Phd in Agricultural and Environmental Sciences Innovative Protein

Total Page:16

File Type:pdf, Size:1020Kb

Phd in Agricultural and Environmental Sciences Innovative Protein PhD in Agricultural and Environmental Sciences CYCLE XXXII COORDINATOR Prof. Giacomo Pietramellara Innovative protein sources in feed for salmonids: Effects on lipid metabolism, gut microbiota and fillet quality Academic Discipline (SSD) AGR/20 Doctoral Candidate Supervisor Dr. Leonardo Bruni Prof. Giuliana Parisi ___________________ ___________________ Coordinator Prof. Giacomo Pietramellara ____________________ Years 2016/2019 In memory of my father La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli occhi (io dico l'universo), ma non si può intendere se prima non s'impara a intender la lingua, e conoscer i caratteri, ne' quali è scritto Galileo Galilei, Il Saggiatore Table of contents Table of contents................................................................................. 5 Acknowledgements .............................................................................. 7 Summary ........................................................................................... 9 Riassunto .......................................................................................... 11 List of abbreviations ........................................................................... 13 List of figures..................................................................................... 15 List of tables ...................................................................................... 17 List of papers .................................................................................... 19 Introduction ...................................................................................... 21 Aquaculture production .................................................................... 21 Salmonids: anatomy, digestive physiology and lipid metabolism ............23 Animal protein derived from farmed insects ....................................... 25 Effect of diets on fish: gut microbiota................................................. 27 Methodology .............................................................................. 30 Effect of diets on fish: nutritional quality ............................................32 Focus: EPA and DHA shortage ...................................................... 33 Aims of the study .............................................................................. 35 Materials and methods ........................................................................ 37 Ethical statement ............................................................................ 37 Overview of the studies ................................................................... 37 Diets ............................................................................................ 39 Methods ....................................................................................... 43 qPCR and microbiota data analysis and bioinformatics ......................... 44 Statistics ...................................................................................... 45 References ....................................................................................... 47 Papers 1 to 8 .................................................................................... 55 Abstracts in Conference proceedings ................................................... 283 Conclusion ...................................................................................... 287 Outlook ........................................................................................... 289 5 Acknowledgements My PhD project was carried out from 2016 to 2019 mainly in the Aquaculture Group of the Department of Agriculture, Food, Environment and Forestry at the University of Florence (Italy). During these years, I also performed analyses in the Laboratories of the Nutrition Group at the Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo (Norway), of the Development and Reproduction Biology Group, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona (Italy), and of the Food Microbiology Group, Department of Agriculture, Food and Environmental Science, Polytechnic University of Marche, Ancona (Italy). Samplings were carried out at the Gildeskål Research Station in Langholmen, Inndyr (Norway), at the Mach Foundation, San Michele all’Adige, TN (Italy), at the Department of Agricultural, Food, Environmental and Animal Science, University of Udine (Italy), and at the Department of Agricultural, Forest, and Food Sciences, University of Turin (Italy). I am grateful to all those who gave me the opportunity, the support and the knowledge to carry out my work. I would like to thank my supervisor Professor Giuliana Parisi for her meticulous attention and accuracy that she used to guide me. I thank my “second boss” Dr Giulia Secci, for being strict and maternal in both work and personal matters, and my colleagues Yara Husein and Adja Medeiros for being such good lab colleagues and for bringing some exotic relax in the three hectic years. They all helped me whenever necessary in the lab and during drafting. The people I met during these three years at work are many and I apologise for leaving someone behind. First of all, I owe gratitude to Professor Åshild Krogdahl and her big Nutrition Group in Oslo (Trond M. Kortner, Alex Jaramillo, Karina Gajardo, Ellen K. Hage, Kirsti Præsteng, Amr Gamil, Yanxian Li, Jie Wang, Weiwen Zhou, Jintao Liu, Anne Sundby); they helped me through the dark Norwegian days with bright research and