Host-Substrate Preference of Theocolax Elegans (Westwood

Total Page:16

File Type:pdf, Size:1020Kb

Host-Substrate Preference of Theocolax Elegans (Westwood Accepted Manuscript Host-substrate preference of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae), a larval parasitoid of the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) Saruta Sitthichaiyakul, Weerawan Amornsak PII: S2452-316X(17)30089-3 DOI: 10.1016/j.anres.2016.09.003 Reference: ANRES 84 To appear in: Agriculture and Natural Resources Received Date: 29 July 2016 Accepted Date: 7 September 2016 Please cite this article as: Sitthichaiyakul S, Amornsak W, Host-substrate preference of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae), a larval parasitoid of the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae), Agriculture and Natural Resources (2017), doi: 10.1016/j.anres.2016.09.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 ACCEPTED MANUSCRIPT 1 Agriculture and Natural Resources. 2016. 51(1): xx–xx. 2 Agr. Nat. Resour. 2016. 51(1): xx–xx. 3 4 Host-substrate preference of Theocolax elegans (Westwood) (Hymenoptera: 5 Pteromalidae), a larval parasitoid of the maize weevil, Sitophilus zeamais 6 (Motschulsky) (Coleoptera: Curculionidae) 7 8 Saruta Sitthichaiyakul a, b,† and Weerawan Amornsak a,* 9 10 a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 11 10900, Thailand. 12 b Post-harvest and Processing Research and Development Division, Department of 13 Agriculture, Bangkok 10900, Thailand. 14 15 Received 29 July 2016 16 Accepted 7 September 2016 17 18 Keywords: MANUSCRIPT 19 Biological control 20 Host substrates 21 Sitophilus zeamais 22 Stored-product insects 23 Theocolax elegans 24 25 *Corresponding author. 26 E-mail: [email protected] 27 †Co-first author. 28 E-mail: [email protected] 29 30 31 32 33 34 2 ACCEPTED MANUSCRIPT 1 Abstract 2 3 The solitary parasitoid Theocolax elegans (Westwood) (Hymenoptera: 4 Pteromalidae) was investigated attacking larvae of the maize weevil, Sitophilus 5 zeamais (Motschulsky) (Coleoptera: Curculionidae) under laboratory conditions. 6 Theocolax elegans parasitoids were mass reared on 21-day-old S. zeamais fed with 7 different host substrates consisting of brown rice, maize, sorghum and wheat. The 8 developmental time of S. zeamais was observed. The widest head capsule was 9 recorded from S. zeamais developing in brown rice grain kernels. The head capsule 10 width was used to determine the age of the larval instars. The sex ratio of T. elegans 11 progeny emerging from brown rice was the same in the choice and no-choice tests 12 (1.8:1.0 and 1.8:1.0, respectively). Female parasitoids preferred to oviposit on S. 13 zeamais developed in brown rice grain kernels in both tests. The number of parasitoid 14 progeny emerging from different host substrates was different in the choice and no- 15 choice tests. The progeny of T. elegans females and males were fully winged, short 16 winged and wingless. 17 18 Introduction MANUSCRIPT 19 20 Stored-product insect pests infest grain stores around the world, with serious 21 damage to stored grains being caused by stored-product insect pests such as the rice 22 weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae) (Toews et al ., 2007), red 23 flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) (Campbell 24 and Hagstrum, 2002), cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: 25 Anobidae) (Timokhov and Gokhman, 2003), and cowpea weevil, Callosobruchus 26 maculatus (F.) (Coleoptera: Bruchidae) (Ghimire and Phillips, 2007). These pests 27 cause economic loss in terms of the quality and quantity of the products. Biological 28 control is aACCEPTED method used to control stored-product insect pests and the potential 29 benefit of natural enemies such as parasitoids has been acknowledged for many years 30 (Bellows, 1985; Shin et al ., 1994; Adarkwah et al ., 2014). However, insecticides 31 remain the primary tool for controlling stored product insect pests, and consequently, 32 resistance to fumigation and contact insecticides has been reported with some stored 33 product insects (Boyer et al ., 2012; Kang et al ., 2013). 