(19) TZZ_Z¥_T

(11) EP 1 503 967 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C03C 17/34 (2006.01) C03C 17/36 (2006.01) 24.04.2013 Bulletin 2013/17 (86) International application number: (21) Application number: 03730196.7 PCT/EP2003/050144

(22) Date of filing: 06.05.2003 (87) International publication number: WO 2003/093185 (13.11.2003 Gazette 2003/46)

(54) TRANSPARENT SUBSTRATE COMPRISING A CONDUCTIVE LAYER DURCHSICHTIGES SUBSTRAT MIT EINER LEITENDEN SCHICHT SUBSTRAT TRANSPARENT COMPRENANT UNE COUCHE CONDUCTRICE

(84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR EP-A- 0 507 236 EP-A1- 0 350 362 HU IE IT LI LU MC NL PT RO SE SI SK TR WO-A-01/09052 WO-A1-00/27771 WO-A1-01/28949 US-A- 3 655 545 (30) Priority: 06.05.2002 EP 02076779 US-A- 5 756 192

(43) Date of publication of application: • JAGER S ET AL: "Optical and electrical 09.02.2005 Bulletin 2005/06 properties of doped zinc oxide films prepared by ac reactive magnetron sputtering" JOURNAL OF (73) Proprietor: AGC Europe NON-CRYSTALLINE SOLIDS, NORTH- HOLLAND 1170 Bruxelles (Watermael-Boitsfort) (BE) PHYSICS PUBLISHING. AMSTERDAM, NL, vol. 218, 1 September 1997 (1997-09-01), pages 74-80, (72) Inventor: HEVESI, Kadosa, XP004095556 ISSN: 0022-3093 cited in the GLAVERBEL - Centre R & D application B-6040 Jumet (BE) • JAGER S ET AL: "Optical and electrical properties of doped zinc oxide films prepared by (74) Representative: Bayot, Daisy et al ac reactive magnetron sputtering", JOURNAL OF AGC Glass Europe S.A. NON-CRYSTALLINE SOLIDS, NORTH- HOLLAND R&D Centre PHYSICS PUBLISHING. AMSTERDAM, NL, vol. Rue de l’Aurore, 2 218, 1 September 1997 (1997-09-01), pages 74-80, 6040 Jumet (BE) XP004095556, ISSN: 0022-3093, DOI: 10.1016/S0022-3093(97)00288-3