they became more than just a working Group. Then, thanks to Prof Ike Olivotto’s Group in Ancona with Arturo Vargas, Matteo Zarantoniello, Basilio Randazzo and all the other numerous people that made me love their molecular biology laboratory. I would also like to thank Dr Filippo Faccenda, Dr Francesca Fava and all their collaborators at the Mach Foundation, Prof Lucia Aquilanti and her microbiology Group in Ancona. I acknowledge the internal reviewers Prof Riccardo Bozzi and Prof Luciana Giovannetti for giving some good advice in the first half of my PhD. I would like to thank the seven colleagues that undertook my same path in the very same moment. We seemed to share frustration, mostly, but in fact it was the step to get satisfaction. Thanks to all my Friends around Europe for being there when I raised my hand, especially during these last three months of permanent lack of concentration. Each of you should be the first one to be mentioned. The Italian group in Oslo 7 definitely helped during my stay with some “mediterraneanity”, food, chat and also help at work: Elia, Giulia, Francesca, Alessandro and Chiara. My long- standing friends: in Firenze Irene, James, Luca, Sgri and Guglielmo made me grow the bonds with my Country; in Berlin Ianne, the creative link between present, past, home and abroad. Then, Beatrice&Daniel and, obviously, Piotr, far away yet so close and present in my life, made me feel part of Europe. Many thanks to my Personal Proofreader and to the people of the “lunch group” for relieving the long days in Firenze! Last but not least, thank you Federico for everything you instilled in me and for having reinforced my scientific method with the right rigour. Finally, I would like to express my gratitude to my relatives, who have always been attentive asking how I was, and to my family, for the patience they had with me. Counting the times in which each of them supported me along all these years would result in an endless list. Quindi grazie mamma, Emi, Lella, Sina, il Tipo e le pupette Ida e Anna. 8 Summary The purpose of aquaculture is to contribute to feed an increasing world population and to become more sustainable. Consequently, the aquafeed sector must adapt to supply more feed with less expensive and more eco-friendly ingredients. Insects have been studied as one of the promising and innovative protein sources. Evidence showed that their production leads to a circular bioeconomy, and generates positive societal externalities. Moreover, insects are considered fairly nutritious as aquafeed ingredients. Administering a new diet to fish rest on the assumption that animal welfare and final eating quality are preserved. The present thesis analyses the effects of feeding the Salmonidae Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) with diets containing the larvae of Hermetia illucens, belonging to the Diptera order. The ultimate goal of the present research is to provide a meaningful insight into the decision making process for feeding and farming in order to optimise the overall production process. To fulfil this ambition, three topics were taken into consideration: • gut microbiota, for its countless functions and widespread impacts that it can have on the hosts; • lipid metabolism, for better understanding the laws behind the lipid constitution in the final product; • final product quality, specifically addressing its fatty acid composition, for the importance of fish fatty acids in human nutrition. The results on gut microbiota of either A. salmon or rainbow trout indicated that microbiota composition is modulated by dietary insect and that it differs depending on sample origin (mucosa or digesta). In addition to changes in composition, microbiota of fish fed diets containing insects was also marked by higher alpha- and beta-diversity. Additionally, mucosa samples tended to show lower alpha-biodiversity in comparison to digesta samples, fact that could be explained by positing that mucosa
Recommended publications
  • USO DEL PROBIÓTICO Shewanella Putrefaciens Pdp11 EN EL CULTIVO DE Solea Senegalensis: IMPLICACIONES SOBRE LA MICROBIOTA INTESTINAL
    FACULTAD DE CIENCIAS DEPARTAMENTO DE MICROBIOLOGÍA USO DEL PROBIÓTICO Shewanella putrefaciens Pdp11 EN EL CULTIVO DE Solea senegalensis: IMPLICACIONES SOBRE LA MICROBIOTA INTESTINAL SILVANA TERESA TAPIA PANIAGUA TESIS DOCTORAL 2015 Directores: Dr. Miguel Ángel Moriñigo Gutiérrez Ilustración: Cecilia Moreno Dra. María del Carmen Balebona Accino AUTOR: Silvana Teresa Tapia Paniagua http://orcid.org/0000-0002-3656-5009 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es FACULTAD DE CIENCIAS DEPARTAMENTO DE MICROBIOLOGÍA USO DEL PROBIÓTICO Shewanella putrefaciens Pdp11 EN EL CULTIVO DE Solea senegalensis: IMPLICACIONES SOBRE LA MICROBIOTA INTESTINAL Memoria presentada por Dña. Silvana Teresa Tapia Paniagua para optar al grado de doctora. Directores: Dr. Miguel Ángel Moriñigo Gutiérrez Dra. María del Carmen Balebona Accino Noviembre, 2015 FACULTAD DE CIENCIAS DEPARTAMENTO DE MICROBIOLOGÍA D. JUAN JOSÉ BORREGO GARCÍA, Catedrático de Microbiología y Director del Departamento de Microbiología de la Facultad de Ciencias de la Universidad de Málaga. INFORMA QUE: La Licenciada Dña. Silvana Teresa Tapia Paniagua ha realizado en los laboratorios de este Departamento el trabajo experimental conducente a la elaboración de la presente memoria de Tesis Doctoral. Y para que así conste, expido el presente informe, Noviembre, 2015 Fdo: Juan José Borrego García Esta Tesis ha sido realizada en el Departamento de Microbiología de la Universidad de Málaga, bajo la dirección de sus directores, el Dr.
