted: 25 January 2016. including members of Asteraceae, Brassicaceae, Caryophyllaceae, doi:10.4067/S0718-58392016000200013 Cyperaceae, Cunoniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, RESEARCH Poaceae, Violaceae, and Euphorbiaceae (Padmavathiamma and RESEARCH CHILEAN JOURNAL OF AGRICULTURALCHILEAN JOURNAL RESEARCH OF 76(2) AGRICULTURAL APRIL-JUNE RESEARCH 2016 76(2) APRIL-JUNE 2016 228 Li, 2007). Many studies have indicated that certain varieties applying increasing Cd rates, as well as evaluate the effect of of the genus Lupinus (Fabaceae) have a tolerance non- residual Cd concentration in the soil. specific to heavy metals similar to that of hyperaccumulator plants despite not being considered as such (Zornoza et al., MATERIALS AND METHODS 2002; Lambers et al., 2013; Fumagalli et al., 2014). White lupine (Lupinus albus L.; Fabaceae) is an Location description annual species that fixes N, is drought-tolerant, tolerant to excessive salinity, and able to extract moderate levels Experiments were established in experimental stations of of heavy metals, such as Zn, Cd, Cu, Pb, Mn, Cr, and Hg the Instituto de Investigaciones Agropecuarias (INIA), (Ximénez-Embún et al., 2002). When it grows in soils that Chile, located in three contrasting agroclimatic zones: Pan are deficient in available nutrients, white lupine plants de Azúcar Station (30°06’ S, 71°23’ W) in the Coquimbo exude chelating agents (organic anions and enzymes, such Region with arid climate and alluvial-colluvial soils as phosphatase and probably phytase) and hydrogen ions (Typic Haplocambids; USDA, 2014), Santa Rosa Station through proteiform roots in order to improve acquisition (36°31’ S, 71°54’ W) in the Biobío Region with humid of P, Fe, Mn, and Zn (Lambers et al., 2013). The white Mediterranean climate and volcanic soil (Melanoxerand; lupine root system has a high Cd retention capacity USDA, 2014), and Carillanca Station (32°49’ S, 70°35’ through cell walls (Zornoza et al., 2002), thus reducing its W) in La Araucanía Region with rainy temperate climate available concentration in the soil. White lupine effectively and volcanic soil (Melanudands; USDA, 2014). The decreases the soluble fraction of As and Cd in acidic soils at meteorological characteristics of each station in 2013 are the same time it accumulates high concentrations of As and shown in Table 1 (Red Agrometeorológica de Chile, http:// Cd in its roots (Vázquez et al., 2006). Meanwhile, narrow- agromet.inia.cl/estaciones.php). leafed lupine (Lupinus angustifolius L.; Fabaceae) does not produce specialized clusted or cluster-like roots, but do Treatments and crop management release large amounts of carboxylates from nonspecialized roots (Egle et al., 2003). The two species of lupines were grown at three CdCl2 rates: Several reports can be found about Cd tolerance in 0, 1, and 2 mg kg-1. For each station, each experimental white lupine (Ximénez-Embún et al., 2002; Zornoza et al., plot was 27 m2 (3 × 9 m) and there were six replicates per 2002; Fumagalli et al., 2014). However, little information treatment. Since the bulk density of the 0-20 cm soil depth exists about the response of narrow-leafed lupine as a Cd were different at the three experimental sites (Table 2), the phytoremediation species (Römer et al., 2000; Brennan application CdCl2 to the soil, for the treatments 1 and 2 mg and Bolland, 2003). The present work is part of a larger kg-1, were 3.17 and 6.34 g plot-1 at Pan de Azúcar, 1.8 and 3.6 study in which the phytoextraction and phytoremediation g plot-1 at Santa Rosa, and 1.44 y 2.88 g plot-1 at Carillanca, capacity of white and narrow-leafed lupine is assessed as respectively. Application of CdCl2 was performed in solution total plant (aerial part) and its effect on later Cd absorption with distilled water at the rate of 20 mL m-2. Sowing dates by two species for human consumption characterized by its for both white and narrow-leafed lupine was 15 May 2013 at Cd accumulation capacity in grains, durum wheat (Triticum Pan de Azúcar and 17 July 2013 at Santa Rosa and Carillanca. turgidum L. subsp. durum (Desf.) Husn.) and maize (Zea Seed rates were 140 and 120 kg ha-1 for white and narrow- mays L.); therefore, the Cd compartmentalization study in leafed lupine, respectively, in order to reach populations that lupine plant structures was not considered. The objective of maximize yield (Tay and Vidal, 2009). Agronomic practices this study was therefore to determine the Cd uptake capacity were in accordance with commercial use; only elemental S of lupine on different soil environments in Chile when was applied to reduce pH in soils at Pan de Azúcar at rate of Table 1. Mean temperature (Mean T, °C), precipitation