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 503 967 B1

Printed by Jouve, 75001 PARIS (FR) 1 EP 1 503 967 B1 2

Description layers deposited in this manner have resistivities in the order of 3 or 4.10-4 ohm.cm. [0001] The present invention relates to a transparent These layers are not resistant to chemical attacks asso- substrate, in particular made of glass, covered with an ciated with ageing, nor attacks associated with a supple- arrangement of layers comprising at least one conductive 5 mentary process step such as might be necessary for transparent layer deposited by a vacuum process. The the deposition of an additional photovoltaic or electro- invention also relates to a process for the production of chromic layer. Moreover, these layers are not resistant such a covered substrate, its uses as electrodes and in to a thermal treatment such as tempering or bending. a heating glazing unit as well as the glazing obtained. When a substrate of glass covered with such a layer is [0002] To enable it to be used as heating glazing, in 10 subjected to a thermal treatment in air in the order of 500 particular in the automotive field, the substrate must be to 650°C, a degradation in conductivity has been ob- resistant to the tempering processes and mechanical de- served as well as the appearance of optical faults such formations necessary for shaping (bending) wind- as whitish specks etc. screens, rear lights, and other automobile windows. The [0008] Therefore, there is a need to have transparent temperatures reached during these treatments are in the 15 substrates, in particular of mineral glass, which are cov- order of 650°C, even up to 680°C. It is additionally im- ered with a conductive layer (serving as an electrode or portant that the covered substrate is properly weather- as a heating resistor coating) deposited by a vacuum proof, and the layered arrangement must be able to with- process and are resistant to thermal and chemical treat- stand exposure to the ambient atmosphere and to vari- ments. Advantageously, such layers have the lowest ous cleaning detergents as well as to mechanical stress- 20 possible electrical resistance while preserving the appro- es such as friction or scratching. priate optical properties (such as, for example, homoge- [0003] Use of a substrate covered with a conductive neous high light transmission (LT) (in particular higher layer functioning as an electrode is also known for the than 30%), low light reflection (LR)). production of, e.g., photovoltaic and electrochromic cells. [0009] Therefore, what is sought is a covering with a In the production processes of some of these products, 25 good conductivity while retaining a high light transmission the conductive layer is subjected to elevations in temper- (LT). For applications such as windscreens, LT values ature or chemical actions which can damage the conduc- higher than 70%, and even 75% are necessary. For ap- tive layer. Document US 5,512,107 describes solar cells plications such as vehicle rear windows, lower LT values using a zinc oxide-based conductive layer. The problem (to 30-35%, for example) are acceptable. For applica- of the stability of conductive layers at elevated tempera- 30 tions such as electrodes in a photovoltaic or electrochro- tures and in humidity is mentioned. In this document the mic cell, the highest possible LT values are sought conductive and photoactive layers are shaped in narrow ( >80%). strips. [0010] Since resistance is a function of resistivity ρ() [0004] Metal oxide-based semi-conductive layers for and thickness (e) of the conductive layer (R = p / e), the antistatic use intended for the prevention of the undesir- 35 temptation might be to greatly increase the thickness of able effects associated with the accumulation of electro- the conductive layer in order to reduce resistance. How- static charges are known. The conductivity of these lay- ever, for economic reasons and because of the light ers is low. Their sheet resistance reaches values in the transmission, the covering must retain reasonable thick- order of 105 ohm/square. (EP 229 509). nesses. [0005] Transparent conductive and low-emissive lay- 40 [0011] It has surprisingly been found that it is possible ers deposited by pyrolysis (liquid or vapour phase) such to obtain layers deposited by a vacuum process that re- as tin oxide doped with fluorine, SnO2:F, or doped with tain a low sheet resistance or decrease their sheet re- antimony, SnO2:Sb, are known. However, the conduc- sistance even after thermal and/or chemical treatment tivity of these layers is not adequate to render them ef- by applying at least one protective over-layer of metal fective as heating layer or as an electrode, since their 45 oxide, nitride or oxynitride. sheet resistance is generally higher than 60 Ω/h. [0012] The present invention relates to a transparent [0006] The deposition processes using pyrolysis pose substrate, in particular made of glass, covered with a the following disadvantages: poor production flexibility, stack of layers, said stack comprising the following prior they are in fact linked to a glass line production plant; the to thermal treatment: number of layers that may be deposited is more limited 50 than by the vacuum process; they do not allow as large a sub-layer selected from the oxides, nitrides and a diversity of materials to be deposited as with vacuum oxynitrides of titanium, , silicon, zinc, tin, processes. indium, molybdenum, bismuth, tantalum, cerium, [0007] Methods of depositing zinc oxide layers doped niobium, zirconium or tungsten, with Al or In (ZnO:Al or ZnO:In) by sputtering are known 55 at least one metal oxide-based conductive layer de- (B.Szyszka et al.: "Optical and electrical properties of posited by a vacuum process, in particular by mag- doped zinc oxide films prepared by ac reactive magnet- netron sputtering, having a thickness in the range of ron sputtering", J. of Non-Crystalline Solids 218). The between400 and 1100 nmand comprising zinc oxide

