Valpos As Efficient Catalysts for Glycerol Conversion to Methanol

Total Page:16

File Type:pdf, Size:1020Kb

Valpos As Efficient Catalysts for Glycerol Conversion to Methanol catalysts Article VAlPOs as Efficient Catalysts for Glycerol Conversion to Methanol 1, , 2, 2 2 Gheorghit, a Mitran * y, Florentina Neat, u y,S, tefan Neat, u , Mihaela M. Trandafir and Mihaela Florea 1,2,* 1 Department of Organic Chemistry, University of Bucharest, Biochemistry & Catalysis, Faculty of Chemistry, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania 2 National Institute of Material Physics, 405A Atomi¸stilor, P.O. Box MG 7, 077125 Măgurele, Romania; florentina.neatu@infim.ro (F.N.); stefan.neatu@infim.ro (S, .N.); mihaela.trandafir@infim.ro (M.M.T.) * Correspondence: [email protected] (G.M.); mihaela.florea@infim.ro (M.F.) Authors with equal contribution. y Received: 24 April 2020; Accepted: 28 June 2020; Published: 1 July 2020 Abstract: The catalytic activity of a series of vanadium aluminophosphates catalysts prepared by sol-gel method followed by combustion of the obtained gel was evaluated in glycerol conversion towards methanol. The materials were characterized by several techniques such as X-ray diffraction (XRD), UV-vis, Fourier-transform infrared (FTIR), Raman and X-ray photoelectron (XPS) spectroscopies. The amount of vanadium incorporated in aluminophosphates framework played an important role in the catalytic activity, while in the products distribution the key role is played by the vanadium oxidation state on the surface. The sample that contains a large amount of V4+ has the highest selectivity towards methanol. On the sample with the lowest vanadium loading the oxidation path to dihydroxyacetone is predominant. The catalyst with higher content of tetrahedral isolated vanadium species, such V5APO, is less active in breaking the C–C bonds in the glycerol molecule than the one containing polymeric species. Keywords: vanadium aluminophosphates; glycerol oxidation; glycerol dehydration; methanol synthesis; dihydroxyacetone; acetaldehyde 1. Introduction The conversion of glycerol in added value products has been the subject of extensive research due to its excess in the world market, whereas approximately 100 kg of glycerol is produced for each ton of biodiesel [1]. Glycerol is very cheap and could be harnessed by dehydration, esterification, oxidation, hydrogenolysis, reforming and polymerization, and, therefore, glycerol is expected to become a renewable building block chemical to be efficiently converted into various more added value products. The selective oxidation of glycerol to high-value chemicals with molecular oxygen has been extensively studied [2–5]. The catalytic glycerol oxidation occurs by a complex mechanism and conducts to many products such as formic acid [6], acrolein [7], acrylic acid [8,9], glycolic acid [10], glyoxylic acid, glyceric acid [11], glyceraldehyde and dihydroxyacetone [12,13] (see Scheme1)[ 6]. These products have many uses in the chemical industry, e.g., dihydroxyacetone can be used in cosmetics industry; glyceric acid for detergents [14]; formic acid is used as a hydrogen carrier [15]; and acrylic acid is used mainly in the production of acrylic esters and resins used in coatings and adhesives [16]. Catalysts 2020, 10, 728; doi:10.3390/catal10070728 www.mdpi.com/journal/catalysts Catalysts 2020, 10, 728 2 of 20 Catalysts 2020, 10, x FOR PEER REVIEW 2 of 23 SchemeScheme 1. 1.Parallel Parallel and and series series reaction reaction network network in in glycerol glycerol transformation. transformation. Therefore,Therefore, the the glycerol glycerol oxidation oxidation has has been been extensively extensively studied studied over over numerous numerous catalysts catalysts yielding yielding variousvarious byproductsbyproducts [3[3,17,18].,17,18]. WangWang etet al.al. [19[19]] obtained,obtained, mainly,mainly, acroleinacrolein andand acetaldehyde acetaldehyde overover vanadiumvanadium phosphatephosphate oxides,oxides, Ning et et al. al. [20] [20 ]repo reportedrted the the selective selective oxidation oxidation of ofglycerol glycerol to 1,3- to 1,3-dihydroxyacetonedihydroxyacetone over over Pt cataly Pt