3 ACCEPTED MANUSCRIPT 1 Pteromalid parasitoids are important biological control agents (Howard and 2 Liang, 1993) and occur naturally in stored grain (Williams and Floyd, 1971). Species 3 include Anisopteromalus calandrae (Howard), Lariophagus distinguendus (Förster) 4 (Shin et al ., 1994) and Pteromalus cerealellae (Ashmead) (Wen et al ., 1995). 5 Theocolax elegans (Westwood) is a pteromalid ectoparasitoid used to suppress the 6 larval stage of several stored-product insect pests (Wen and Brower, 1995). These 7 beneficial parasitoids have been shown to attack coleopteran and lepidopteran insect 8 pests (Flinn et al ., 1994). They have been used as a biological control agent in stored 9 grain (Gordh, 1979; Germinara et al ., 2009). Flinn and Hagstrum (2001) reported that 10 augmentative releases of T. elegans reduced damage from the lesser grain borer, 11 Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). Investigations of T. elegans 12 larvae revealed survival and the preference of the parasite for the fourth and pupal 13 stages of the host (Sharifi, 1972; Flinn and Hagstrum, 2001). The effect of 14 temperature was reported to be a functional response in the reproduction of the 15 progeny of the parasitoid T. elegans (Flinn, 1998; Toews et al ., 1998; Toews et al ., 16 2001; Flinn and Hagstrum, 2002). The successful parasitism of the female parasitoid 17 depends on many factors including finding a target host (Steidle and Schöller, 2002), 18 acceptance of the target host and the developmentMANUSCRIPT of target host size (Bergeijk et al ., 19 1989; Bourchier et al ., 1993). Parasitoids acquire nutrients during their larval 20 development (Strand and Casas, 2008). Host preference and host suitability have been 21 studied in pteromalid parasitoids using different host species in stored grain 22 (Timokhov and Gokhman, 2003; Grimire and Phillips, 2007). Host quality was 23 related to host size and affected parasitoid progeny allocation (Cônsoli and Vinson, 24 2012). However, little information on T. elegans is available compared with other 25 pteromalid parasitoids. The current study provided basic information on host substrate 26 preferences by T. elegans on larval S. zeamais . 27 28 Materials andACCEPTED Methods 29 Insects host and parasitoid 30 Sitophilus zeamais was taken from silos in Amnatcharoen province, Thailand 31 during January 2013. Theocolax elegans was taken during 2011 from silos in 32 Petchaburi province, Thailand. These hosts and parasitoids were maintained at the 33 Post-harvest and Processing Research and Development Division, Department of 34 Agriculture, Chatuchak, Bangkok, Thailand. Both insects were mass reared at the 4 ACCEPTED MANUSCRIPT 1 National Biological Control Research Center, Kasetsart University, Bangkhen 2 Campus, Bangkok, Thailand under laboratory conditions (24–26°C, 50–60% relative 3 humidity, 12 h light:12 h dark as the natural photoperiod). 4 Mass rearing 5 The host species ( S. zeamais ) was mass reared on brown rice ( Oryza sativa L. 6 (Poaceae)), maize ( Zea mays L. (Poaceae)), sorghum ( Sorghum bicolar (L.) Moench 7 (Poaceae)) and wheat ( Triticum aestivum L. (Poaceae)) using glass containers holding 8 50 g each of brown rice, maize, sorghum and wheat. One hundred unsexed adults of 9 S. zeamais were placed in each container. Each glass container (5.5 cm diameter, 15 10 cm tall) was covered with a filter paper. The adults of host species oviposited for 5 d 11 and were then removed. The bottle was then maintained under laboratory conditions 12 until the larvae were used for other trials. 