Recommended publications
  • Phytoalexins: Current Progress and Future Prospects
    Phytoalexins: Current Progress and Future Prospects Edited by Philippe Jeandet Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Philippe Jeandet (Ed.) Phytoalexins: Current Progress and Future Prospects This book is a reprint of the special issue that appeared in the online open access journal Molecules (ISSN 1420-3049) in 2014 (available at: http://www.mdpi.com/journal/molecules/special_issues/phytoalexins-progress). Guest Editor Philippe Jeandet Laboratory of Stress, Defenses and Plant Reproduction U.R.V.V.C., UPRES EA 4707, Faculty of Sciences, University of Reims, PO Box. 1039, 51687 Reims cedex 02, France Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Ran Dang 1. Edition 2015 MDPI • Basel • Beijing ISBN 978-3-03842-059-0 © 2015 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents About the Editor ............................................................................................................... VII List of
    [Show full text]
  • Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive G C A T T A C G G C A T genes Review Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae Tomasz St˛epkowski 1,*, Joanna Banasiewicz 1, Camille E. Granada 2, Mitchell Andrews 3 and Luciane M. P. Passaglia 4 1 Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; [email protected] 2 Universidade do Vale do Taquari—UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil; [email protected] 3 Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand; [email protected] 4 Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +48-509-453-708 Received: 31 January 2018; Accepted: 5 March 2018; Published: 14 March 2018 Abstract: The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes.
    [Show full text]
  • Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
    sustainability Review Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection Brandon Schlautman 1,2,* ID , Spencer Barriball 1, Claudia Ciotir 2,3, Sterling Herron 2,3 and Allison J. Miller 2,3 1 The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA; [email protected] 2 Saint Louis University Department of Biology, 1008 Spring Ave., St. Louis, MO 63110, USA; [email protected] (C.C.); [email protected] (S.H.); [email protected] (A.J.M.) 3 Missouri Botanical Garden, 4500 Shaw Blvd. St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +1-785-823-5376 Received: 12 February 2018; Accepted: 4 March 2018; Published: 7 March 2018 Abstract: Annual cereal and legume grain production is dependent on inorganic nitrogen (N) and other fertilizers inputs to resupply nutrients lost as harvested grain, via soil erosion/runoff, and by other natural or anthropogenic causes. Temperate-adapted perennial grain legumes, though currently non-existent, might be uniquely situated as crop plants able to provide relief from reliance on synthetic nitrogen while supplying stable yields of highly nutritious seeds in low-input agricultural ecosystems. As such, perennial grain legume breeding and domestication programs are being initiated at The Land Institute (Salina, KS, USA) and elsewhere. This review aims to facilitate the development of those programs by providing criteria for evaluating potential species and in choosing candidates most likely to be domesticated and adopted as herbaceous, perennial, temperate-adapted grain legumes. We outline specific morphological and ecophysiological traits that may influence each candidate’s agronomic potential, the quality of its seeds and the ecosystem services it can provide.
    [Show full text]
  • Analysis of the Role of Bradysia Impatiens (Diptera: Sciaridae) As a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana Benthamiana
    cells Article Analysis of the Role of Bradysia impatiens (Diptera: Sciaridae) as a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana benthamiana Marta Budziszewska, Patryk Fr ˛ackowiak and Aleksandra Obr˛epalska-St˛eplowska* Department of Molecular Biology and Biotechnology, Institute of Plant Protection—National Research Institute, Władysława W˛egorka20, 60-318 Pozna´n,Poland; [email protected] (M.B.); [email protected] (P.F.) * Correspondence: [email protected] or [email protected] Abstract: Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurs- eries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV Citation: Budziszewska, M.; genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae Fr ˛ackowiak,P.; were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of Obr˛epalska-St˛eplowska,A.
