Energy Conservation More Effective with Rebound Policy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coal and Oil: the Dark Monarchs of Global Energy – Understanding Supply and Extraction Patterns and Their Importance for Futur
nam et ipsa scientia potestas est List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Höök, M., Aleklett, K. (2008) A decline rate study of Norwe- gian oil production. Energy Policy, 36(11):4262–4271 II Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behaviour. Natural Resources Research, 18(1):39–56 III Höök, M., Hirsch, R., Aleklett, K. (2009) Giant oil field decline rates and their influence on world oil production. Energy Pol- icy, 37(6):2262–2272 IV Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809–4818 V Höök M, Söderbergh, B., Aleklett, K. (2009) Future Danish oil and gas export. Energy, 34(11):1826–1834 VI Aleklett K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söderbergh, B. (2010) The Peak of the Oil Age - analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3):1398–1414 VII Höök M, Tang, X., Pang, X., Aleklett K. (2010) Development journey and outlook for the Chinese giant oilfields. Petroleum Development and Exploration, 37(2):237–249 VIII Höök, M., Aleklett, K. (2009) Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3):201–216 IX Höök, M., Aleklett, K. (2010) Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Re- sources Research, 19(3):189–208 X Höök, M., Zittel, W., Schindler, J., Aleklett, K. -
Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model ∗
Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model ∗ John R. Boycey Department of Economics University of Calgary July 2012 Abstract World oil production has grown at an annual rate of 4.86% since 1900. Yet, the Hubbert-Deffeyes `peak oil' (HDPO) model predicts that world oil production is about to enter a sustained period of decline. This paper investigates the empirical robustness of these claims. I document that the data for the HDPO model shows that the ratio of production-to-cumulative-production is decreasing in cumulative production, and that the rate of decrease is itself decreasing. The HDPO model attempts to fit a linear curve through this data. To do so, Hubbert and Deffeyes are forced to either exclude early data or to discount the validity of discoveries and reserves data. I show that an HDPO model which includes early data systematically under-predicts actual cumulative production and that the data also rejects the hypothesis that the fit is linear. These findings undermine claims that the HDPO model is capable of yielding meaningful measures of ultimately recoverable reserves. Key Words: Peak Oil, Exhaustible Resources, Exploration and Development JEL Codes: L71, Q31, Q41, O33 ∗I thank Chris Auld, Diane Bischak, Chris Bruce, Bob Cairns, Robin Carter, Ujjayant Chakravorty, Eugene Choo, Herb Emery, G´erardGaudet, Dan Gordon, James Hamilton, Mike Horn, Lutz Kilian, Dean Lueck, John Rowse, and Scott Taylor. I also thank the associate editor, James L. Smith, and two anonymous referees for helpful comments. All remaining errors are my own. yProfessor of Economics, Department of Economics, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, T2N 1N4, Canada. -
Energy Efficiency and Economy-Wide Rebound Effects: a Review of the Evidence and Its Implications
Renewable and Sustainable Energy Reviews xxx (xxxx) xxx Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications Paul E. Brockway a,*, Steve Sorrell b, Gregor Semieniuk c,d, Matthew Kuperus Heun e, Victor Court f,g a School of Earth and Environment, University of Leeds, UK b Science Policy Research Unit, University of Sussex, UK c Political Economy Research Institute & Department of Economics, University of Massachusetts, Amherst, USA d Department of Economics, SOAS University of London, UK e Engineering Department, Calvin University, 3201 Burton St. SE, Grand Rapids, MI, 49546, USA f IFP School, IFP Energies Nouvelles, 1 & 4 avenue de Bois Pr´eau, 92852, Rueil-Malmaison cedex, France g Chair Energy & Prosperity, Institut Louis Bachelier, 28 place de la Bourse, 75002, Paris, France ARTICLE INFO ABSTRACT Keywords: The majority of global energy scenarios anticipate a structural break in the relationship between energy con Energy efficiency sumption and gross domestic product (GDP), with several scenarios projecting absolute decoupling, where en Economy-wide rebound effects ergy use falls while GDP continues to grow. However, there are few precedents for absolute decoupling, and Integrated assessment models current global trends are in the opposite direction. This paper explores one possible explanation for the historical Energy-GDP decoupling close relationship between energy consumption and GDP, namely that the economy-wide rebound effects from Energy rebound improved energy efficiency are larger than is commonly assumed. We review the evidence on the size of economy-wide rebound effects and explore whether and how such effects are taken into account within the models used to produce global energy scenarios. -
Exergy Accounting - the Energy That Matters V