2 3 EP 1 503 967 B1 4

doped with one or more elements, in particular se- deposition. It has in fact been noted that it partially or lected from aluminium, fluorine, gallium, tin, indium, completely oxidises during annealing. and [0022] Any other protective layers capable of resisting at least one chemical or mechanical protective layer detergents, atmospheric conditions, exposure to partic- capable of maintaining a low sheet resistance or 5 ular chemical conditions (e.g. oxidising, reductive, acidic even decreasing the sheet resistance after thermal or basic environment) and/or mechanical degradation and/or chemical treatment, having a thickness in the could also be considered. range of between 20 and 180 nm, and as deposited [0023] The thickness of the protective layer is in the selected from the oxynitride and nitride of aluminium range of between 20 and 180 nm, preferably between 35 or from ZnSnOx. 10 and 100 nm. [0024] The layered stack comprises a sub-layer select- [0013] The term thermal treatment should be under- ed from the oxides, nitrides and oxynitrides of titanium, stood to mean any treatment of the tempering or bending aluminium, silicon, zinc, tin, indium, molybdenum, bis- type (in the order of 500-700°C), but also treatments in- muth, tantalum, cerium, niobium, zirconium or tungsten. volving temperatures in the order of 250 to 350°C. 15 The purpose of this sub-layer in particular is to protect [0014] The term chemical treatment refers to natural the conductive layer from the migration of elements con- ageing, the action of detergents, the effect of a plasma tained in the glass such as , alkaline ions etc. or any kind of chemical reaction induced in the purpose [0025] The present invention also relates to a process of surface functionalisation or of deposition of subse- for the production of a transparent substrate covered with quent layers, etc. 20 a conductive stack, characterised by the following steps: [0015] Advantageously, the conductivity is further im- proved by adding between the conductive layer and the a) a sub-layer is deposited which is selected from protective layer a fine metallic or essentially metallic layer the oxides, nitrides and oxynitrides in particular of or a nitride layer, e.g. of aluminium, silicon, zirconium or titanium, aluminium, silicon, zinc, tin, indium, molyb- chromium nitride. 25 denum, bismuth, tantalum, cerium, niobium, zirconi- [0016] Moreover, the chemical resistance of the stack um tungsten, can be improved by adding a final metallic layer. The b) a metal oxide-based conductive layer, having a layer is sufficiently fine to be able to oxidise during the thickness in the range of between 400 and 1100 nm thermal treatment and sufficiently thick to ensure a good and comprising zinc oxide doped with one or more chemical resistance of the stack. 30 elements, in particular selected from aluminium, flu- [0017] Advantageously, the metal oxide of the conduc- orine, gallium, tin, indium, is deposited using a vac- tive layer is in a sub-stoichiometric state and is doped. uum deposition process; The conductive layer contains zinc oxide doped with one c) a protective layer having a thickness in the range or more elements, in particular selected from aluminium, of between 20 and 180 nm, selected from oxynitrides fluorine, gallium, tin, indium. 35 and nitrides of aluminium or from ZnSnOx, is depos- [0018] The atomic concentration of doping element in ited by a vacuum deposition process; the conductive layer is 0.1 %at. minimum and preferably d) the substrate is subjected to a thermal treatment in the range of between 0.5 and 12%, and more preferred in particular tempering, bending, or annealing at high between 1 and 3%. temperature, which, amongst other effects, modifies [0019] The thickness of the conductive layer is in the 40 the crystalline structure of the conductive layer and range of between 400 and 1100 nm. The thickness of allows its conductivity to increase. the fine metallic layer itself is advantageously in the range of between 0.5 and 25 nm, preferably between 1 and 15 [0026] Advantageously, a sub-layer such as described nm, and further preferred between 1.5 and 10 nm. The above is also deposited. Advantageously, a fine metallic metallic layer must in fact be sufficiently fine for it to ox- 45 layer is deposited between the conductive layer and the idise virtually completely during the thermal treatment, protective layer. while being sufficiently significant to ensure protection of [0027] The deposition technique is advantageously a the conductive layer. magnetron sputtering process. [0020] The metallic element of the fine metallic layer In particular, the conductive layer is deposited by regu- as deposited is selected from Ti, Ni, Cr, Zn, Sn, Si, Zr, 50 lating the conditions of gas mixtures and being positioned Al, In, Nb, Ta, Ce, Bi, Hf, Fe and alloys of these elements. in the metal-reactive transition zone so that a layer oxi- However, other metallic elements could also be consid- dised in a sub-stoichiometric form is obtained. ered, in particular any elements whose oxidation pro- [0028] The present invention also relates to a process vides a stable, resistant oxidised form capable of with- for theproduction of any system comprisinga transparent standing corrosive atmospheres. 55 substrate coated with a transparent conductive layer act- [0021] The protective layer as deposited is selected ing as an electrode (e.g. photovoltaic or electrochromic from the nitrides and oxynitrides of aluminium, or from cell, liquid crystal display, ...), characterised by the fol- ZnSnOx. The nature of the layer can be modified after lowing steps:

3 5 EP 1 503 967 B1 6

a) a sub-layer selected from the oxides, nitrides and forming the layered arrangement are as follows. oxynitrides of titanium, aluminium, silicon, zinc, tin, [0037] A first layer of was deposited indium, molybdenum, bismuth, tantalum, cerium, on the substrate starting from an aluminium target in an niobium, zirconium tungsten, is deposited on a trans- atmosphere of pure . The current applied was 4 parent substrate; 5 amperes for a voltage of 300 volts. The pressure was 5 b) a metal oxide-based conductive layer, having a mtorr. The thickness of the deposit was in the order of thickness in the range of between 400 and 1100 nm 900 Å. and comprising zinc oxide doped with one or more [0038] The conductive layer of zinc oxide doped with elements, in particular selected from aluminium, flu- aluminium was formed from a single target of 2% Al orine, gallium, tin, indium, is deposited using a vac- 10 doped zinc in an argon-oxygen atmosphere in order to uum deposition process; obtain the necessary sub- stoichiometry. The sub- stoichi- c) a protective layer having a thickness in the range ometry was obtained by operating the sputtering in the of between 20 and 180 nm, selected from oxynitrides metal-reactive transition zone. The introduction of gas and nitrides of aluminium or from ZnSnOx is depos- was controlled by a piezoelectric control system regulat- ited; 15 ed by a control loop which utilises the light emission of c) a functional layer able to be activated through the the plasma. The reference signal used in this case was conductive layer is deposited; the emission line of the zinc at 215 nm. A continuous d) a back electrode is applied. layer was formed with a thickness in the order of 5000 Å. [0039] A layer of titanium was deposited in pure argon. [0029] The present invention also relates to the use as 20 The current was 4 amp for a voltage of 295 v and a pres- heating glazing of a transparent substrate such as that sure of 5 mtorr. The thickness of the layer was in the described in the present application and/or according to order of 50 Å. the process described in the present application. By us- [0040] A second layer of aluminium nitride was depos- ing appropriate electrical connectors, the substrate de- ited in a similar manner to the first. The deposit thickness scribed above can be included in the production of a glaz- 25 was in the order of 900 Å. ing suited for demisting and de-icing, or even heating, [0041] The substrate was then subjected to various an- e.g. in architectural applications. nealing steps in air at 650°C for 10 minutes on a metal [0030] The present invention also relates to the use of support with a minimum bearing capacity to allow the a substrate covered as described in the present applica- glass to deform. These annealing steps simulate a ther- tion in the production of photovoltaic, electrochromic cells 30 mal treatment such as tempering or bending. or liquid crystal displays. [0042] The conductivity measurements were conduct- [0031] The subject of the present invention is further ed using the four-point method and the transmission was extended to glazing units comprising a substrate covered determined by spectrophotometer. The conductive layer with a layered arrangement comprising at least one metal had a resistivity of 5.10 -4 ohm.cm. The resistance meas- oxide-based conductive layer deposited by a vacuum 35 ured was 10 ohm/square. process, which has a sheet resistance of less than 60 The light transmission was in the order of 80%. ohm per square, preferably less than 55 ohm/ square and further preferred less than 35 or even 15 ohm/ square. Example 2: (comparative example) [0032] According to some methods, this resistance is combined with a high light transmission (higher than40 [0043] A layered arrangement identical to that in Ex- 70%, preferably higher than 75 or even 80%). According ample 1 was formed with the exception that the thickness to other methods, light transmission values of more than of the conductive layer was 10 000 Å. In this case, the 30 or even 35% are sought. This is the case in particular resistivity of the conductive layer was 4.10-4 ohm.cm. when a coloured transparent substrate is used. The resistance was 4 ohm/ square. The light transmission [0033] Other applications may also be considered for 45 was 79%. thedescribed substrate, e.g. in the field of touch-sensitive [0044] The treated samples were meticulously exam- screens and electromagnetic filters for screens. ined to detect any faults before and after annealing. Dur- [0034] The present invention is illustrated in a non-re- ing the annealing processes at temperatures not exceed- strictive manner by the practical examples below. ing 650°C, the samples did not exhibit any visually dis- 50 cernible optical degradations. Example 1: [0045] In the case of a stack consisting of glass / AIN / ZnO:Al (without protective layer), a similar heat treat- [0035] A stack of glass / AIN / ZnO:Al / Ti / AIN was ment at 650°C has lead to a dramatic deterioration of formed by magnetron sputtering on a substrate of clear conductivity, the film becoming insulating. soda-lime mineral glass with a thickness of 2 mm. Ther- 55 mal treatment tests at different temperatures and ageing Example 3: tests were then conducted. [0036] The conditions of deposition of different layers [0046] A layered arrangement was formed with a stack