    [Show full text]
  • Natural Resource Management in Syrian Villages (MSR XX, 2017)
    Did the Mamluks Have an Environmental Sense? Bethany Walker, Sofia Laparidou, Natural Resource Management in Syrian Villages Annette Hansen, and Chiara Cor- BBethan WBethaB SBeth LAethany B ABethan HBethaB Bet eBethA eBethan bino Did the Mamluks Have and Environmental Sense? Bethany Walker Sofia Laparidou University of Bonn University of Thessaloniki Annette Hansen Chiara Corbino University of Groningen University of Sheffield Did the Mamluks Have an Environmental Sense?: Natural Resource Management in Syrian Villages The economic changes of Sultan Barqūq’s reign and the post-Barqūqī era have increasingly come under scrutiny in recent years, changing the way we under- stand the transition to the Circassian Mamluk Sultanate. 1 The erosion of the iqṭāʿ 10.6082/M1H1304R system, through the transformation of state lands to private property, and the http://hdl.handle. “wave of waqf ” that emptied the Bayt al-Māl by Barqūq’s reign (and then again at net/11417/736 the end of the Mamluk Sultanate), necessitating a reorganization of the state fis- cal administration and the creation of new financial bureaus, are topics that have generated a respectable body of scholarship. 2 In the background of these trends is the ever-changing status of land tenure and land use. The co-authors of this article gratefully acknowledge the long-term support of the Jordanian Department of Antiquities and the American Center of Oriental Research in Amman during our many years of fieldwork in Jordan. Through a Harris Grant from the American Schools of Ori- ental Research we were able to conduct in 2014 the laser survey and 3-D documentation of sub- terranean water systems in support of our study of medieval-era irrigation.
    [Show full text]
  • A New Cultivar of White Lupin with Determined Bushy Growth Habit, Sweet Grain and High Protein Content
    SCIENTIFIC NOTE 577 PECOSA-BAER: A NEW CULTIVAR OF WHITE LUPIN WITH DETERMINED BUSHY GROWTH HABIT, SWEET GRAIN AND HIGH PROTEIN CONTENT Erik von Baer1*, Ingrid von Baer1, and Ricardo Riegel2 ABSTRACT The expansion of white lupin (Lupinus albus L.) cultivation in Chile is subject to the availability of cultivars presenting high yield potential, tolerance to the main fungal diseases and homogeneous ripening. In response to these requirements, a new cultivar has been developed and registered as ‘Liapec-1’, commercially registered as ‘Pecosa-Baer’. This new cultivar has determined bushy growth habit. Its flowering period is concentrated in approximately 40 days, less than the 77 days of cv. Rumbo-Baer. This trait allows it to reach harvest without heterogeneity problems. The seed is speckled, flat and medium-sized (370 g/1000 grains aprox.). The kernels are sweet and have a high protein content of around 41% (dry matter basis). In field assays, ‘Pecosa-Baer’ presents a good tolerance to diseases caused by Colletotrichum lupini and Pleiochaeta setosa. The new cultivar has outstanding stability and yield levels, even under low fertilization conditions. An average yield of 5.43 t ha-1 was obtained over four seasons in two locations. In order to maximize its yield, ‘Pecosa-Baer’ must be sown between April and June at a rate of 140-160 kg ha-1. Given the high protein content and low alkaloid levels of the seeds, they can be included in the diet of all types of animals. Key words: Lupinus albus, cultivar, Colletotrichum, Pleiochaeta. INTRODUCTION Servicio Agrícola y Ganadero (SAG) the cvs.
    [Show full text]
  • Molecular Detection of Bean Yellow Mosaic Virus in Lupinus Albus
    ls & vira An ti ti n re A t r f o o v l Barakat and Torky, J Antivir Antiretrovir 2017, 9:2 i r a a Journal of n l r s u DOI: 10.4172/1948-5964.1000159 o J ISSN: 1948-5964 Antivirals & Antiretrovirals Research Article Article Open Access Molecular Detection of Bean Yellow Mosaic Virus in Lupinus albus Plants and its Associated Alterations in Biochemical and Physiological Parameters Ahmed Barakat and Zenab Aly Torky* Department of Microbiology, Faculty of Science, Ain Shams University, Egypt Abstract Bean yellow mosaic virus is one of the most devastating diseases of cultivated Leguminosae plants worldwide causing mosaic, mottling, malformation and distortion in infected cultivar plants. Present study was conducted to investigate the possibility of infection of Lupinus albus (Lupine) with Bean yellow mosaic virus. Virus isolate was identified by detection of the coat protein gene amplified by reverse transcription polymerase chain reaction and also via Chenopodium Amaranticolor as a diagnostic host plant. Results showed that infection can be induced under greenhouse conditions and infected plants showed a considerable level of mosaic symptoms. As disease development in infected plants is always associated with physiological and chemical changes, some metabolic alterations parameters have been evaluated like photosynthetic pigment contents, total carbohydrate content, total soluble protein, total protein, total free amino acid, proline induction, total phenolics, salicylic acid, and abscisic acid content in healthy and infected lupine plants. Results showed a great variation in all the biochemical categories in Lupinus albus infected with bean yellow mosaic virus as compared to healthy plants.