THE 8th LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2009 1 Exergy Accounting - The Energy that Matters V. Fachina, PETROBRAS 1 Exergy means the maximum work which can be Abstract-- The exergy concept is introduced by utilizing a extracted from a control volume. Also it is the maximum general framework on which are based the model equations. An energy quantity which can be made useful after discounting exergy analysis is performed on a case study: a control volume the irreversible losses. Finally, exergy means a physical, for a power module is created by comprising gas turbine, chemical contrast level between a control volume and its reduction gearbox, AC generator, exhaustion ducts and heat nearby surroundings. regenerator. The implementation of the equations is carried out Now considering the economical realm, Fig. 1 can be by collecting test data of the equipment data sheets from the respective vendors. By utilizing an exergy map, one proposes translated as follows: the reversible losses as either business both mitigating and contingent countermeasures for maximizing productivity losses or refundable taxes; the irreversible ones the exergy efficiency. An exergy accounting is introduced by as either nonrefundable taxes or inflation; the right arrows as showing how the exergy concept might eventually be brought up product and service values; the left ones as product and to the traditional money accounting. At last, one devises a unified service investments. approach for efficiency metrics in order to bridge the gaps A word of advice: a control volume means either a between the physical and the economical realms. physical or logical reality subset bounded by our observation. -
Environmental Anthropology Engaging Ecotopia an Introduction
Environmental Anthropology Engaging Ecotopia An Introduction Joshua Lockyer and James R. Veteto We are living in a utopian moment. The majority of humans are already be- ing negatively affected by a number of coupled social and environmental crises. These conditions are created in large part by hegemony of thought and practice that ontologically separates humans from nature, rationalizes the externalization of the social and environmental costs of production and consumption, justifi es extreme inequality, and sees solutions only in a continuation of the same systems that generated the problems in the fi rst place. Together these and other problems constitute a crisis that demands imaginative responses and viable alternatives. We contend that anthropol- ogy must fi nd ways to engage with such existing possibilities. The present crises are not new; the fundamental idea that the current situation cannot continue was recognized decades ago with the rise of international discourse on the topic of sustainable development (Brundt- land 1987). The widely promoted concept of sustainability is ultimately utopian in nature; it is the good state that we must strive for but may not actually exist except in theory. Despite our best efforts, we do not know exactly what a sustainable society looks like. This has been the paradox of utopianism since Sir Thomas More ([1516] 1906) coined the term “utopia” in 1516, and it is the paradox of sustainability today. The premise underlying this volume is the basic belief that, at its best, anthropology has always -
Cesifo Working Paper No. 5385 Category 10: Energy and Climate Economics June 2015
The Green Paradox: A Supply-side View of the Climate Problem Hans-Werner Sinn CESIFO WORKING PAPER NO. 5385 CATEGORY 10: ENERGY AND CLIMATE ECONOMICS JUNE 2015 An electronic version of the paper may be downloaded • from the SSRN website: www.SSRN.com • from the RePEc website: www.RePEc.org • from the CESifo website: www.CESifoT -group.org/wpT ISSN 2364-1428 CESifo Working Paper No. 5385 The Green Paradox: A Supply-side View of the Climate Problem Abstract Why have policies aimed at reducing the demand for carbon not succeeded in slowing down global carbon extraction and CO2 emissions, and why have carbon prices failed to increase over the last three decades? This comment argues that this is because of the Green Paradox, i.e. – (the anticipation of sales by resource owners who try to pre-empt the destruction of their markets by green policies.) – Reviewing some of the conditions under which strong and weak versions of the Green Paradox may emerge, it is argued that there is little hope that green replacement technologies will impose hard price constraints that would keep long-run extraction within a fixed carbon budget and that, therefore, even strong versions of the paradox cannot easily be avoided. JEL-Code: O130, Q320, Q540, H230. Keywords: carbon, environmentalism, back stop, oil prices. Hans-Werner Sinn Ifo Institute – Leibniz Institute for Economic Research at the University of Munich Poschingerstrasse 5 Germany – 81679 Munich [email protected] The climate problem is one of mankind’s biggest challenges. Averting disaster requires nothing less than worldwide collective policy action. -
Snakes in the Greenhouse Does Increased Natural Gas Use Reduce Carbon Dioxide Emissions from Coal Consumption?