4 7 EP 1 503 967 B1 8 of glass / AIN / ZnO:Al / Ti / AINO by magnetron sputtering also been found that the metal oxide layer likewise oxi- on a substrate of clear soda-lime mineral glass with a dises as a result of the thermal treatment. However, the thickness of2 mm.The only difference between this stack conductive layer does not deteriorate during the thermal and the one described in example1 is the nature of the treatment, this even increasing its conductivity. Unex- protective layer. In the present case, the protective layer 5 pectedly, the outer layers do not affect the transparency consists in an aluminium oxynitride prepared by pulsed of the layered arrangement after thermal treatment and magnetron sputtering with a gas mixture of 65% Ar, 30% in spite of everything assures a barrier function to the N2 and 5% 02. oxygen during the thermal treatment. Thermal treatment tests were then conducted, in partic- ular, at a temperature of 350°C during 15 minutes under 10 atmospheric conditions. The average sheet resistance Claims was 22 ohm/square with a light transmission of 52%. At higher temperatures of thermal treatment, the sheet re- 1. Transparent substrate, in particular made of glass, sistance was observed to drop and the light transmission covered with a stack of layers, said stack comprising to increase. Values of 10 ohm/square with a light trans- 15 the following on deposition: mission of 81 % could be reached at 650°C. a sub-layer selected from the oxides, nitrides Example 4: and oxynitrides of titanium, aluminium, silicon, zinc, tin, indium, molybdenum, bismuth, tanta- [0047] In an other embodiment of the present inven- 20 lum, cerium, niobium, zirconium or tungsten, tion, the conductive oxide in the following stack is pro- a metal oxide- based conductive layer deposited tected by an oxide layer : glass / ZnSnOx (600Å) / ZnO:Al by a vacuum-type process having a thickness (8000A) / Ti (90Å) / ZnSnOx (800A). The ZnSnOx mate- in the range of between 400 and 1100 nm and rial is an oxide obtained from sputtering a Zinc 52 atomic% comprising zinc oxide doped with one or more 25 / Sn 48 atomic% target in a pure oxygen atmosphere. ZnO: elements, in particular selected from aluminium, Al and Ti are deposited as explained above. fluorine, gallium, tin, indium, and [0048] After thermal treatment at 670°C, the sheet re- a protective layer capable of maintaining or in- sistance measured was 9 ohm/square and the LT creasing the conductivity of the conductive layer reached 75%. after thermal and/or chemical treatment, having 30 a thickness in the range of between 20 and 180 Example 5 (reference example) nm, and as deposited selected from the oxyni- tride and nitride of aluminium or ZnSnOx. [0049] Another example in the scope of the present invention is illustrated by the following stack : glass / AIN 2. Substrate according to the preceding claim, charac- 35 (500A) / ITO (3200A) / Zn (40A) / Si3N4 (550Å) in com- terised in that a fine metallic or at least partially parison with the following unprotected stack : glass / AIN metallic layer is deposited between the conductive (500Å) / ITO (3200A). The sheet resistance of both the layer and the protective layer. protected and the unprotected stack is 13 ohm/ square. Both systems have been mounted as heating elements 3. Substrate according to any of the preceding claims, consisting in 4 mm covered with the stacks de- 40 characterised in that the metal oxide is in a sub- scribed above and equipped with copper strip connec- stoichiometric state. tors, the conductive coating acting as a heating resistor through which electrical current is passed. The current 4. Substrate according to any one of the preceding wastuned to reach a temperatureof 150°C onthe surface claims, characterised in that the atomic concentra- of the glasses. After 50hours of operation at 150°C, the 45 tion of doping element in the conductive layer is 0.1% sheet resistance of the unprotected stack had increased at minimum and preferably in the range of between by a factor of about 2.3 while the sheet resistance of the 0.5 and 12%, and more preferred between 1 and 3%. protected stack had not changed. [0050] In reality, it is surprising to obtain a substrate 5. Substrate according to any one of claims 2 to 4, char- covered with a conductive oxide layer deposited by a50 acterised in that the thickness of the fine metallic vacuum deposition process that is capable of being heat layer is in the range of between 0.5 and 25 nm, pref- treated at temperatures up to 700°C. Such substrates erably between 1 and 15 nm, and further preferred have never been obtained to date. between 1.5 and 10 nm. [0051] It is also surprising that the addition of a metallic or partially metallic, and therefore absorbent, layer ena- 55 6. Substrate according to any one of claims 2 to 5, char- bles a transparent layered arrangement to be retained acterised in that the metallic element of the fine after thermal treatment. In fact, it has been found that the essentially metallic layer as deposited is selected outer protective layer oxidises during annealing. It has from Ti, Ni, Cr, Zn, Sn, Si, Zr, Al, In, Nb, Ta, Ce, Bi,

