Brevier Technical Ceramics
Total Page:16
File Type:pdf, Size:1020Kb
Breviary Technical Ceramics Verband der Keramischen Industrie e.V.: Postfach 1624 95090 Selb Telefon: 09287/808-0 Fax: 09287/70492 Register: VR 93, Amtsgericht Wunsiedel Hauptgeschäftsführer: Dipl.-Betrw. (FH) Ass.jur. Peter Frischholz Telefon: 09287/808-21 E-Mail: [email protected] Verantwortlicher im Sinne des Presserechts im Sinne §7a GjS und §8 Abs.4 MDStV ist Dipl. Betriebswirt (FH) Ass. jur. Peter Frischholz. Nach §28 Abs.3 Bundesdatenschutzgesetz wird der Nutzung oder Übermittlung unserer Daten für Werbezwecke oder für die Markt- und Meinungsforschung widersprochen. Internet-Realisation sopart multimedia Tel.: 09261-20550 Fax: 09261-966497 Internet: www.sopart.net Brevier Technical Ceramics Content 1 Introduction 2 The History of Technical Ceramics 3 Ceramic Materials 3.1 Definitions 3.2 Materials Groups 3.3 Classification 3.4 Material Descriptions 3.4.1 Silicate Ceramics 3.4.1.1 Technical Porcelain 3.4.1.2 Steatite 3.4.1.3 Cordierite 3.4.1.4 Mullite Ceramics 3.4.2 Oxide Ceramics 3.4.2.1 Aluminium oxide 3.4.2.2 Magnesium Oxide 3.4.2.3 Zirconium Oxide 3.4.2.4 Zirconium Oxide Toughend Aluminium Oxide 3.4.2.5 Aluminium Titanate 3.4.2.6 Titanium Dioxide 3.4.2.7 Barium Titanate 3.4.2.8 Lead zirconate titanate 3.4.2.9 Sintered fused silica 3.4.3 Non-oxide Ceramics 3.4.3.1 Carbides 3.4.3.1.1 Silicon carbide 3.4.3.1.2 Boron carbide 3.4.3.2 Nitrides 3.4.3.2.1 Silicon nitride 3.4.3.2.2 SIALONs 3.4.3.2.3 Aluminium Nitride 3.4.4 Special materials 3.4.4.1 Composite fibre-ceramic materials 3.4.4.2 Metal matrix composites 4 From Powder to Part 4.1 Manufacture 4.1.1 Raw Materials and Additives 4.1.2 Body preperation 4.1.3 Forming 4.1.4 From Forming to Firing 4.1.5 Dimensions and Shrinkage 4.1.6 Machining 4.2 Finishing 4.2.1 Hard machining 4.2.2 Surface Characteristics 4.2.2.1 Ground Surfaces 4.2.2.2 Honed surfaces 4.2.2.3 Lapped surfaces 4.2.2.4 Polished surfaces 4.2.3 Metallisation 4.2.4 Glazing and Enamelling (“engobe”) 2 4.2.5 Ceramic Coatings 5 Properties of Technical Ceramics 5.1 General Comparison 5.2 Classification of Useful Properties 5.3 Mechanical properties 5.3.1 Density 5.3.2 Porosity 5.3.3 Strength 5.3.3.1 Bending Strength 5.3.3.2 Compression strength 5.3.3.3 Tensile strength 5.3.3.4 Weibull modulus 5.3.3.5 Stress Intensity Factor 5.3.4 Elastic Properties 5.3.4.1 Elastic modulus 5.3.4.2 Transverse contraction 5.3.4.3 Shear modulus 5.3.4.4 Crack Growth 5.3.4.5 Creep properties 5.3.5 Hardness 5.4 Thermal Properties 5.4.1 Thermal conductivity 5.4.2 Coefficient of linear expansion 5.4.3 Thermal Shock Resistance 5.5 Electrical Properties 5.5.1 Electrical Resistance 5.5.2 Permittivity 5.5.3 Dielectric Loss Factor 5.6 Corrosion 5.6.1 Corrosion mechanisms 5.6.1.1 Surface corrosion and selective corrosion 5.6.1.2 Defect Site Corrosion 5.6.1.3 Intergranular Corrosion 5.6.2 Corrosion Types 5.6.2.1 Liquid phase corrosion 5.6.2.1.1 Acids 5.6.2.1.2 Alkaline Solutions and Molten Alkalis 5.6.2.1.3 Water 5.6.2.2 Corrosion From Melts 5.6.2.2.1 Non-metallic melts 5.6.2.2.2 Molten metals 5.6.2.3 Corrosion by (Hot) Gases 5.6.3 The Determination of Corrosion 5.6.3.1 Liquid phase corrosion 5.6.3.1.1 Test conditions 5.6.3.1.2 Determining the Level of Corrosion 5.6.3.2 Corrosion in the Melt 5.6.3.2.1 Test conditions 5.6.3.2.2 Determining the level of corrosion 5.6.3.3 Hot Gas Corrosion 5.6.4 Concluding Comments 5.7 Wear 5.7.1 Tribology 5.7.1.1 Friction 5.7.1.2 Tribological systems 5.7.2 Types of wear 5.7.3 Abrasion mechanisms 5.7.4 Stresses and their effects 5.7.5 Measurements of Abrasion 5.7.6 Special examples 5.7.6.1 The measurement of abrasion in model systems 3 5.7.6.2 Protection against abrasion 5.7.6.3 Cutting 6 Areas of Application 6.1 Mechanical Engineering 6.2 High-temperature Technologies 6.3 Electrical Engineering 6.4 Electronics 6.5 Medical Technology 7 Ceramics-appropriate design 7.1 The Design Sequence 7.2 Design Notes 7.2.1 Influence of Material Properties 7.2.2 Influence of the Forming Process 7.2.3 Modular Design 7.3 Cost-Effectiveness 7.3.1 Component Costs in Principle 7.3.2 