catalystssts promoted promoted with bismuth with bismuth and antimony, and antimony, Hamid Hamidet al. [21] et observed al. [21] observeda superior a superiorselectivity selectivity to glyceric to acid glyceric using acid nanosized using nanosized Pd-based Pd-based catalysts catalystssupported supported on activated on activatedcarbon (Ac), carbon hydrotalcite (Ac), hydrotalcite (HTc) and (HTc)activated and carbon–hydrotalcite activated carbon–hydrotalcite composite (Ac–HTc). composite Glyceric (Ac–HTc). acid Glycericwas also acid obtained was also over obtained CuNiAl over hydrotalcites CuNiAl hydrotalcites (HTs) [22], (HTs) while [22 acrylic], while acid acrylic was acid mainly was a mainly product a productobtained obtained by gas-phase by gas-phase oxidation oxidation of glycerol of glycerol over over W–V–Nb–O W–V–Nb–O complex complex metal metal oxides oxides having having a astructure structure like like that that of orthorhombicorthorhombic MoMo33VOx [[23].23]. The successfulsuccessful employmentemployment ofof didifferentfferent ceriaceria nanocatalystsnanocatalysts for for glycerol glycerol oxidation oxidation reaction reaction has has been been also also demonstrated demonstrated [ 4[4].]. The The authors authors concluded concluded thatthat the the presence presence of of reduced reduced Ce Ce3+3+ speciesspecies and,and, also,also, thethe interactionsinteractions ofofthe the reactants reactants with with di differentfferent crystallographiccrystallographic surfaces surfaces play play a a major major role role in in the the catalytic catalytic activity activity of of these these materials materials [4 [4].]. However,However, there there are are several several identified identified limitations limitations such such as: as: the the catalysts catalysts su sufferffer deactivations, deactivations, make make useuse of of alkaline alkaline conditions conditions and sometimesand sometimes lead to poorlead selectivitiesto poor selectivities [2,24,25]. Therefore, [2,24,25]. the Therefore, development the ofdevelopment highly active of and highly selective active heterogeneous and selective hetero catalystsgeneous for base-free catalysts glycerol for base-free oxidation glycerol remains oxidation a big challengeremains a for big the challenge scientific for community. the scientific community. AA much much more more interesting, interesting, but but more more challenging, challenging, alternative alternative is to is convert to convert glycerol glycerol to methanol, to methanol, due todue the to fact the that fact methanol that methanol is a major is a raw major material raw formaterial the production for the production of various of added various value added chemicals, value thereforechemicals, its therefore production its fromproduction glycerol from attracted glycerol the researcher’sattracted the interest.researcher’s Commercially, interest. Commercially, glycerol can beglycerol converted can tobe methanol converted by to a two-step methanol process: by a two- catalyticstep transformationprocess: catalytic of crudetransformation glycerol to of syngas crude (Hglycerol2/CO), followedto syngas by(H2 the/CO), methanol followed synthesis by the methanol process. synthesi However,s process. there are However, studies there demonstrating are studies thatdemonstrating the direct glycerol that the transformation direct glycerol to transformation methanol is possible. to methanol Forinstance, is possible. glycerol For instance, can be directlyglycerol convertedcan be directly to methanol converted in hydrogen to methanol with high in selectivityhydrogen overwith a Pdhigh/Fe 2selectivityO3 co-precipitated over a Pd/Fe catalyst2O [326 co-]. Furthermore,precipitated Hutchingscatalyst [26]. et al.Furthermore, [27] showed Hutchings that crude et glycerol al. [27] can showed be reacted that crude with water glycerol over can very be simplereacted basic with or water redox over oxide very catalysts, simple basic such asor MgOredox or oxide CeO catalysts,2, to produce such methanol as MgO or in CeO high2, yieldsto produce in a one-stepmethanol low-pressure in high yields process. in a one-step low-pressure process. HeterogeneousHeterogeneous catalysts catalysts