5 9 EP 1 503 967 B1 10

Hf, Fe and alloys of these elements. b) a metal oxide- based conductive layer, having a thickness in the range of between 400 and 7. Substrate according to any one of Claims 2 to 5, 1100 nm and comprising zinc oxide doped with characterised in that the fine essentially metallic one or more elements, in particular selected layer as deposited comprises nitride of Ti, Al, Si, Zr 5 from aluminium, fluorine, gallium, tin, indium, is or Cr. deposited using a vacuum- type deposition proc- ess; 8. Substrate according to any one of the preceding c) a protective layer having a thickness in the claims, characterised in that the thickness of the range of between 20 and 180 nm, selected from protective layer is in the range of between 35 and 10 oxynitride and nitride of aluminium or from Zn- 100 nm. SnOx is deposited; d) a functional layer able to be activated through 9. Process for the production of a transparent substrate the conductive layer is deposited; covered with a conductive layered arrangement, e) a back electrode is applied. characterised by the following steps: 15 14. Use of a substrate according to any one of Claims 1 a) a sub-layer is deposited which is selected to 8 as heating glazing. from the oxides, nitrides and oxynitrides in par- ticular of titanium, aluminium, silicon, zinc, tin, 15. Use of a substrate according to any one of Claims 1 indium, molybdenum, bismuth, tantalum, ceri- 20 to 8 as a transparent element serving as electrode. um, niobium, zirconium tungsten; b) a metal oxide- based conductive layer, having a thickness in the range of between 400 and Patentansprüche 1100 nm and comprising zinc oxide doped with one or more elements, in particular selected25 1. Transparentes Substrat, insbesondere hergestellt from aluminium, fluorine, gallium, tin, indium, is aus Glas, bedeckt mit einem Stapel aus Schichten, deposited using a vacuum- type deposition proc- wobei der Stapel das Folgende nach Ablagerung ess; umfaßt: c) a protective layer having a thickness in the range of between 20 and 180 nm, is deposited 30 Eine Unterschicht, ausgewählt aus den Oxiden, which is selected from oxynitride and nitride of Nitriden und Oxynitriden von Titan, Aluminium, aluminium or from ZnSnOx; Silicium, Zink, Zinn, Indium, Molybdän, Bismut, d) the substrate is subjected to a thermal treat- Tantal, Cer, Niob, Zirconium oder Wolfram, ment such as tempering or bending. eine leitfähige Schicht auf Metalloxidbasis, ab- 35 gelagert durch ein Verfahren vom Vakuumtyp, 10. Process according to claim 9, characterised in that welche eine Dicke im Bereich von zwischen 400 a fine essentially metallic layer is deposited using a und 1100 nm aufweist, und Zinkoxid, welches vacuum-type deposition process. mit einem oder mehreren Elementen, insbeson- dere ausgewählt aus Aluminium, Fluor, Gallium, 11. Process according to any one of Claims 9 to 10,40 Zinn, Indium geimpft ist, umfaßt, und characterised in that the deposits are carried out eine Schutzschicht, welche befähigt ist, die Leit- by magnetron-type sputtering. fähigkeit der leitfähigen Schicht nach thermi- scher und/oder chemischer Behandlung beizu- 12. Process according to any one of Claims 9 to 11, behalten oder zu erhöhen, welche eine Dicke characterised in that the metal oxide is deposited 45 im Bereich von zwischen 20 und 180 nm auf- in a sub- stoichiometric form by magnetron sputtering weist, und abgelagert ausgewählt ist aus den operated in gas mixtures and in the metal-reactive Oxynitriden und Nitriden von Aluminium oder transition zone. ZnSnOx.

13. Process for the production of an active system in- 50 2. Substrat nach dem vorhergehenden Anspruch, da- volving a transparent conductive layer as an elec- durch gekennzeichnet, daß eine feinmetallische trode, characterised by the following steps: oder zumindest teilweise metallische Schicht zwi- schen der leitfähigen Schicht und der Schutzschicht a) a sub-layer selected from the oxides, nitrides abgelagert ist. and oxynitrides of titanium, aluminium, silicon, 55 zinc, tin, indium, molybdenum, bismuth, tanta- 3. Substrat nach einem der vorhergehenden Ansprü- lum, cerium, niobium, zirconium tungsten, is de- che, dadurch gekennzeichnet, daß das Metalloxid posited on a transparent substrate in einem sub-stöchiometrischen Zustand vorliegt.

6 11 EP 1 503 967 B1 12

4. Substrat nach einem der vorhergehenden Ansprü- fahrens vom Vakuumtyp abgelagert wird. che, dadurch gekennzeichnet, daß die Atomkon- zentration des Impfelements in der leitfähigen 11. Verfahren nach einem der Ansprüche 9 bis 10, da- Schicht 0,1 % als Minimum beträgt und vorzugswei- durch gekennzeichnet, daß die Ablagerungen se in dem Bereich von zwischen 0,5 und 12%, und 5 durch Sputtern vom Magnetron-Typ durchgeführt mehr bevorzugt zwischen 1 und 3% liegt. werden.

5. Substrat nach einem der Ansprüche 2 bis 4,da- 12. Verfahren nach einem der Ansprüche 9 bis 11, da- durch gekennzeichnet, daß die Dicke der feinme- durch gekennzeichnet, daß das Metalloxid in einer tallischen Schicht im Bereich von zwischen 0,5 und 10 sub-stöchiometrischen Form durch Magnetronsput- 25 nm, vorzugsweise zwischen 1 und 15 nm, und tern, betrieben in Gasgemischen und in der Metall- weiter bevorzugt zwischen 1,5 und 10 nm liegt. reaktiven Übergangszone, abgelagert wird.