13 Theocolax elegans was mass reared on S. zeamais feeding on brown rice. Ten 14 pairs (females and males) of T. elegans were released when the larvae of S. zeamais 15 were aged 21 d in a glass bottle container (5.5 cm diameter, 15 tall cm) with a filter 16 paper cover. Theocolax elegans were allowed to parasitize the hosts. 17 18 Head capsule size of Sitophilus zeamais MANUSCRIPT 19 Sitophilus zeamais was mass reared on brown rice, maize, sorghum and wheat 20 and then placed individually with 5 g of plant substrate in test tubes. Five sexed pairs 21 were determined based on the surface, size and shape of snout characteristics (Tolpo 22 and Morrison, 1965; Dobie et al ., 1984; Throne and Eubanks, 2002). The individual 23 females were released on substrate to lay eggs for 24 h and covered with filter paper. 24 After an additional 21 d, S. zeamais larvae were removed from the grain kernel and 25 the width of larval head capsules was measured under a compound microscope 26 (Olympus BH-2 BHS Research Microscope; Olympus Corp.; Tokyo, Japan). A visual 27 record was made using the software program Ulead VideoStudio SE DVD (©2007, 28 InterVideo DigitalACCEPTED Technology Corp; Freemont, CA, USA). The measurement of head 29 capsule size was under taken using the software program Image-Pro PLUS (version 30 6.0.0.260, Media Cybernetics Inc.; Rockville, MD, USA). 31 32 Host substrates 33 A glass cylinder (12.5 cm diameter, 12.5 cm height) was divided into quarters 34 using four acrylic partitions (Fig. 1). For the choice experiments, 50 g of infested 5 ACCEPTED MANUSCRIPT 1 brown rice, maize, sorghum and wheat with 21-day-old S. zeamais were placed in 2 each quadrant. An acrylic circle covered with a hole enabled parasitoids to contact the 3 hosts. Theocolax elegans female parasitoids mated and were fed with honey for 24 h 4 before being released in the center of the quadrants. The experiment was replicated 20 5 times. 6 In the no-choice experiments, glass bottles (5.5 cm diameter, 15 cm height) 7 containing 50 g of infested host substrates (brown rice, maize, sorghum or wheat), 8 separately were used as treatments.
Recommended publications
  • Effect of Plant Oils on the Infestation of Rhyzopertha Dominica (Fab.) in Wheat, Triticum Aestivum Linn
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 53, No. 3 (2013) DOI: 10.2478/jppr-2013-0045 EFFECT OF PLANT OILS ON THE INFESTATION OF RHYZOPERTHA DOMINICA (FAB.) IN WHEAT, TRITICUM AESTIVUM LINN. Kailash Chand Kumawat*, Bhanwar Lal Naga Department of Entomology, Shri Karan Narendra College of Agriculture (SKRAU), Jobner (Rajasthan)-303329, India Received: April 20, 2012 Accepted: August 8, 2013 Abstract: Six oil treatments, viz., Neem (Azadirachta indica A. Juss), Castor (Ricinus communis), Karanj (Pongamia pinnata), mustard (Brassica juncea), Eucalyptus (Eucalyptus melanophloia) and Taramira (Eruca sativa) were evaluated at three dose levels (0.1, 0.5, and 1.0% v/w) against the lesser grain borer, Rhyzopertha dominica (Fab.) infesting wheat, Triticum aestivum Linn. An untreated check (the control) was maintained for comparison. The maximum protection was provided by Neem oil at 1.0 per cent (no adult emerged up to 270 days) followed by castor oil and Taramira oil at 1.0 per cent (no adult emerged up to 90 days of treatment). The maximum number of adults were recorded in the grain treated with Eucalyptus oil used at 0.1 per cent (9.3–22.0), Karanj oil at 0.1 per cent (6.0–20.7), and castor oil at 0.1 per cent (2.0–23.0). The maximum grain damage was recorded with use of Eucalyptus oil at 0.1 per cent (28.7–64.7), Karanj oil at 0.1 per cent (18.7–60.0%), and Eucalyptus at 0.5 per cent (18.0–58.0%). No grain damage was recorded in 1.0 per cent Neem oil-treated grain, for up to 270 days.
