Feasibility Study of Removing the Grand Rapids-Providence Dams, Maumee River (Nw Ohio) Based on Hec-Ras Models
Total Page:16
File Type:pdf, Size:1020Kb
FEASIBILITY STUDY OF REMOVING THE GRAND RAPIDS-PROVIDENCE DAMS, MAUMEE RIVER (NW OHIO) BASED ON HEC-RAS MODELS Zachery P. Mueller A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2008 Committee: James E. Evans, Advisor Joseph P. Frizado Enrique Gomezdelcampo Sheila J. Roberts ii ABSTRACT James E. Evans, Advisor The Providence and Grand Rapids dams, located on the Maumee River at Grand Rapids, Ohio are low-head dams built in 1840 as rock-crib dams that were subsequently bolstered with concrete in 1907. The Providence dam is 362.1 m long and 2.6 m tall while the Grand Rapids dam is 195.7 m long and 2.4 m tall. Both dams create a single reservoir with a normal pool storage of 1233.5 m3 which is used for water supply and recreation. This study investigated the impacts to the flood regime in the area associated with the removal of the two dams by comparing HEC-RAS models of pre- and post-dam removal scenarios with 10-, 25-, 50-, 100-, 200-, 500-year flooding events. The model encompassed 30.6 river kilometers of the Maumee River located in Henry, Lucas, and Wood County, Ohio using a total of 64 cross-sections collected from HEC-GeoRAS and a 1998 HEC-6 sediment transport model along with 20 interpolated cross-sections created by HEC-RAS. The research also examined the potential release of sediment trapped behind the dams by performing grain-size analysis of sediment collected upstream of the dams. The HEC-RAS results showed no significant change in the flood regime upstream of the dams and no change at all downstream of the dams. Immediately upstream of the dams the water surface elevation decreased from an initial elevation of 644.82 ft to 644.64 ft for the 10-year flooding event, a difference of less than <1%. For the 500-year flooding event the water surface elevation immediately upstream of the dams decreased from an initial elevation of 649.70 ft to 649.46 ft resulting in the same difference of <1%. The other flooding events resulted in similar iii differences. The differences in the areas inundated upstream of the dams due to these changes varied from no change to 0.01 mi2 for the 10-year and 500-year flooding events respectively. The potential release of sediment trapped behind the dams was determined to be low due to the low trapping efficiency of the dams determined from observations of essentially no sediment accumulation in the reservoir. Along with the low trapping efficiency of the dams, the majority of the sediment being transported by the Maumee River was determined to be largely mud which is transported as suspended load and carried over the dams. These results showed no significant changes in the flood regime near Grand Rapids, Ohio and no risk of releasing large quantities of sediment downstream after dam removal. iv ACKNOWLEDGMENTS I would like to start by thanking Dr. James E. Evans, my thesis advisor, for guiding me through the process of conducting and writing this thesis. My sincere gratitude also goes to Dr. Joseph P. Frizado, Dr. Enrique Gomezdelcampo, and Sheila J. Roberts, my thesis committee, for providing invaluable advice and a diverse knowledge base. I would also like to thank Nathan Harris for the time he spent helping me collect sediment samples in the Maumee River. I am also indebted to Paul E. Murawski at the Army Corp of Engineers, and Tina Griffin and Pete George at the ODNR Division of Water for their guidance and help in obtaining the data necessary to conduct my research. Finally, I would like to thank my family for their everlasting love and support. v TABLE OF CONTENTS Page INTRODUCTION .......................................................................................................................... 1 Dam Removal .............................................................................................................................. 1 Effects of Dam Removal ............................................................................................................. 2 Purpose of Study ......................................................................................................................... 5 BACKGROUND ............................................................................................................................ 7 Hydrology.................................................................................................................................... 7 Bedrock Geology....................................................................................................................... 10 Till ............................................................................................................................................. 11 Terraces ..................................................................................................................................... 17 Soils ........................................................................................................................................... 21 The Federal Emergency Management Agency ......................................................................... 23 Flood Insurance Studies ............................................................................................................ 25 Flood Insurance Rate Map ........................................................................................................ 26 INTRODUCTION TO THE HYDROLOGIC MODEL HEC-RAS ............................................ 27 Background ............................................................................................................................... 27 One-Dimensional Flow Calculations ........................................................................................ 29 Water Surface Profiles ........................................................................................................... 29 Cross-Section Conveyance .................................................................................................... 29 Critical Depth ........................................................................................................................ 31 Momentum Equation ............................................................................................................. 33 Weir Flow .............................................................................................................................. 33 vi Bridge Hydraulics ..................................................................................................................... 35 Energy Method ...................................................................................................................... 35 Momentum Method ............................................................................................................... 36 Yarnell Equation .................................................................................................................... 36 Floodplain Encroachment Analyses .......................................................................................... 38 Computational Differences between HEC-2 and HEC-RAS .................................................... 44 Cross-Sectional Conveyance ................................................................................................. 44 Critical Depth ........................................................................................................................ 46 Bridge Hydraulic Computations ............................................................................................ 47 Culvert Hydraulic Computations ........................................................................................... 49 Floodway Encroachment Computations ................................................................................ 49 New Computational Features in HEC-RAS .............................................................................. 50 METHODS ................................................................................................................................... 52 Field Methods ............................................................................................................................ 52 Sediment ................................................................................................................................ 52 Differential Global Positioning System ................................................................................. 56 Laboratory Methods .................................................................................................................. 61 Grain-Size Analysis ............................................................................................................... 61 Sediment Core ....................................................................................................................... 62 GIS Analysis of Soils ................................................................................................................ 62 Hydrologic Modeling ................................................................................................................ 69 Data Sources .......................................................................................................................... 69 Digital Elevation Model ........................................................................................................ 70 vii Cross-Sections ......................................................................................................................