6. Substrat nach einem der Ansprüche 2 bis 5,da- 13. Verfahren zur Herstellung eines aktiven Systems, durch gekennzeichnet, daß das metallische Ele- 15 welches eine transparente leitfähige Schicht als eine ment der im wesentlichen feinmetallischen Schicht Elektrode einschließt, gekennzeichnet durch die wie abgelagert ausgewählt ist aus Ti, Ni, Cr, Zn, Sn, folgenden Schritte: Si, Zr, Al, In, Nb, Ta, Ce, Bi, Hf, Fe und Legierungen dieser Elemente. a) Eine Unterschicht, ausgewählt aus den Oxi- 20 den, Nitriden und Oxynitriden von Titan, Alumi- 7. Substrat nach einem der Ansprüche 2 bis 5,da- nium, Silicium, Zink, Zinn, Indium, Molybdän, durch gekennzeichnet, daß die im wesentlichen Bismut, Tantal, Cer, Niob, Zirconium, Wolfram feinmetallische Schicht wie abgelagert Nitrid von Ti, wird auf ein transparentes Substrat abgelagert; Al, Si, Zr oder Cr umfaßt. b) eine leitfähige Schicht auf Metalloxidbasis, 25 welche eine Dicke in dem Bereich von zwischen 8. Substrat nach einem der vorhergehenden Ansprü- 400 und 1100 nm aufweist, und Zinkoxid, wel- che, dadurch gekennzeichnet, daß die Dicke der ches mit einem oder mehreren Elementen, ins- Schutzschicht im Bereich von zwischen 35 und 100 besondere ausgewählt aus Aluminium, Fluor, nm liegt. Gallium, Zinn, Indium geimpft ist, umfaßt, wird 30 unter Verwendung eines Ablagerungsverfah- 9. Verfahren zur Herstellung eines transparenten Sub- rens vom Vakuumtyp abgelagert; strats, bedeckt mit einer leitfähigen beschichteten c) eine Schutzschicht mit einer Dicke im Bereich Anordnung, gekennzeichnet durch die folgenden von zwischen 20 und 180 nm, ausgewählt aus Schritte: Oxynitrid und Nitrid von Aluminium oder von 35 ZnSnOx, wird abgelagert; a) Eine Unterschicht wird abgelagert, welche d) eine funktionelle Schicht, welche befähigt ist ausgewählt ist aus den Oxiden, Nitriden und durch die leitfähige Schicht aktiviert zu werden, Oxynitriden, insbesondere von Titan, Alumini- wird abgelagert; um, Silicium, Zink, Zinn, Indium, Molybdän, Bis- e) eine Rückelektrode wird angebracht. mut, Tantal, Cer, Niob, Zirconium, Wolfram; 40 b) eine leitfähige Schicht auf Metalloxidbasis, 14. Verwendung eines Substrats nach einem der An- welche eine Dicke im Bereich von zwischen 400 sprüche 1 bis 8 als Wärmeverglasung. und 1100 nm aufweist und Zinkoxid, welches mit einem oder mehreren Elementen, insbeson- 15. Verwendung eines Substrats nach einem der An- dere ausgewählt aus Aluminium, Fluor, Gallium, 45 sprüche 1 bis 8 als ein transparentes Element, wel- Cer, Indium geimpft ist, umfaßt, wird unter Ver- ches als Elektrode dient. wendung eines Ablagerungsverfahrens vom Vakuumtyp abgelagert; c) eine Schutzschicht mit einer Dicke im Bereich Revendications von zwischen 20 und 180 nm, welche ausge- 50 wählt ist aus Oxynitrid und Nitrid von Aluminium 1. Substrat transparent, en particulier en verre, recou- oder von ZnSnOx, wird abgelagert; vert d’un empilement de couches, ledit empilement d) das Substrat wird einer thermischen Behand- comprenant le dépôt des couches suivantes : lung wie Tempern oder Biegen unterzogen. 55 une sous-couche sélectionnée parmi les oxy- 10. Verfahren nach Anspruch 9,dadurch gekenn- des, nitrures et oxynitrures de titane, d’alumi- zeichnet, daß eine im wesentlichen feinmetallische nium, de silicium, de zinc, d’étain, d’indium, de Schicht unter Verwendung eines Ablagerungsver- molybdène, de bismuth, de tantale, de cérium,