    [Show full text]
  • Rhyzopertha Dominica (Coleoptera: Bostrichidae) Infestation on Seeds of Sorghum Drummondii (Poaceae) in Packages Sold in Retail Stores
    Revista Brasileira de Entomologia 65(2):e20200129, 2021 Rhyzopertha dominica (Coleoptera: Bostrichidae) infestation on seeds of Sorghum drummondii (Poaceae) in packages sold in retail stores David Lopes Teixeira1* , Pedro Guilherme Lemes1, Thiago Gomes dos Santos Braz2, Germano Leão Demolin Leite1 , José Cola Zanuncio3 1Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Laboratório de Entomologia Aplicada à Área Florestal, Montes Claros, MG, Brasil. 2Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Laboratório de Fenotipagem de Plantas, Montes Claros, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Entomologia/BIOAGRO, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Insect damage to stored seeds is a challenge. Rhyzopertha dominica (Fabricius, 1792) (Coleoptera: Bostrichidae) is a Received 28 December 2020 major pest of seeds and grains in the world, but without record in seeds of the sudangrass (Sorghum drummondii Accepted 27 April 2021 (Poaceae)). The objective of this work was to report, for the first time, the occurrence and damage by R. dominica Available online 21 May 2021 in S. drummondii seeds, sold in sealed packages in retail market. Four samples with 500 seeds each and without Associate Editor: Regiane Cristina Bueno adult insects were separated from a package. The initial weight was obtained with a precision scale and the seeds were stored. The number of adult insects, the weight loss and the infestation rate of the seeds were evaluated 60 days later and the average between samples used to extrapolate the damage per package. An adult of R. dominica, Keywords: on average, was obtained for each seven seeds and 54.06% of the seeds were damaged, with an average weight Annual pasture loss of 36.09%.
    [Show full text]
  • Novel Bacteriocyte-Associated Pleomorphic Symbiont of the Grain
    Okude et al. Zoological Letters (2017) 3:13 DOI 10.1186/s40851-017-0073-8 RESEARCH ARTICLE Open Access Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae) Genta Okude1,2*, Ryuichi Koga1, Toshinari Hayashi1,2, Yudai Nishide1,3, Xian-Ying Meng1, Naruo Nikoh4, Akihiro Miyanoshita5 and Takema Fukatsu1,2,6* Abstract Background: The lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrichidae) is a stored-product pest beetle. Early histological studies dating back to 1930s have reported that R. dominica and other bostrichid species possess a pair of oval symbiotic organs, called the bacteriomes, in which the cytoplasm is densely populated by pleomorphic symbiotic bacteria of peculiar rosette-like shape. However, the microbiological nature of the symbiont has remained elusive. Results: Here we investigated the bacterial symbiont of R. dominica using modern molecular, histological, and microscopic techniques. Whole-mount fluorescence in situ hybridization specifically targeting symbiotic bacteria consistently detected paired bacteriomes, in which the cytoplasm was full of pleomorphic bacterial cells, in the abdomen of adults, pupae and larvae, confirming previous histological descriptions. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont constituted a distinct bacterial lineage allied to a variety of insect-associated endosymbiont clades, including Uzinura of diaspidid scales, Walczuchella of giant scales, Brownia of root mealybugs, Sulcia of diverse hemipterans, and Blattabacterium of roaches. The symbiont gene exhibited markedly AT-biased nucleotide composition and significantly accelerated molecular evolution, suggesting degenerative evolution of the symbiont genome. The symbiotic bacteria were detected in oocytes and embryos, confirming continuous host–symbiont association and vertical symbiont transmission in the host life cycle.
    [Show full text]
  • Effect of Host Age on Progeny Production of Theocolax Elegans
    Kasetsart J. (Nat. Sci.) 48 : 587 - 597 (2014) Effect of Host Age on Progeny Production of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) Reared on Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) Bonginkhosi E. Dlamini* and Weerawan Amornsak ABSTRACT Five host ages of Maize weevil, Sitophilus zeamais (Motschulsky) reared on brown rice were examined for progeny production of Theocolax elegans (Westwood). Brown rice kernels infested with S. zeamais were exposed to a mated female of T. elegans after 13, 15, 17, 19 and 21 d following S. zeamais introduction. Host stages were determined by measuring head-capsule widths from all the host ages. There was a signifi cant difference (P < 0.05) in T. elegans progeny production among the different host ages. Total progeny, total female progeny and total male progeny produced by 19-day-old S. zeamais larvae were signifi cantly higher (P < 0.05) compared to the other host ages. Progeny of T. elegans raised on 19-day-old S. zeamais larvae had a higher female to male ratio compared to the other host ages. Sitophilus zeamais larvae after 13, 15–17 and 19–21 d were found to be second, third and fourth instars, respectively. It was concluded that T. elegans can develop on the second, third and fourth instar larvae of S. zeamais. However, 19-day-old (fourth instar) S. zeamais larvae produced more T. elegans progeny with a higher female to male ratio. Keywords: Sitophilus zeamais, Theocolax elegans, host ages, progeny production, parasitoid INTRODUCTION have adverse effects on consumers and long-term residual effect on the environment (Phillips, 1997; Rice and maize are important food Charlet et al., 2002; Flinn and Hagstrum, 2002; crops of many countries of the world and are Bale et al., 2007), while biological control agents grown for grain which is stored because it cannot have no adverse effects on consumers or the be distributed or consumed immediately (Flinn environment (Flinn, 1998; Tefera et al., 2010).