based based on on vanadium vanadium oxides oxides are are well well known known as as active active catalysts catalysts for for the the oxidationoxidation processprocess due due to to their their multiple multiple oxidation oxidation states. states. SelectiveSelective oxidationoxidation reactionsreactions overover these these catalystscatalysts are are influenced influenced by by many many factors factors such such as (i) as lattice (i) lattice oxygen, oxygen, (ii) the (ii) strength the strength of vanadium-oxygen of vanadium- bonds,oxygen (iii) bonds, environment (iii) environment of oxygen atoms,of oxygen (iv) redoxatoms, properties (iv) redox of properties vanadium of and vanadium (v) multi-functionality and (v) multi- offunctionality the active sites of the [28 ].active sites [28]. Meanwhile,Meanwhile, microporousmicroporous materials,materials, aluminophosphatealuminophosphate frameworksframeworks (AlPO),(AlPO), havehave acquiredacquired attentionattention lately lately due due to to their their structural structural and and compositional compositional diversity diversity being being analogous analogous with with zeolites zeolites and and following their catalytic applicability trend, a multitude of metals have been placed in neutral AlPO framework. VAlPO-5 and VAlPO-11 were the most studied aluminophosphates molecular
Recommended publications
  • 1 Penetration of a Glass-Faced Transparent
    Int. J. Impact Engng., 36 (1) pp. 147-153 (2009) PENETRATION OF A GLASS-FACED TRANSPARENT ELASTOMERIC RESIN BY A LEAD-ANTIMONY-CORED BULLET P J Hazell1*, M R Edwards1, H Longstaff1 and J Erskine2 1Cranfield University, Defence College of Management and Technology, Shrivenham, Oxfordshire, SN6 8LA, United Kingdom. 2Hamilton Erskine Ltd, 17 Moss Road, Ballygowan, Co. Down, BT23 6JQ, Northern Ireland. * Corresponding author SUMMARY The penetration of the lead antimony-cored 7.62 mm × 51 mm bullet into a glass-faced polyurethane elastomeric polymer resin has been studied. The resulting craters in the resin contained elongated bullet core material that had a significant amount of porosity. A simple linear viscoelastic model was applied to AUTODYN- 2D to describe the behaviour of the resin and numerical results of the penetration mechanism and depth-of-penetration appeared to match experimental observations well. Analysis of the high-speed photography and a numerical model of this bullet penetrating a viscoelastic polymer showed that during the initial stages of penetration, the projectile is essentially turned inside-out. Furthermore, the shape of the cavity was defined by the elastic relaxation of the polymer that led to compression of the core material. A weight analysis of the penetrated materials showed that using a thicker tile of glass resulted in better ballistic performance. Keywords: lead-antimony-cored bullet, penetration mechanisms, elastomeric resin, transparent armour, numerical modelling. 1 Int. J. Impact Engng., 36 (1) pp. 147-153 (2009) INTRODUCTION Armour systems usually consist of a hard disrupting face and some kind of absorbing element behind. The purpose of the disruptor is to induce fragmentation in the projectile or induce erosion thereby redirecting and dispersing the kinetic energy.
    [Show full text]
  • Inhibition of Neuroinflammatory Nitric Oxide Signaling Suppresses Glycation and Prevents Neuronal Dysfunction in Mouse Prion Disease
    Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease Julie-Myrtille Bourgognona, Jereme G. Spiersb, Sue W. Robinsonc, Hannah Scheiblichd, Paul Glynnc, Catharine Ortorie, Sophie J. Bradleyf, Andrew B. Tobinf, and Joern R. Steinertg,1 aCentre for Immunobiology, University of Glasgow, Glasgow, G12 8TA, United Kingdom; bDepartment of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Melbourne, Australia; cMedical Research Council Toxicology Unit, University of Leicester, Leicester, LE1 9HN, United Kingdom; dDepartment of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn, Bonn 53127, Germany; eSchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; fCentre for Translational Pharmacology, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; and gSchool of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom Edited by Juan Carlos Saez, University of Valparaiso, Valparaiso, Chile, and approved January 22, 2021 (received for review May 14, 2020) Several neurodegenerative diseases associated with protein mis- system where it is synthesized by NO synthases (neuronal NOS folding (Alzheimer’s and Parkinson’s disease) exhibit oxidative and [nNOS], inducible NOS [iNOS], and endothelial NOS [eNOS]). nitrergic stress following initiation of neuroinflammatory path- Excessive NO production