Energy Research & Social Science 38 (2018) 53–57 Contents lists available at ScienceDirect Energy Research & Social Science journal homepage: www.elsevier.com/locate/erss Perspectives Snakes in The Greenhouse: Does increased natural gas use reduce carbon T dioxide emissions from coal consumption? ⁎ Patrick Trent Greinera, , Richard Yorka, Julius Alexander McGeeb a University of Oregon, United States b Portland State University, United States ARTICLE INFO ABSTRACT Keywords: Since natural gas emits less carbon than does coal per unit of electricity generation, some analysts suggest Natural gas natural gas will help to mitigate climate change. However, sociological research has found that the substitution CO2 emissions of one natural resource for another often does not happen as anticipated because of political and economic Displacement factors. Here, we analyze cross-national time-series data to examine the connection between growth in emissions Energy from natural gas consumption and changes in emissions from coal use, controlling for several structural factors. We find that CO2 emissions from natural gas sources do not displace CO2 emissions from coal. These results cast doubt on whether the growing use of natural gas is likely to help substantially reduce CO2 emissions. 1. Introduction Social science research examining the effectiveness with which newly introduced technologies or resources, such as fuels, displace es- Natural gas produces lower carbon emissions than coal per unit of tablished ones has found that displacement does not typically occur as electricity generation [1]. Citing this fact, some policy-makers, energy expected or intended, if, indeed, it occurs at all. This phenomenon – analysts, and environmental scientists argue that increasing production which has variously been termed the paperless office paradox [12,13] of natural gas will suppress coal use and thereby help to curtail global and the displacement paradox [6,14,15]– has been noted in the failure climate change [2–4]. -
Exergy As a Measure of Resource Use in Life Cyclet Assessment and Other Sustainability Assessment Tools
resources Article Exergy as a Measure of Resource Use in Life Cyclet Assessment and Other Sustainability Assessment Tools Goran Finnveden 1,*, Yevgeniya Arushanyan 1 and Miguel Brandão 1,2 1 Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm SE 100-44, Sweden; [email protected] (Y.A.); [email protected] (M.B.) 2 Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation, Czartoryskich 8 Str., 24-100 Pulawy, Poland * Correspondance: goran.fi[email protected]; Tel.: +46-8-790-73-18 Academic Editor: Mario Schmidt Received: 14 December 2015; Accepted: 12 June 2016; Published: 29 June 2016 Abstract: A thermodynamic approach based on exergy use has been suggested as a measure for the use of resources in Life Cycle Assessment and other sustainability assessment methods. It is a relevant approach since it can capture energy resources, as well as metal ores and other materials that have a chemical exergy expressed in the same units. The aim of this paper is to illustrate the use of the thermodynamic approach in case studies and to compare the results with other approaches, and thus contribute to the discussion of how to measure resource use. The two case studies are the recycling of ferrous waste and the production and use of a laptop. The results show that the different methods produce strikingly different results when applied to case studies, which indicates the need to further discuss methods for assessing resource use. The study also demonstrates the feasibility of the thermodynamic approach. -
A Menu for Change
A Menu for Change Using behavioural science to promote sustainable diets around the world The Behavioural Insights Team / A Menu for Change 2 The Behavioural Insights Team / A Menu for Change Toby Park, Head of Energy & Sustainability, The Behavioural Insights Team [email protected] Acknowledgements This report has benefitted from several individuals’ contributions. With particular thanks for substantive research support and contributions to early content and the structure of the report, to Emma Garnett (University of Cambridge) and Brittney Titus (University of Oxford), both supporting us while at placement at BIT. With thanks also to Elisabeth Costa (BIT), Dr Filippo Bianchi (BIT), Dr Jessica Barker (BIT), and Dr Christian Reynolds (University of Sheffield) for their valuable feedback and comments. This is a long report. We hope you’ll read it cover-to-cover, but if not, it’s written to allow you to dip into individual sections. Look out for the short orange descriptions at the beginning of each chapter to keep track of where you are. Sections 1.1-1.2 introduce the problem, and make the rationale for shifting global diets. This will be familiar ground for environmental scientists. Section 1.3 looks at the current state, and emerging trends, in diets around the world, and Section 1.4 highlights the many historical occasions when diets have radically changed through technological innovation or deliberate intervention from government and industry. Section 1.5 acknowledges the sensitivities of this topic, and offers some reflections on how we might navigate public and political consent. We don’t have all the answers here but give a series of recommendations for building public support and developing effective policy. -