    [Show full text]
  • Hymenoptera: Chalcidoidea) of Morocco
    Graellsia, 77(1): e139 enero-junio 2021 ISSN-L: 0367-5041 https://doi.org/10.3989/graellsia.2021.v77.301 ANNOTATED CHECK-LIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) OF MOROCCO. PART II Khadija Kissayi1,*, Mircea-Dan Mitroiu2 & Latifa Rohi3 1 National School of Forestry, Department of Forest Development, B.P. 511, Avenue Moulay Youssef, Tabriquet, 11 000, Salé, Morocco. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-3494-2250 2 Alexandru Ioan Cuza, University of Iaşi, Faculty of Biology, Research Group on Invertebrate Diversity and Phylogenetics, Bd. Carol I 20A, 700 505, Iaşi, Romania. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-1368-7721 3 University Hassan II, Faculty of Sciences Ben M’sik, Laboratory of ecology and environment, Avenue Driss El Harti, B.P. 7955, Casablanca, 20 800 Morocco. Email: [email protected] / or [email protected] – ORCID iD: https://orcid.org/0000-0002-4180-1117 * Corresponding author: [email protected] ABSTRACT In this second part, we present the subfamily Pteromalinae in Morocco, which includes 86 species belonging to 50 genera. Fifteen genera and 37 species are listed for the first time in the Moroccan fauna, among which 9 have been newly identified, 24 have been found in the bibliography and 4 deposited in natural history museums. An updated list of Moroccan species is given, including their distribution by regions, their general distribution and their hosts. Keywords: Pteromalinae; distribution; hosts; new record; Morocco; Palaearctic Region. RESUMEN Lista comentada de Pteromalidae (Hymenoptera: Chalcidoidea) de Marruecos. Parte II En esta segunda parte, presentamos la subfamilia Pteromalinae en Marruecos, que incluye 86 especies pertenecientes a 50 géneros.
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • Influence of Wheat Cultivar, Temperature, and Theocolax
    INFLUENCE OF WHEAT CULTIVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT BY MICHAEL D. TOEWS Bachelor ofScience Fort Hays State University Hays, Kansas 1995 Submitted to the Faculty ofthe Graduate College ofthe Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May 1998 INFLUENCE OF WHEAT CULTrVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT Thesis Approved: ~~~ ~JJ.~D~~_ /~,) 6L~fN-r , ean ofthe Graduate College n PREFACE The first chapter ofthis thesis is a literature review focused on issues in stored wheat. Also induded in chapter one is a review ofthe lesser grain borer, the parasitoid Theocolax elegans, and interactions among the trophic levels in my research. Subsequent chapters are formal papers representing my M.S. research project and are written in compliance with the publication policies and guidelines for manuscript preparation with the Entomological Society ofAmerica. The completion ofthis degree would not have been possible without the guidance ofmany people. I would like to express my sincere appreciation to my graduate advisor, Dr. Gemt Cuperus, for his assistance and direction. My co-advisor, Dr. Tom Phillips, provided a great deal ofpractical assistance and advice while also housing me in his laboratory space. This research project greatly benefited from the insight offered by Dr. Richard Berberet and Dr. Phillip Mulder. Special appreciation is directed toward Dr. Mark Payton who answered many questions and assisted me with the design and analysis of each experiment. I wish to extend special thanks to Edmond Bonjour for his proofreading and example throughout all phases ofmy degree.