    [Show full text]
  • Nomination Background: Dihydroxyacetone (CASRN: 96-26-4)
    SUMMARY OF DATA FOR CHEMICAL SELECTION Dihydroxyacetone 96-26-4 BASIS OF NOMINATION TO THE CSWG As consumers have become more mindful of the hazards ofa "healthy tan," more individuals have turned to sunless tanning. Sunless tanning products represent about 10% of the $400 million market for suntan preparations, and these products are the fastest growing segment of the suntanning preparation market. All sunless tanners contain dihydroxyacetone. Information on the toxicity of dihydroxyacetone appears contradictory. A mutagen that induces DNA strand breaks, dihydroxyacetone is also an intermediate in carbohydrate metabolism in higher plants and animals. Such contradictions are not unprecedented, and it has been suggested that autooxidation of cx-hydroxycarbonyl compounds including reducing sugars may play a role in diseases associated with age and diabetes (Morita, 1991 ). When dihydroxyacetone was applied to the skin of mice, no carcinogenic effect was observed. It is unclear whether this negative response was caused by a failure ofthe compound to penetrate the skin. If so, extrapolating the dermal results to other routes of exposure would not be appropriate. NCI is nominating dihydroxyacetone to the NTP for dermal penetration studies in rats and mice to determine whether dihydroxyacetone can penetrate the skin. This information will clarify whether additional testing of dihydroxyacetone is warranted. Dihydroxyacetone 96-26-4 CHEMICAL IDENTIFICATION CAS Registry Number: 96-26-4 Chemical Abstracts Service Name: 1,3-Dihydroxy-2-propanone (9CI; 8CI) Synonyms and Tradenames: 1,3-Dihydroxydimethyl ketone; Chromelin; CTF A 00816; Dihyxal; Otan; Oxantin; Oxatone; Soleal; Triulose; Viticolor Structural Class: Ketone, ketotriose compound Structure. Molecular Formula. and Molecular Weight: 0 II /c"-.
    [Show full text]
  • The Pichia Pastoris Dihydroxyacetone Kinase Is a PTS1-Containing, but Cytosolic, Protein That Is Essential for Growth on Methanol
    . 14: 759–771 (1998) The Pichia pastoris Dihydroxyacetone Kinase is a PTS1-containing, but Cytosolic, Protein that is Essential for Growth on Methanol GEORG H. LU} ERS†, RAJ ADVANI, THIBAUT WENZEL AND SURESH SUBRAMANI* Department of Biology, University of California at San Diego, La Jolla, California 92093–0322, U.S.A. Received 11 November 1997; accepted 27 January 1998 Dihydroxyacetone kinase (DAK) is essential for methanol assimilation in methylotrophic yeasts. We have cloned the DAK gene from Pichia pastoris by functional complementation of a mutant that was unable to grow on methanol. An open reading frame of 1824 bp was identified that encodes a 65·3 kDa protein with high homology to DAK from Saccharomyces cerevisiae. Although DAK from P. pastoris contained a C-terminal tripeptide, TKL, which we showed can act as a peroxisomal targeting signal when fused to the green fluorescent protein, the enzyme was primarily cytosolic. The TKL tripeptide was not required for the biochemical function of DAK because a deletion construct lacking the DNA encoding this tripeptide was able to complement the P. pastoris dakÄ mutant. Peroxisomes, which are essential for growth of P. pastoris on methanol, were present in the dakÄ mutant and the import of peroxisomal proteins was not disturbed. The dakÄ mutant grew at normal rates on glycerol and oleate media. However, unlike the wild-type cells, the dakÄ mutant was unable to grow on methanol as the sole carbon source but was able to grow on dihydroxyacetone at a much slower rate. The metabolic pathway explaining the reduced growth rate of the dakÄ mutant on dihydroxyacetone is discussed.