7 13 EP 1 503 967 B1 14

de niobium, de zirconium ou de tungstène, ces, caractérisé par les étapes suivantes : une couche conductrice à base d’oxyde métal- lique déposée par un procédé de type sous vide, a) une sous-couche est déposée qui est sélec- ayant une épaisseur dans la gamme comprise tionnée parmi les oxydes, les nitrures et oxyni- entre 400 et 1100 nm et comprenant de l’oxyde 5 trures en particulier de titane, d’aluminium, de de zinc dopé avec un ou plusieurs éléments, en silicium, de zinc, d’étain, d’indium, de molybdè- particulier sélectionnés parmi l’aluminium, le ne, de bismuth, de tantale, de cérium, de nio- fluor, le gallium, l’étain, l’indium, et bium, de zirconium ou de tungstène ; une couche protectrice capable de maintenir ou b) une couche conductrice à base d’oxyde mé- d’augmenter la conductibilité de la couche con- 10 tallique, ayant une épaisseur dans la gamme ductrice après un traitement thermique et/ou comprise entre 400 et 1100 nm et comprenant chimique, ayant une épaisseur dans la gamme de l’oxyde de zinc dopé avec un ou plusieurs comprise entre 20 et 180 nm et telle que dépo- éléments,en particulier sélectionnés parmi l’alu- sée sélectionnée parmi l’oxynitrure et le nitrure minium, le fluor, le gallium, l’étain, l’indium, est d’aluminium ou le ZnSnOx. 15 déposée à l’aide d’un procédé de dépôt de type sous vide ; 2. Substrat selon la revendication précédente, carac- c) une couche protectrice ayant une épaisseur térisé en ce qu’une fine couche métallique ou au dans la gamme comprise entre 20 et 180 nm est moins partiellement métallique est déposée entre la déposée qui est sélectionnée parmi l’oxynitrure couche conductrice et la couche protectrice. 20 et le nitrure d’aluminium ou le ZnSnOx ; d) le substrat est soumis à un traitement thermi- 3. Substrat selon l’une quelconque des revendications que tels que la trempe ou le bombage. précédentes, caractérisé en ce que l’oxyde métal- lique est dans un état sous-stoechiométrique. 10. Procédé selon la revendication 9, caractérisé en ce 25 qu’une fine couche essentiellement métallique est 4. Substrat selon l’une quelconque des revendications déposée à l’aide d’un procédé de dépôt de type sous précédentes, caractérisé en ce que la concentra- vide. tion atomique de l’élément dopant dans la couche conductrice est de 0,1 % au minimum et de préfé- 11. Procédé selon l’une quelconque des revendications rence dans la gamme comprise entre 0,5 et 12 % et 30 9 à 10, caractérisé en ce que les dépôts sont réa- plus préférablement entre 1 et 3%. lisés par pulvérisation de type magnétron.

5. Substrat selon l’une quelconque des revendications 12. Procédé selon l’une quelconque des revendications 2 à 4, caractérisé en ce que l’épaisseur de la fine 9 à 11, caractérisé en ce que l’oxyde de métal est couche métallique est dans la gamme comprise en- 35 déposé sous une forme sous-stoechiométrique par tre 0,5 et 25 nm, de préférence entre 1 et 15 nm, et pulvérisation magnétron réalisée dans des mélan- encore plus préférablement entre 1,5 et 10 nm. ges de gaz et dans la zone de transition réactive de dépôt de métal. 6. Substrat selon l’une quelconque des revendications 2 à 5, caractérisé en ce que l’élément métallique 40 13. Procédé de production d’un système actif compre- de la fine couche essentiellement métallique telle nant une couche conductrice transparente en tant que déposée est sélectionné parmi du Ti, du Ni, du qu’électrode, caractérisé par les étapes suivantes : Cr, du Zn, du Sn, du Si, du Zr, de l’Al, de l’In, du Nb, du Ta, du Ce, du Bi, du Hf, du Fe et des alliages de a) une sous- couche sélectionnée parmi les oxy- ces éléments. 45 des, les nitrures et oxynitrures de titane, d’alu- minium, de silicium, de zinc, d’étain, d’indium, 7. Substrat selon l’une quelconque des revendications de molybdène, de bismuth, de tantale, de cé- 2 à 5, caractérisé en ce que la fine couche essen- rium, de niobium, de zirconium ou de tungstène, tiellement métallique telle que déposée comprend est déposée sur un substrat transparent ; du nitrure de Ti, d’Al, de Si, de Zr ou de Cr. 50 b) une couche conductrice à base d’oxyde mé- tallique, ayant une épaisseur dans la gamme 8. Substrat selon l’une quelconque des revendications comprise entre 400 et 1100 nm et comprenant précédentes, caractérisé en ce que l’épaisseur de de l’oxyde de zinc dopé avec un ou plusieurs la couche protectrice est dans la gamme comprise éléments,en particulier sélectionnés parmi l’alu- entre 35 et 100 nm. 55 minium, le fluor, le gallium, l’étain, l’indium, est déposée à l’aide d’un procédé de dépôt de type 9. Procédé pourla productiond’un substrat transparent sous vide ; recouvert d’un arrangement de couches conductri- c) une couche protectrice ayant une épaisseur

8 15 EP 1 503 967 B1 16

dans la gamme comprise entre 20 et 180 nm sélectionnée parmi l’oxynitrure et le nitrure d’aluminium ou le ZnSnOx est déposée ; d) une couche fonctionnelle susceptible d’être activée au travers de la couche conductrice est 5 déposée ; e) une contre-électrode est appliquée.

14. Utilisation d’un substrat selon l’une quelconque des revendications 1 à 8 en tant que vitre chauffante. 10

15. Utilisation d’un substrat selon l’une quelconque des revendications 1 à 8 en tant qu’élément transparent servant d’électrode. 15

20

25

30

35

40

45

50

55

9 EP 1 503 967 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5512107 A [0003] • EP 229509 A [0004]

10