    [Show full text]
  • Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig
    animals Article Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig Junrong Li 1,2,† , Shanli Zhu 2,3,†, Zengpeng Lv 3,†, Hongjian Dai 3, Zhe Wang 3, Quanwei Wei 3, Enayatullah Hamdard 3 , Sheeraz Mustafa 3 , Fangxiong Shi 3,* and Yan Fu 1,* 1 College of Animal Science, Zhejiang University, Hangzhou 310058, China; [email protected] 2 College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China; [email protected] 3 College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (Z.L.); [email protected] (H.D.); [email protected] (Z.W.); [email protected] (Q.W.); [email protected] (E.H.); [email protected] (S.M.) * Correspondence: [email protected] (F.S.); [email protected] (Y.F.) † These authors contributed equally to this study. Simple Summary: Saccharin sodium (SS) is one of the commonly used artificial sweeteners (AS) in the food industry, but the mechanisms mediating the physiological effects of sweeteners in the gut-brain axis is still unclear. The aim of this study was to explore the regulatory effect of SS on the microbiota-gut-hypothalamus axis on guinea pigs. We found that SS treatment may alter the growth and glucose metabolism of guinea pigs by activating sweet receptor signaling in the gut and growth hormone-releasing peptide (GHRP) hormone secretion. Besides, SS treatment increased the abundance of Firmicutes and Lactobacillasceae-Lactobacillus in the ileum, and subsequently increased levels of lactic acid and short-chain fatty acids (SCFAs). Adding 1.5 mM SS to drinking water alters the growth of guinea pigs by regulating the microbiota-hypothalamus-gut axis.
    [Show full text]
  • Brevinema Andersonii Gen. Nov., Sp. Nov., An
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1995, p. 78-84 Vol. 45, No. 1 0020-7713/95/$04.00+0 Copyright 0 1995, International Union of Microbiological Societies Brevinema andersonii gen. nov., sp. nov., an Infectious Spirochete Isolated from the Short-Tailed Shrew (Blarina brevicauda) and the White-Footed Mouse (Peromyscus leucopus) D. L. DEFOSSE,'" R. C. JOHNSON,l B. J. PASTER,2 F. E. DEWHIRST,2 AND G. J. FRASER2 Department of Microbiology, University of Minnesota, Minneapolis Minnesota 55455, and Forsyth Dental Center, Boston, Massachusetts 0211 52 A spirochete which infects short-tailed shrews (Blarina brevicauda) and white-footed mice (Peromyscus leucopus) has been shown previously to be ultrastructurally and serologically distinct from other spirochetes. Two of the original isolates from Connecticut and Minnesota and 16 new isolates obtained from shrews captured in Minnesota were characterized phenotypically and genetically in this study. A comparative analysis of the 16s rRNA sequences of two shrew isolates and one mouse isolate and the 16s rRNA sequences of 16 other spirochetes and Escherichia coli revealed that these organisms exhibited low levels of similarity (range of similarity values, 73.9 to 77.8%; average level of similarity, 74.7%). The shrew and mouse isolates which we examined formed a deeply branching subgroup that was clearly distinct from the other genera of spirochetes examined. These and other results indicated that the new spirochetes represent a unique taxon in the order Spirochaetales. Accordingly, we propose that they should be classified as members of a new genus, Brevinema. The three strains of Brevinema which we examined had 16s rRNA sequences that were nearly identical.