    [Show full text]
  • Matrix Scientific PO BOX 25067 COLUMBIA, SC 29224-5067 Telephone: 803-788-9494 Fax: 803-788-9419 SAFETY DATA SHEET Transportation Emergency: 3E Co
    Matrix Scientific PO BOX 25067 COLUMBIA, SC 29224-5067 Telephone: 803-788-9494 Fax: 803-788-9419 SAFETY DATA SHEET Transportation Emergency: 3E Co. (5025) 800-451-8346 1. Product Identification Name 1,3-Dihydroxyacetone Catalog Number 119322 CAS Registry Number [96-26-4] Company Matrix Scientific Physical Address 131 Pontiac Business Center Drive Elgin, SC 29045 USA Telephone/Fax (803)788-9494/(803)788-9419 2. Hazard Identification Hazardous Ingredients 1,3-Dihydroxyacetone GHS label elements, including precautionary statements Pictogram Signal word WARNING Hazard statement(s) H317 H317 May cause an allergic skin reaction H319 H319 Causes serious eye irritation Precautionary statement(s) P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+351+338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do - continue rinsing. P411 Store at temperatures not exceeding 0°C 3. Composition, Information or Ingredients Name 1,3-Dihydroxyacetone 4. First Aid Measures 1 Last Updated 11/20/2018 Eye Contact: Check for and remove any contact lenses. Immediately flush eyes with clean, running water for at least 15 minutes while keeping eyes open. Cool water may be used. Seek medical attention. Skin Contact: After contact with skin, wash with generous quantities of running water. Gently and thoroughly wash affected area with running water and non- abrasive soap. Cool water may be used. Cover the affected area with emollient. Seek medical attention. Wash any contaminated clothing prior to reusing. Inhalation: Remove the victim from the source of exposure to fresh, uncontaminated air. If victim's breathing is difficult, administer oxygen.
    [Show full text]
  • 09 S Bandyopadhyay.Pmd
    ARTICLE TRANSPARENT CERAMICS S. BANDYOPADHYAY* AND R. HALDER* Transmission Through Material ight is electromagnetic radiation (EMR) that consists of a broad spectrum of wavelengths ranging from Lultraviolet (UV) to infrared (IR). So far as the sense of sight in human eyes is concerned, light is categorized into two groups- the visible part of EMR with wavelength from 400-700 nm that enables human-being to see. EM spectrum shorter (UV) or longer (IR) than the wave lengths of the visible range is invisible. When light interact any material medium, it may undergo several changes along its path, resulting in several optical phenomena to take Fig. 1. Interaction of light with matter place. The electronic structure, surface property and Transparent Materials in Common Practice microstructure of the medium guide these optical phenomena. The incident energy may partly or fully be The most common experience on transparent medium lost in certain cases. Light may bounce off any object for us is the natural atmosphere (gaseous) or clean water surface (reflection). Photons of appropriate energy may (liquid). Besides the natural resources, artificially made spontaneously be emitted out when electrons return to the silicate-based super cooled liquid with short ranged ground state after being promoted to the excited state by structure, called glass is the most widely used transparent absorbing photons of different incoming frequency materials those pass large quantities of light through them (luminescence). The incident energy may also scatter with little absorption and reflection. Because of its superior because of variation of refractive index within the medium, transmission property in the visible range glass is therefore usually resulted from the presence of impurities, defects, universally used as structural components like door and pores and inhomogeneities in the medium.
    [Show full text]
  • Combustion Synthesis of Aluminum Oxynitride in Loose Powder Beds
    materials Article Combustion Synthesis of Aluminum Oxynitride in Loose Powder Beds Alan Wilma ´nski*, Magdalena Zarzecka-Napierała and Zbigniew P˛edzich* Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; [email protected] * Correspondence: [email protected] (A.W.); [email protected] (Z.P.) Abstract: This paper describes combusting loose powder beds of mixtures of aluminum metal powders and aluminum oxide powders with various grain sizes under various nitrogen pressure. The synthesis conditions required at least 20/80 weight ratio of aluminum metal powder to alumina powder in the mix to reach approximately 80 wt% of γ-AlON in the products. Finely ground fused white alumina with a mean grain size of 5 µm was sufficient to achieve results similar to very fine alumina with 0.3 µm grains. A lower nitrogen pressure of 1 MPa provided good results, allowing a less robust apparatus to be used. The salt-assisted combustion synthesis upon addition of 10 wt% of ammonium nitrite resulted in a slight increase in product yield and allowed lower aluminum metal powder content in mixes to be ignited. Increasing the charge mass five times resulted in a very similar γ-AlON yield, providing a promising technology for scaling up. Synthesis in loose powder beds could be utilized for effective production of relatively cheap and uniform AlON powder, which could be easily prepared for forming and sintering without intensive grounding and milling, which usually introduce serious contamination. Keywords: aluminum oxynitride; combustion synthesis; salt-assisted; SHS; AlON Citation: Wilma´nski,A.; Zarzecka-Napierała, M.; P˛edzich,Z.