    [Show full text]
  • White Lupin (Lupinus Albus L.) – Nutritional and Health Values in Human Nutrition – a Review
    Czech J. Food Sci., 35, 2017 (2): 95–105 Review doi: 10.17221/114/2016-CJFS White Lupin (Lupinus albus L.) – Nutritional and Health Values in Human Nutrition – a Review Janusz PRUSINSKI* Department of Agrotechnology, UTP University of Science and Technology, Bydgoszcz, Poland *Corresponding author: [email protected] Abstract Prusinski J. (2017): White lupin (Lupinus albus L.) – nutritional and health values in human nutrition – a review. Czech J. Food Sci., 35: 95–105. White lupin seeds have been used in human nutrition and treatment for several thousand years. Nowadays the use of white lupin seeds is limited by a small scale of their production. However, in the last 20 years quite new properties of white lupin have been discovered for the application in the production of different kinds of functional food. Unique traits of protein, fatty acids with a desirable ratio of omega-6 to omega-3 acids, and fibre as well as other specific components, for example oligosaccharides and antioxidants or non-starch carbohydrates, make white lupin an excel- lent component in many healthy diets. The effects of white lupin components concern the physiological condition of the human body, including diabetes, hypertension, obesity, cardiovascular diseases, lipid concentration, glycaemia, appetite, insulin resistance, and colorectal cancer. Seeds are used among others for the production of gluten-free flour, bacterial and fungal fermented products, noodle and pasta products, as substitutes of meat, egg protein and sausages, also are cooked, roasted and ground and mixed with cereal flour in the production of bread, crisps and pasta, crisps and dietary dishes. Keywords: health benefits; chemical composition; effects on human health Many researchers state that the use of lupin seeds value as a result of removing soluble proteins, free for consumption and medicinal purposes has been amino acids, carbohydrates, and minerals.
    [Show full text]
  • Review Article: an Overview on Biology and Ecology of Lupinus Albus L
    Ass. Univ. Bull. Environ. Res. Vol. 22 No. 1 March 2019 AUCES REVIEW ARTICLE: AN OVERVIEW ON BIOLOGY AND ECOLOGY OF LUPINUS ALBUS L. Omnia M Arief a,* Mahmoud El- Shafiea, Dina Barakaa and Kamal H. Shaltout b aBotany and Microbiology Department, Faculty of Science, Benha University, Egypt b Botany Department, Faculty of Science, Tanta University, Egypt * Corresponding author. Email: [email protected] REVIEW ARTICLE ABSTRACT: Lupinus albus L. is usually cultivated for its edible seeds. In Egypt it is frequent an escape from cultivation in Nile Delta and Oases of the Libyan Desert. Lupin has a tap root system, the main root reaches depth of 1-2 m which bears nodules formed by Bradyrhizobium for nitrogen fixation. Lupinus albus adapts to phosphorus (P) deficiency with a highly coordinated modification of root development and biochemistry resulting in short, densely clustered secondary roots called proteoid or cluster that release vast amounts of phosphate- mobilizing carboxylates capable of making poorly available nutrients more available.. It has the ability of accessing sparingly available P, as well as being able to symbiotically fixation of N2, thus it would provide Lupinus species possess ideal combination of traits to act as ecosystem engineers. This plant was important to many Mediterranean civilizations and was domesticated in the old world and new world. It is known to have been cultivated since ancient times in Greece, Italy, Egypt and Cyprus. It has unique traits of protein, low starch, and contains alkaloids that provide the plant a chemical defense against herbivores. It adapts best in well-drained, mildly acid or neutral soils of light to medium texture.