    [Show full text]
  • Insect Larvae Meal As a Feed Ingredient for Atlantic Salmon (Salmo Salar): Effects on Intestinal Function, Health, and Microbiota
    Insect larvae meal as a feed ingredient for Atlantic salmon (Salmo salar): Effects on intestinal function, health, and microbiota Mel av insektlarver som ingrediens i fôr til Atlantisk laks (Salmo salar): Effekter på tarmens funksjon, helse og mikrobiota Philosophiae Doctor (PhD) Thesis Yanxian Li Norwegian University of Life Sciences Faculty of Veterinary Medicine Department of Paraclinical Sciences Ås (2021) Thesis number 2021:75 ISSN 1894-6402 ISBN 978-82-575-1851-6 “When you are studying any matter, or considering any philosophy, ask yourself only what are the facts and what is the truth that the facts bear out. Never let yourself be diverted, either by what you wish to believe, or by what you think would have beneficent social effects if it were believed. But look only, and solely, at what are the facts.” —Bertrand Russell TABLE OF CONTENTS Acknowledgements ............................................................................................................................................... 1 List of abbreviations ............................................................................................................................................. 3 Summary ................................................................................................................................................................... 4 Summary in Norwegian (sammendrag) ....................................................................................................... 6 List of papers ..........................................................................................................................................................
    [Show full text]
  • Literature Review
    Genetic diversity and population structure of the intestinal spirochaete Brachyspira pilosicoli Neo Zhi Yu Eugene Bachelor of Science This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2012 School of Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, 6150 Table of Contents Table of Contents Abstract ....................................................................................................................................................... iv Acknowledgements ............................................................................................................................ vii Declaration ............................................................................................................................................. viii CHAPTER 1: LITERATURE REVIEW ................................................................. 1 1.1 GENERAL INTRODUCTION .......................................................................................................... 1 1.1.1 Preface ......................................................................................................................................... 1 1.2 GENERAL DESCRIPTION OF INTESTINAL SPIROCHAETES ......... 2 1.2.1 Introduction to the spirochaetes ................................................................................... 2 1.2.2 Current taxonomy of the family Spirochaetaceae ................................................ 4 1.2.2.1 Borrelia .............................................................................................................................
    [Show full text]
  • Patent (10 ) Patent No
    US010195273B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 195 , 273 B2 Clube (45 ) Date of Patent : Feb . 5 , 2019 ( 54 ) SELECTIVELY ALTERING MICROBIOTA 9 , 113 ,616 B2 8 / 2015 MacDonald et al . 9 ,328 , 156 B2 5 /2016 June et al. FOR IMMUNE MODULATION 9 ,464 , 140 B2 10 / 2016 June et al . 9 ,481 , 728 B2 11 / 2016 June et al . (71 ) Applicant : SNIPR TECHNOLOGIES LIMITED , 9 , 499 ,629 B2 11/ 2016 June et al . London (GB ) 9 , 518 , 123 B2 12 / 2016 June et al. 9 , 540 , 445 B2 1 / 2017 June et al . ( 72 ) Inventor: Jasper Clube, London (GB ) 9 , 701, 964 B2 7 / 2017 Clube et al . 2004 /0096974 A1 5 / 2004 Herron et al . 2013 /0109053 Al 5 / 2013 MacDonald et al . (73 ) Assignee : SNIPR TECHNOLOGIES LIMITED , 2013 /0287748 A 10 / 2013 June et al. London (GB ) 2013 /0288368 Al 10 / 2013 June et al. 2013 /0309258 A1 10 / 2013 June et al . ( * ) Notice : Subject to any disclaimer , the term of this 2014 / 0106449 Al 4 / 2014 June et al . patent is extended or adjusted under 35 2014 / 0370017 A1 12 / 2014 June et al. 2015 / 0050699 A1 2 / 2015 Siksnys et al . U . S . C . 154 (b ) by 0 days . 2015 / 0050729 A1 2 / 2015 June et al. 2015 / 0064138 Al 3 / 2015 Lu et al . (21 ) Appl. No. : 15 / 820 ,296 2015 / 0093822 A1 4 / 2015 June et al. 2015 /0099299 Al 4 / 2015 June et al. ( 22 ) Filed : Nov . 21 , 2017 2015 /0118202 A1 4 / 2015 June et al . 2015 /0125463 A1 * 5 /2015 Cogswell .