Component Costs in Mass Production 7.3.3 Cost-Effectiveness in the System 7.4 Design for Strength 7.5 The Design of Parts 7.5.1 Basic Rules 7.5.2 Ways to Improve Loading Capacity 7.5.3 Examples 7.5.3.1 Keep Shapes Simple 7.5.3.2 Avoid Stress Concentrations 7.5.3.3 Minimise Tensile Stresses 7.5.3.4 Avoid Material Accumulations 7.5.3.5 Minimise Final Finishing 7.5.3.6 Manufacturing-Specific Details 7.6 Summary of Important Guiding Principles 8 Joining and Bonding Techniques 8.1 Principles 8.2 Methods 8.2.1 Friction and Interlock-Based Joints 8.2.1.1 Avoid Stress Concentrations 8.2.1.2 Prioritise Compressive Stress 8.2.1.3 Avoid Impact Stress 8.2.1.4 Bear Thermal Expansion in Mind 8.2.1.5 Careful Introduction of Force 8.2.1.6 Adapt Force Transfer 8.2.2 Potting with Plastic 8.2.3 Gluing 8.2.3.1 Types of Glue 8.2.3.2 Example: Torque Transmission 8.2.3.3 Further Applications 8.2.4 Soldering 8.2.4.1 Soft Soldering 8.2.4.2 Hard Soldering 8.2.4.3 Active Soldering 8.2.4.4 Measures to be Taken 9 Quality 9.1 Planning Quality 9.2 Producing Quality 9.3 Managing Quality 9.4 Tests (Q-Certificates) 9.5 Quality Control Techniques 10 Appendix 4 10.1 Bonding Types and Strength 10.2 Materials Comparison 10.3 General Tolerances for Dimensions and Shapes 10.3.1 Tolerances and Function 10.3.2 General Dimensional Tolerances 10.3.2.1 "As Fired" Ceramic 10.3.2.2 Hard Machined Ceramic 10.3.3 General Shape Tolerances 10.3.3.1 "As Fired" Ceramic 10.3.3.2 Hard Machined Ceramic 10.3.4 Practical Examples of Current Technology 10.3.4.1 Abrasion Protection Plates 10.3.4.2 Plates as Kiln Furniture 10.3.4.3 Transport Rollers for Roller Kilns 10.4 Agreeing Test Procedures 10.5 Measurement Procedures 10.5.1 Bending Strength 10.5.1.1 3-point Bending Test 10.5.1.2 4-Point Bending Test 10.5.2 Hardness 10.5.3 Elastic Modulus 10.5.4 Surfaces 10.5.4.1 Definitions 10.5.4.2 Hard Machined Surfaces 10.5.4.3 Material ratios Mr 10.5.4.4 Roughness profiles 10.6 Quality 10.6.1 Statistical Assessment – Summary 10.6.2 Statistical Methods 10.6.2.1 Computation Magnitudes 10.6.2.2 Control Cards 10.6.2.3 Process Flow Analysis 10.6.3 Statistical Process Control 10.7 Standards Relevant to Technical Ceramics 10.7.1 General 10.7.2 Test Procedures for Powders 10.7.3 Test Procedures for Monolithic Ceramics 10.7.4 Test Procedures for Composite Materials 10.7.5 Test Procedures for Layers 10.7.6 Application Standards 10.7.7 Other Standards Quoted 10.8 Unit Conversion 10.9 Tables of Properties 10.9.1 Materials According to DIN EN 60 672-3 10.9.1.1 Alkali - Aluminium Silicates (C 100) 10.9.1.2 Magnesium Silicates (C 200) 10.9.1.3 Titanates (C 300) 10.9.1.4 Alkaline Earth – Aluminium Silicates (C 400) 10.9.1.5 Aluminium and Magnesium Silicates (C 500) 10.9.1.6 Mullite (C 600) and Aluminium Oxide (C 700) 10.9.1.7 Other Oxides (C 800) and Non-Oxides (C 900) 10.9.2 Non-classified high-performance materials 10.9.2.1 Oxide Ceramics 10.9.2.2 Carbides 10.9.2.3 Nitrides 10.9.2.4 Other Materials 10.9.3 Summary of Chemical Resistance 11 Bibliography 12 Register 5 Science and technology are in continuous development. This leads to ever more demanding and intelligent technology. The demands made on modern materials are increasing with the same dynamism. The features that are demanded include greater strengths for material-saving constructions, lighter components for energy saving, higher quality for more security and longer service life. After all, cost-effectiveness plays a crucial role. Ceramic materials have in the past made an important contribution to this process of innovation. Requirements for the successful application of ceramics include constructions that are appropriate to the materials and the manufacturing processes, as well as appropriate applications. The point is not that common materials can be displaced, but rather that customised products allow completely new solutions. The road to the ceramic component In order to make intelligent and effective use of the properties of ceramics, it is not sufficient simply to take an existing structural component and to replace it in every detail with a ceramic part.