Handbook of Macroeconomics,Volume2b © 2016 Elsevier B.V
CHAPTER 24 Environmental Macroeconomics J. Hassler*,†,{, P. Krusell*,†,{,§, A.A. Smith, Jr.§,¶ * Institute for International Economic Studies (IIES), Stockholm University, Stockholm, Sweden †University of Gothenburg, Gothenburg, Sweden { CEPR, London, United Kingdom § NBER, Cambridge, MA, United States ¶ Yale University, New Haven, CT, United States Contents 1. Introduction 1895 2. Limited Natural Resources and Sustainability Concerns 1899 2.1 Prices and Quantities in Markets for Finite Resources 1901 2.1.1 The Hotelling Result: The Price Equation in a Baseline Case 1901 2.1.2 Prices and Quantities in Equilibrium: Using a Planning Problem 1902 2.1.3 Extraction Costs 1902 2.2 Confronting Theory with Data 1903 2.3 An Application: Fossil Energy 1905 2.3.1 Accounting for Input Saving Using US Data 1906 2.3.2 A Positive Model of Energy Supply and Demand with a Finite Resource 1908 2.3.3 Endogenous Energy-Saving Technical Change 1910 2.3.4 Takeaway from the Fossil-Energy Application 1912 3. Climate Change: The Natural-Science Background 1912 3.1 The Climate 1913 3.1.1 The Energy Budget 1913 3.1.2 Nonlinearities and Uncertainty 1917 3.1.3 Ocean Drag 1918 3.1.4 Global Circulation Models 1920 3.2 Carbon Circulation 1923 3.2.1 Carbon Sinks and Stores 1923 3.2.2 Human Influence on Carbon Circulation 1924 3.2.3 The Reserves of Fossil Fuel 1925 3.2.4 A Linear Carbon Circulation Model 1926 3.2.5 Reduced-Form Depreciation Models 1927 3.2.6 A Linear Relation Between Emissions and Temperature 1928 3.3 Damages 1930 3.3.1 Nordhaus's Approach 1931 3.3.2 Explicit Damage Aggregation 1933 3.3.3 Top-Down Approaches 1934 3.3.4 Remarks 1935 3.3.5 The Operational Approach: A Direct Relation 1937 4. -
Carbon Taxes, Oil Monopoly and Petrodollar Recycling
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Marz, Waldemar; Pfeiffer, Johannes Working Paper Carbon Taxes, Oil Monopoly and Petrodollar Recycling ifo Working Paper, No. 204 Provided in Cooperation with: Ifo Institute – Leibniz Institute for Economic Research at the University of Munich Suggested Citation: Marz, Waldemar; Pfeiffer, Johannes (2015) : Carbon Taxes, Oil Monopoly and Petrodollar Recycling, ifo Working Paper, No. 204, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, Munich This Version is available at: http://hdl.handle.net/10419/123112 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Ifo Institute – Leibniz Institute for Economic Research at the University of Munich Carbon Taxes, Oil Monopoly and Petrodollar Recycling Waldemar Marz Johannes Pfeiffer Ifo Working Paper No. -
Sustainability Indicators for the Use of Resources—The Exergy Approach
Sustainability 2012, 4, 1867-1878; doi:10.3390/su4081867 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Sustainability Indicators for the Use of Resources—The Exergy Approach Christopher J. Koroneos 1,*, Evanthia A. Nanaki 2 and George A. Xydis 3 1 Unit of Environmental Science and Technology, Department of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografou Campus, 15773 Athens, Greece 2 University of Western Macedonia, Department of Mechanical Engineering, Bakola and Sialvera, 50100 Kozani, Greece; E-Mail: [email protected] 3 Technical University of Denmark, Department of Electrical Engineering, Frederiksborgvej 399, P.O. Box 49, Building 776, 4000 Roskilde, Denmark; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-210-772-3085; Fax: +30-210-772-3285. Received: 17 July 2012; in revised form: 25 July 2012 / Accepted: 2 August 2012 / Published: 20 August 2012 Abstract: Global carbon dioxide (CO2) emissions reached an all-time high in 2010, rising 45% in the past 20 years. The rise of peoples’ concerns regarding environmental problems such as global warming and waste management problem has led to a movement to convert the current mass-production, mass-consumption, and mass-disposal type economic society into a sustainable society. The Rio Conference on Environment and Development in 1992, and other similar environmental milestone activities and happenings, documented the need for better and more detailed knowledge and information about environmental conditions, trends, and impacts. New thinking and research with regard to indicator frameworks, methodologies, and actual indicators are also needed.