    [Show full text]
  • Acetone Thermally Treated in Different Solvents Joji Okumura, Tetsuya Yanai, Izumi Yajima and Kazuo Hayashi Kawasaki Research Center, T
    Agric. Biol. Chem., 54 (7), 1631-1638, 1990 1631 Volatile Products Formed from L-Cysteine and Dihydroxy- acetone Thermally Treated in Different Solvents Joji Okumura, Tetsuya Yanai, Izumi Yajima and Kazuo Hayashi Kawasaki Research Center, T. Hasegawa Co., Ltd., 335 Kariyado, Nakahara-ku, Kawasaki 211, Japan Received November 21, 1989 Equimolecular amounts of L-cysteine and dihydroxyacetone were heated at 110°C for 3hr in different solvent systems such as deionized water, glycerine, or triglyceride. The resulting mixtures were vacuum steam-distilled and each distillate was extracted with ethyl ether. The volatiles in the ether extracts were analyzed by gas chromatographyand gas chromatograph\-massspectrometry. Differences in the quality and quantity of volatiles formed in the systems were observed. Pyrazines, thiazoles, thiophenes, and someother sulfur-containing compounds wereidentified in the volatiles. Dimethylpyrazines were formed as major volatiles in the glycerine and triglyceride systems but were minor in the water system. 2-Acetylthiazole in the triglyceride system and 2-acetylthiophene in the glycerine system were secondary abundant products. In the water system, l-mercapto-2-propanone was found as a major volatile compound, and thiophenes as the next dominants. The Maillard reaction is significant in the sugar alcohols, oils and fats, or their mixtures formation of flavors from various heated were used for various applications. It has been foods. In the flavor industry, the Maillard observed in some cases that the quality of reaction
    [Show full text]
  • Influence of Battery Power Setting on Carbonyl Emissions from Electronic Cigarettes
    Tobacco Induced Diseases Short Report Influence of battery power setting on carbonyl emissions from electronic cigarettes Zuzana Zelinkova1, Thomas Wenzl1 ABSTRACT INTRODUCTION Although e-cigarettes share common features such as power units, heating elements and e-liquids, the variability in design and possibility for AFFILIATION customization represent potential risks for consumers. A main health concern is 1 Joint Research Centre, European Commission, Geel, the exposure to carbonyl compounds, which are formed from the main components Belgium of e-liquids, propylene glycol and glycerol, through thermal decomposition. Levels CORRESPONDENCE TO of carbonyl emissions in e-cigarette aerosols depend, amongst others, on the Thomas Wenzl. Joint Research power supplied to the coil. Thus, e-cigarettes with adjustable power outputs Centre, European Commission, Retieseweg 111, B-2440 Geel, might lead to high exposures to carbonyls if the users increase the power output Belgium. E-mail: Thomas. excessively. The aim of this work was to elucidate the generation of carbonyls in [email protected] relation to undue battery power setting. ORCID ID: https://orcid. org/0000-0003-2017-3788 METHODS Carbonyl emissions were generated by two modular e-cigarettes equipped with two atomizers containing coils of different resistance following the ISO KEYWORDS emission, electronic 20768:2018 method. The battery power output was increased from the lower cigarettes, vaping, carbonyls, wattage level to above the power range recommended by the producer. Carbonyls power setting were trapped by a 2,4-dinitrophenylhydrazine (DNPH) solution and analysed by Received: 25 June 2020 LC-MS/MS. Revised: 22 July 2020 Accepted: 14 August 2020 RESULTS The amount of carbonyl emissions increased with increasing power setting.