    [Show full text]
  • Lupinus Albus) on the Gastrointestinal Microbiota Composition in Broiler Chickens and Ducks
    Czech J. Anim. Sci., 62, 2017 (9): 369–376 Original Paper doi: 10.17221/42/2017-CJAS Effect of Dietary Lupin (Lupinus albus) on the Gastrointestinal Microbiota Composition in Broiler Chickens and Ducks Martina Geigerová1, Roman Švejstil1, Eva Skřivanová1*, Eva Straková2, Pavel Suchý3 1Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic 2Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Science Brno, Brno, Czech Republic 3Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Science Brno, Brno, Czech Republic *Corresponding author: [email protected] ABSTRACT Geigerová M., Švejstil R., Skřivanová E., Straková E., Suchý P. (2017): Effect of dietary lupin Lupinus( albus) on the gastrointestinal microbiota composition in broiler chickens and ducks. Czech J. Anim. Sci., 62, 369–376. The purpose of the study was to evaluate the amount of raffinose-series oligosaccharides (RSO) in soybean meal (SBM), whole white lupin seed meal (WLM), sunflower meal (SFM), and rapeseed oil meal (ROM) and to determine whether partial or complete dietary WLM replacement affected the numbers of bacteria in selected groups in the microbiota of broiler chickens and ducks without inducing any weight loss. Total counts of anaerobes, lactobacilli, bifidobacteria, andEscherichia coli in caecal samples from both ducks and broiler chickens, as well as in a crop chyme, in broiler chickens, were determined. Live weights before slaughter were determined. Both broiler chickens and ducks were fed a control diet with SBM (L0) or diet containing 50% or 100% WLM as a substitute for SBM (groups L50 and L100, respectively).
    [Show full text]
  • 6 Lupins in European Cropping Systems
    ©CAB International 2017 – for chapter 6 authors 6 Lupins in European Cropping Systems FABIO GRESTA,1* MICHAEL WINK,2 UDO PRINS,3 MICHAEL ABBERTON,4 JESSICA CAPRARO,5 ALESSIO SCARAFONI5 AND GEORGE HILL6 1Mediterranean University of Reggio Calabria, Reggio Calabria, Italy; 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany; 3Louis Bolk Institute, Driebergen, the Netherlands; 4Genetic Resources Centre, International Institute of Tropical Agriculture, Nigeria; 5University of Milan, Italy; 6Lincoln University, New Zealand Abstract The lupins are an interesting group of legume crop species that produce large seeds containing up to 40% protein. The genus Lupinus is part of the tribe Genisteae. More than 170 species have been described from the New World and only 12 species from Europe, North and East Africa. Wild lupins are bitter and toxic because they produce quinolizidine alkaloids as a means of chemical defence. During domestication, lupins with low alkaloid contents were selected, leading to ‘sweet’ lupins with alkaloid con- tents below 0.02% in the protein-rich seeds, which can be used both for human and animal consumption. The domesticated lupins include Lupinus angustifolius, Lupinus albus, Lupinus luteus and Lupinus mutabilis. Blue or narrow-leafed lupin (L. angustifolius) is the most widely cultivated of them, with a worldwide production of more than 1.3 million t. Several challenges remain for lupin breeding, including the improvement of quantitative and qualitative traits, adaptation to alkaline soil and resistance to fungal pathogens. Introduction and Taxonomy Lupin species from the Americas are mostly herbaceous perennials, whereas Old World lupins are generally annuals. All of them host symbiotic nitrogen- fixing Bradyrhizobium in root nodules (Sprent and McKey, 1994).
    [Show full text]
  • The Distinct Plastid Genome Structure of Maackia Fauriei (Fabaceae: Papilionoideae) and Its Systematic Implications for Genistoids and Tribe Sophoreae
    RESEARCH ARTICLE The distinct plastid genome structure of Maackia fauriei (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae In-Su Choi, Byoung-Hee Choi* Department of Biological Sciences, Inha University, Incheon, Republic of Korea * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 Traditionally, the tribe Sophoreae sensu lato has been considered a basal but also hetero- a1111111111 geneous taxonomic group of the papilionoid legumes. Phylogenetic studies have placed Sophoreae sensu stricto (s.s.) as a member of the core genistoids. The recently suggested new circumscription of this tribe involved the removal of traditional members and the inclu- sion of Euchresteae and Thermopsideae. Nonetheless, definitions and inter- and intra-taxo- OPEN ACCESS nomic issues of Sophoreae remain unclear. Within the field of legume systematics, the Citation: Choi I-S, Choi B-H (2017) The distinct molecular characteristics of a plastid genome (plastome) have an important role in helping plastid genome structure of Maackia fauriei to define taxonomic groups. Here, we examined the plastome of Maackia fauriei, belonging (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae. to Sophoreae s.s., to elucidate the molecular characteristics of Sophoreae. Its gene con- PLoS ONE 12(4): e0173766. https://doi.org/ tents are similar to the plastomes of other typical legumes. Putative pseudogene rps16 of 10.1371/journal.pone.0173766 Maackia and Lupinus species imply independent functional gene loss from the genistoids. Editor: Giovanni G Vendramin, Consiglio Nazionale Our overall examination of that loss among legumes suggests that it is common among all delle Ricerche, ITALY major clades of Papilionoideae.
    [Show full text]