    [Show full text]
  • Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico 2 “Dead Zone” 3 4 J
    bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico 2 “Dead Zone” 3 4 J. Cameron Thrash1*, Kiley W. Seitz2, Brett J. Baker2*, Ben Temperton3, Lauren E. Gillies4, 5 Nancy N. Rabalais5,6, Bernard Henrissat7,8,9, and Olivia U. Mason4 6 7 8 1. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA 9 2. Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port 10 Aransas, TX, USA 11 3. School of Biosciences, University of Exeter, Exeter, UK 12 4. Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, 13 FL, USA 14 5. Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, 15 LA, USA 16 6. Louisiana Universities Marine Consortium, Chauvin, LA USA 17 7. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 18 13288 Marseille, France 19 8. INRA, USC 1408 AFMB, F-13288 Marseille, France 20 9. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia 21 22 *Correspondence: 23 JCT [email protected] 24 BJB [email protected] 25 26 27 28 Running title: Decoding microbes of the Dead Zone 29 30 31 Abstract word count: 250 32 Text word count: XXXX 33 34 Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017.
    [Show full text]
  • 2006.01) A61P 31/04 (2006.01) SANTIAGO TORIO, Ana; C/O SNIPR BIOME APS., C12N 15/113 (2010.01) Lerso Parkalle 44, 5.Floor, DK-2100 Copenhagen (DK
    ) ( (51) International Patent Classification: HAABER, Jakob Krause; c/o SNIPR BIOME APS., Ler¬ A61K 38/46 (2006.01) A61P31/00 (2006.01) so Parkalle 44, 5.floor, DK-2100 Copenhagen (DK). DE C12N 9/22 (2006.01) A61P 31/04 (2006.01) SANTIAGO TORIO, Ana; c/o SNIPR BIOME APS., C12N 15/113 (2010.01) Lerso Parkalle 44, 5.floor, DK-2100 Copenhagen (DK). GR0NDAHL, Christian; c/o SNIPR BIOME APS., Lerso (21) International Application Number: Parkalle 44, 5.floor, DK-2100 Copenhagen (DK). CLUBE, PCT/EP20 19/057453 Jasper; c/o SNIPR BIOME APS., Lerso Parkalle 44, (22) International Filing Date: 5.floor, DK-2100 Copenhagen (DK). 25 March 2019 (25.03.2019) (74) Agent: CMS CAMERON MCKENNA NABARO (25) Filing Language: English OLSWANG LLP; CMS Cameron McKenna Nabarro 01- swang LLP, Cannon Place, 78 Cannon Street, London Lon¬ (26) Publication Language: English don EC4N 6AF (GB). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 1804781. 1 25 March 2018 (25.03.2018) GB kind of national protection av ailable) . AE, AG, AL, AM, 1806976.5 28 April 2018 (28.04.2018) GB AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 15/967,484 30 April 2018 (30.04.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: SNIPR BIOME APS. [DK/DK]; Lers DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, Parkalle 44, 5.floor, DK-2100 Copenhagen (DK). HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (72) Inventors: SOMMER, Morten; c/o SNIPR BIOME APS., MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, Lerso Parkalle 44, 5.floor, DK-2100 Copenhagen (DK).