    [Show full text]
  • Electrophysiological and Behavioral Responses of Theocolax Elegans (Westwood)(Hymenoptera: Pteromalidae) to Cereal Grain Volatiles
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 5460819, 8 pages http://dx.doi.org/10.1155/2016/5460819 Research Article Electrophysiological and Behavioral Responses of Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) to Cereal Grain Volatiles Giacinto Salvatore Germinara,1 Antonio De Cristofaro,2 and Giuseppe Rotundo2 1 Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy 2Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy Correspondence should be addressed to Giacinto Salvatore Germinara; [email protected] Received 2 October 2015; Revised 23 December 2015; Accepted 5 January 2016 Academic Editor: Johannes Stokl¨ Copyright © 2016 Giacinto Salvatore Germinara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Volatiles emitted by the host’s food would be the first signals used by parasitoids in the host location process and are thought to play an important role in host habitat location. In this study, the olfactory responses of Theocolax elegans (Westwood), a Pteromalid wasp that parasitizes immature stages of stored-product insect pests developing inside cereal or leguminous grains, to volatiles emitted by healthy wheat grains, their hexane extracts, and different doses of three individual compounds previously identified in cereal grain odors were investigated in Y-tube olfactometer and Petri dish arena behavioral bioassays and electroantennogram recordings. In Y-tube olfactometer bioassays, odors from healthy wheat grains and their hexane extracts were attractive to both sexes of T.
    [Show full text]
  • Grain Borer (Rhyzopertha Dominica) (Coleoptera: Bostrichidae)
    Comp. Biochem. PhysioL Vol. 106B, No. 2, pp. 407-414, 1993 0305-0491/93 $6.00 + 0.00 Printed in Great Britain Pergamon Press Ltd CUTICULAR HYDROCARBONS OF WINGED AND WINGLESS MORPHS OF THE ECTOPARASITOID CHOETOSPILA ELEGANS WESTWOOD (HYMENOPTERA: PTEROMALIDAE) AND ITS HOST, LARVAL LESSER GRAIN BORER (RHYZOPERTHA DOMINICA) (COLEOPTERA: BOSTRICHIDAE) RALPH W. HOWARD* and YONGSHENG LIANGt~ USDA Agriculture Research Service, Grain Marketing Research Laboratory, 1515 College Avenue, Manhattan, KS 66502, U.S.A. (Tel. 913-776-2706; Fax 913-776-2792) tChengdu Grain Storage Research Institute, Ministry of Commerce, 95 Huapalfang St., Chengdu, Sichuan Province, People's Republic of China (Received 9 February 1993; accepted 12 March 1993) Abstract--1. The cuticular hydrocarbons from winged and wingless morphs of Choetospila elegans, a larval ectoparasite of several internal-feeding stored product beetle pests, were characterized. 2. All four morphs share the same cuticular hydrocarbons, with the major components being n-alkanes (C21-C33). 3. The minor components are 3-, ! 1- and 13-methyl branched alkanes and Z-10-monoenes. 4. Two-way analysis of variance (sex and wing morph) shows that males and females have the same profiles, whereas four components showed significant differences between wingtype morphs. 5. Only one of these four hydrocarbons (n-C31) was a major component. 6. The cuticular hydrocarbons of larvae of the lesser grain borer, Rhyzopertha dominica, were also characterized. 7. Although the beetles' major components were the same n-alkanes as those found on the adult parasites, their minor components were different. 8. Thus, the beetle larvae have no alkenes, but instead have 3-, 11-, 13- and 15-methylbranched alkanes, as well as a series of 11,15-dimethylalkanes.