    [Show full text]
  • Transparent Ballistic Armour Ceramics. Recent Advances and Issues to Be Overcome
    Transparent ballistic armour ceramics. Recent advances and issues to be overcome Felipe Orgaz Instituto de Ceramica y Vidrio, CSIC, Spain Transparent armour is a system designed to be -Transparent ceramics offer significant ballistic optically transparent to support dynamic protection in relation to conventional glass/plastic fragmentation when subjected to the high strain systems. A few companies produce this kind of rates produced by ballistic impacts. They are mainly products: Surmet (ALON® technology), Armorline used to protect vehicle occupants from terrorist (Spinel), Saint Gobain Group (Sapphire), Technology actions and other hostile conflicts, as visors for non- Assessment and Transfer (TA&T) (Spinel). For combat use like riot control or explosive actions, etc. technology transfer: Fraunhofer Institut (IKTS). Light weight, small thickness, low optical distortion, compatibility with night vision equipment and multi Some issues must be overcome: commercial hit capability are needed to defeat armour piercing availability, very high cost raw materials, high ammunitions (AP) threats. These systems consist of investments, complex processing techniques (hot a sandwich structure with a hard front layer of pressing, hot isostatic pressing, Spark Plasma transparent ceramic joined to several plies of glass Sintering), machining and polishing costs, large with polymer inter layers and polycarbonate formats and curved shapes, new structural designs backing. Advances in material science and for multi hit capability, etc technology over the last 40 years has made available sub-μm grain size polycrystalline α- Al2O3 -Several programs are investigating for cost aluminium oxynitride (AlON) , magnesium aluminate reduction, new processing ways and scale up of spinel (MgAl2O4)3 and these materials: As strategies are proposed: single crystal sapphire (Al2O3) as alternative ceramic Conventional pressureless sintering, gel casting, materials able to satisfy the requirements of nanotechnology, nanocomposite optical ceramics transparency and hardness for armours application.
    [Show full text]
  • Two-Step Preparation of Alon Transparent Ceramics with Powder Synthesized by Aluminothermic Reduction and Nitridation Method
    Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method Ying Wang College of Physical Science and Technology, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China; and Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China Xiumin Xie College of Physical Science and Technology, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China; and Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China Jianqi Qia) College of Physical Science and Technology, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China; and Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China Jun Wang School of Science, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, People’s Republic of China Di Wu and Xiaofeng Guo Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616, USA Nian Wei College of Physical Science and Technology, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China; and Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China Tiecheng Lub) College of Physical Science and Technology, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China; and International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015, Liaoning, People’s Republic of China (Received 15 April 2014; accepted 11 August 2014) The aluminothermic reduction and nitridation method using microsized Al powder and nanosized alumina powder was employed to fabricate AlON powder under N2 atmosphere.
    [Show full text]
  • Fermentation of Dihydroxyacetone by Engineered Escherichia Coli and Klebsiella Variicola to Products
    Fermentation of dihydroxyacetone by engineered Escherichia coli and Klebsiella variicola to products Liang Wanga, Diane Chauliaca,1, Mun Su Rheea,2, Anushadevi Panneerselvama, Lonnie O. Ingrama,3, and K. T. Shanmugama,3 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 Contributed by Lonnie O. Ingram, March 21, 2018 (sent for review January 18, 2018; reviewed by John W. Frost and F. Robert Tabita) Methane can be converted to triose dihydroxyacetone (DHA) by process, formaldehyde can also be produced biologically from chemical processes with formaldehyde as an intermediate. Carbon CO2 with formate as an intermediate (Fig. 1) (7). Dickens and dioxide, a by-product of various industries including ethanol/ Williamson reported as early as 1958 that DHA can be produced butanol biorefineries, can also be converted to formaldehyde biologically by transketolation of hydroxypyruvate and formalde- and then to DHA. DHA, upon entry into a cell and phosphorylation hyde (8). This transketolase is implicated in a unique pentose– to DHA-3-phosphate, enters the glycolytic pathway and can be phosphate–dependent pathway (DHA cycle) in methanol-utilizing fermented to any one of several products. However, DHA is yeast that fixes formaldehyde to xylulose-5-phosphate, yielding inhibitory to microbes due to its chemical interaction with cellular DHA as an intermediate in the production of glyceraldehyde-3- components. Fermentation of DHA to D-lactate by Escherichia coli phosphate in a cyclic mode (9). DHA in the cytoplasm is phos- strain TG113 was inefficient, and growth was inhibited by 30 g·L−1 phorylated by DHA kinase and/or glycerol kinase, and the DHA-P DHA.
    [Show full text]