    [Show full text]
  • Hermetia Illucens) Larvae Meal in Seawater Phase Atlantic Salmon (Salmo Salar)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.083899; this version posted May 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Differential Response of Digesta- and Mucosa-Associated Intestinal Microbiota to Dietary Black Soldier Fly (Hermetia illucens) Larvae Meal in Seawater Phase Atlantic Salmon (Salmo salar) Yanxian Li1 * , Leonardo Bruni2 *, Alexander Jaramillo-Torres1, Karina Gajardo1,3, Trond M. Kortner1, and Åshild Krogdahl1 1Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway 2Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy 3Present address: Biomar AS, Havnegata 9, 7010 Trondheim, Norway *These authors contributed equally. Intestinal digesta is commonly used for studying responses of (4) and being a risk factor or a therapeutic intervention of microbiota to dietary shifts, yet evidence is accumulating that it inflammatory bowel disease (5–8). Diet is one of the key represents an incomplete view of the intestinal microbiota. In factors in shaping the intestinal microbiota. While long-term a 16-week seawater feeding trial, Atlantic salmon (Salmo salar) dietary habits have a considerable effect on the structure and were fed either a commercially-relevant reference diet or an in- activity of host intestinal microbiota (9–11), short-term di- sect meal diet containing 15% black soldier fly (Hermetia il- etary change also alters the intestinal microbiota in a rapid lucens) larvae meal. The digesta- and mucosa-associated dis- and reproducible way (12).
    [Show full text]
  • And Mucosa-Associated Intestinal Microbiota to Dietary Black Soldier
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.083899; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. - 1 - 1 Differential Response of Digesta- and Mucosa-Associated Intestinal Microbiota to 2 Dietary Black Soldier Fly (Hermetia illucens) Larvae Meal in Seawater Phase 3 Atlantic Salmon (Salmo salar) 4 5 Yanxian Lia#, Leonardo Brunib, Alexander Jaramillo-Torresa, Karina Gajardoa*, Trond 6 M. Kortnera, Åshild Krogdahla 7 8 aDepartment of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian 9 University of Life Sciences, Oslo, Norway. 10 bDepartment of Agriculture, Food, Environment and Forestry, University of Florence, 11 Firenze, Italy. 12 13 Running Head: Response of Salmon Gut Flora to Dietary Insect Meal 14 15 #Address correspondence to Yanxian Li, [email protected] 16 *Present address: Biomar AS, Havnegata 9, 7010 Trondheim, Norway 17 18 Yanxian Li and Leonardo Bruni contributed equally to this work. Author order was 19 selected based on CRediT (Contributor Roles Taxonomy). 20 21 Word counts: Abstract, 191 words; text, 4919 words bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.083899; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.
    [Show full text]
  • Physiologic and Molecular Studies on Oral Gnaerobic Spirochetes and Procaryotes Found in Blood
    PHYSIOLOGIC AND MOLECULAR STUDIES ON ORAL GNAEROBIC SPIROCHETES AND PROCARYOTES FOUND IN BLOOD Richard McLaughlin Faculty of Dentistry McGill University, Montreal March, 1999 A Thesis Submitted to the Faculty of Graduate Shidies and Research in Partial Fulllllment of the Requirements of the Degree of Doctor of Philosophy O Richard McLaughlin, 1999 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawaON K1AON4 Ottawa ON KI A ON4 Canada Canada Your fik Votre réference Our file Notre rtifdrence The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom7 vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwïse de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. TABLE OF CONTENTS Page Abstract ix Resumé xi Acknowledgments xiii Claim of contribution to knowledge xiv List of figures xvi List of tables xiu List of Abbreviations ni CHAPTER 1. Introduction and Literature Review 1. Morphology of Spirochetes 1. Mucoid Layers .
    [Show full text]
  • Identification and Genome Reconstruction of Abundant Distinct
    Stolze et al. Biotechnol Biofuels (2016) 9:156 DOI 10.1186/s13068-016-0565-3 Biotechnology for Biofuels RESEARCH Open Access Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production‑scale biogas plants Yvonne Stolze1†, Andreas Bremges1,2†, Madis Rumming1,2, Christian Henke1,2, Irena Maus1, Alfred Pühler1, Alexander Sczyrba1,2 and Andreas Schlüter1* Abstract Background: Biofuel production from conversion of biomass is indispensable in the portfolio of renewable ener- gies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. Results: Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermo- philic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the ther- mophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisien- sis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total.
    [Show full text]