    [Show full text]
  • Efectos Insecticidas Y Bioquímicos De Aceites Esenciales Obtenidos De
    PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE CIENCIAS MAESTRÍA EN CIENCIAS BIOLÓGICAS Efectos insecticidas y bioquímicos de aceites esenciales obtenidos de plantas colombianas sobre el gorgojo rojo de la harina, Tribolium castaneum (Coleoptera: Tenebrionidae) Juan Sebastián Oviedo Sarmiento Pontificia Universidad Javeriana Facultad de ciencias, Departamento de química Bogotá-Colombia 2019 NOTA DE ADVERTENCIA "La Universidad no se hace responsable por los conceptos emitidos por sus alumnos en sus trabajos de tesis. Solo velará por que no se publique nada contrario al dogma y a la moral católica y por que las tesis no contengan ataques personales contra persona alguna, antes bien se vea en ellas el anhelo de buscar la verdad y la justicia". Artículo 23 de la Resolución No13 de julio de 1946 Efectos insecticidas y bioquímicos de aceites esenciales obtenidos de plantas colombianas sobre el gorgojo rojo de la harina, Tribolium castaneum (Coleoptera: Tenebrionidae) Juan Sebastián Oviedo Sarmiento Trabajo de investigación presentado como requisito parcial para optar al título de: Magister en Ciencias Biológicas Director (a): PhD, Química. Juliet Angélica Prieto Rodríguez Línea de Investigación: Química de Productos Naturales Vegetales Grupo de Investigación: Fitoquímica Pontificia Universidad Javeriana Pontificia Universidad Javeriana Facultad de Ciencias, Departamento de Química Bogotá, Colombia 2019 Efectos insecticidas y bioquímicos de aceites esenciales obtenidos de plantas colombianas sobre el gorgojo rojo de la harina, Tribolium castaneum (Coleoptera: Tenebrionidae) Juan Sebastián Oviedo Sarmiento ___________________ Juliet Angélica Prieto R. Química, PhD Directora Efectos insecticidas y bioquímicos de aceites esenciales obtenidos de plantas colombianas sobre el gorgojo rojo de la harina, Tribolium castaneum (Coleoptera: Tenebrionidae) Juan Sebastián Oviedo Sarmiento DEDICATORIA A Don Célimo, para cuando nos volvamos a ver sea un motivo de orgullo y alegría.
    [Show full text]
  • Toxicity of Some Plant Powders to Lesser Grain Borer (Rhyzopertha Dominica (Fab.); Coleoptera: Bostrichidea) Infesting Stored Sorghum
    International Journal of Advanced Academic Research | Sciences, Technology and Engineering | ISSN: 2488-9849 Vol. 5, Issue 12 (December 2019) TOXICITY OF SOME PLANT POWDERS TO LESSER GRAIN BORER (RHYZOPERTHA DOMINICA (FAB.); COLEOPTERA: BOSTRICHIDEA) INFESTING STORED SORGHUM. USMAN, M.1; MAJEED, Q.2; ABDULLAHI, K.3; SOKOTO, M. B.4; MAINASARA, H.5 AND MUSA, A.6 1Biology Department, College of Education (Tech.), Lafiagi, Kwara State, Nigeria. 2Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria. 3Department of Biological Sciences, Federal University Gusau, Zamfara State, Nigeria. 4Department of Crop Science, Usmanu Danfodiyo University Sokoto, Nigeria. 5Department of Science Laboratory Technology, College of Agriculture and animal Sciences, Bakura, Zamfara State, Nigeria. 6Department of Agricultural Science Education, College of Education (Tech.), Lafiagi, Kwara State, Nigeria. ABSTRACT Powders of neem seed Kernel (Azadirachta indica A. JUSS.), bush tea (Hyptis suaveolens L. poit.), Jatropha (Jatropha curcas L.), bitter melon (Momordica charantia L.) and Mahogany (khaya senegalensis Desr.) were applied at 0.5, 1.0. 1.5 and 2.0g per 20g of sorghum grain. Cypermethrin (2.0%) as control check was applied at 0.12g/20g and evaluated for toxicity against Rhyzopertha dominica Fab. on stored sorghum grains. Jatropha leaf, Mahogany stem bark and neem seed kernel powders at all concentrations recorded 76.67% and above mortality of adult R. dominica as cypermethrin. A. indica, J. curcas and K. senegalensis suppressed oviposition and reduced adult emergence of F2, offsprings. Sorghum grain damage and weight loss were highly reduced and so protect by A indica at 0.5g, while J.curcas and K. senegalensis were both effective at 1.0g and 2.0g for grain damage and weight loss prevention respectively up to 150 days of storage.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]