Ecology and Management of Invasive Pinaceae Around the World: Progress and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Management of Invasive Pinaceae Around the World: Progress and Challenges Biol Invasions DOI 10.1007/s10530-017-1483-4 FOREST INVASIONS Ecology and management of invasive Pinaceae around the world: progress and challenges Martin A. Nun˜ez . Mariana C. Chiuffo . Agostina Torres . Thomas Paul . Romina D. Dimarco . Peter Raal . Nahuel Policelli . Jaime Moyano . Rafael A. Garcı´a . Brian W. van Wilgen . Anı´bal Pauchard . David M. Richardson Received: 4 October 2016 / Accepted: 15 June 2017 Ó Springer International Publishing AG 2017 Abstract Many species in the family Pinaceae are invaded areas should be addressed. There are many invaders. These species are relatively easy to control ways to prevent invasions and to deal with them. because of some of their intrinsic characteristics and Planting less invasive species, better site selection, and because they are highly visible and easy to eliminate. invasion monitoring are used successfully in different Many Pinaceae species have been well studied parts of the world to prevent invasion. Mechanical and because of their use in forestry and their invasive chemical methods are used effectively to control behavior in many countries. The impacts of invasive Pinaceae invasions. Control is more effective at the Pinaceae are not only ecological, but also economic early stages of invasion. Old invasions are more and social. We review the ecology and management of problematic as their elimination is more expensive, Pinaceae invasions and explore how restoration of and the restoration of native vegetation is challenging. In some areas, native vegetation cannot thrive after Pinaceae have been removed, and weeds colonize Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nun˜ez / Special issue on Biological Invasions in Forests cleared areas. More attention is needed to prevent the prepared by a task force of the International Union of Forest initiation and spread of invasions by focusing control Research Organizations (IUFRO). M. A. Nun˜ez (&) M. C. Chiuffo A. Torres R. A. Garcı´a A. Pauchard N. Policelli J. MoyanoÁ Á Á Laboratorio deÁ Invasiones Biolo´gicas, Facultad de Grupo de EcologıÁ ´a de Invasiones, INIBIOMA, Ciencias Forestales, Universidad de Concepcio´n, Casilla CONICET-Universidad Nacional del Comahue, Av. de 160-C, Concepcio´n, Chile Los Pioneros 2350, 8400 Bariloche, Argentina e-mail: [email protected] R. A. Garcı´a A. Pauchard Institute of EcologyÁ and Biodiversity (IEB), Las Palmeras T. Paul 3425, Santiago, Chile New Zealand Forest Research Institute Ltd, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand B. W. van Wilgen D. M. Richardson Centre for InvasionÁ Biology, Department of Botany and R. D. Dimarco Zoology, Stellenbosch University, Stellenbosch, South Grupo de Ecologı´a de Poblaciones de Insectos, Africa CONICET, INTA, Modesta Victoria 4450, 8400 Bariloche, Argentina P. Raal Department of Conservation, Dunedin Office, P O Box 5244, Dunedin 9016, New Zealand 123 M. A. Nun˜ez et al. interventions at early stages of invasion. Finding new and grasslands (Rundel et al. 2014;Pauchardetal. ways of dealing sustainably with conflicts of interest 2016). between foresters and conservationists is crucial. Non- Pinaceae invasions have major ecological and native Pinaceae are important parts of the economies economic impacts. Impacts on water resources in and landscapes in several countries and they will South Africa are probably the best-studied example continue to play such a role in the future. Despite the (e.g. Le Maitre et al. 2002). Pinaceae invasions also numerous challenges facing Pinaceae invasion man- have important social and cultural implications agement, several approaches can be successful at (Greenaway et al. 2015) and have negative effects on controlling them. Proper application of current tech- ecosystem services (Dickie et al. 2014a). For example, niques and development of more efficient ones is an economic assessment in New Zealand quantified the needed if the goal of maximizing benefits and negative impacts of invasive conifers on farm produc- minimizing negative impacts is to be achieved. tivity, tourism, rare species conservation and water availability at over a billion NZ$ over the next 20 years Keywords Impacts Herbicides Management (Velarde et al. 2015). Invasive Pinaceae also transform Á Á Á Pinus Restoration Southern Hemisphere Tree historic landscapes by having detrimental effects on Á Á Á invasions values related to landscape features of cultural impor- tance, such as sacred mountain tops and historical sheep-grazing country (Greenaway et al. 2015). In contrast to many other invasive tree species, Introduction invasive Pinaceae species are relatively easy to control especially when they occur at low densities (less than Managing invasive species to reduce their impacts on 100 trees per hectare) and are of smaller size (e.g. biodiversity and ecosystems services is a major seedlings and saplings). None of the most widespread challenge. Considerable resources are allocated to invasive Pinaceae species resprout after felling, none manage invasions in many parts of the world, often have long-lived seeds that accumulate in the soil, and with limited success. Some invasive species are seedlings can easily be hand-pulled (Ledgard notably difficult to control, such as microbial species, 2001, 2009b). It takes them years to start producing animals such as mice or pigs, or plants that produce viable seeds (more than seven years for most invasive very large numbers of seeds, accumulate large long- Pinaceae species, and more than 15 for others). Their lived seed banks in the soil, can resprout vigorously, or seeds are dispersed by wind, which is more pre- have early onset of reproduction (e.g. Richardson and dictable than some other forms of seed dispersal, such Kluge 2008; Wilson et al. 2011; Garcı´a et al. 2015; as dispersal by birds (Buckley et al. 2006). Moreover, Dickie et al. 2016). However, there are other invasive because pines are important forestry species, key organisms with biological characteristics (e.g. later aspects of their biology and ecology have been well onset of reproduction, site specificity) that make them studied (e.g. Richardson 1998a; Richardson and easier to control, at least when they occur at low Higgins 1998). densities over small areas. In the last few decades, numerous studies have Invasive Pinaceae species (members of the pine investigated the invasion ecology of most of the family) that establish from self-sown seeds in areas invasive Pinaceae species (Richardson and Higgins where they are unwanted are transformative species 1998; Richardson 2006; Essl et al. 2011; and refer- that invade large areas outside their native range, ences therein) and in some countries economic especially in the Southern Hemisphere (Richardson incentives and legal instruments are in place to and Higgins 1998). Such invasions change the prevent and manage current and future invasions functioning of ecosystems, affect the provision of (van Wilgen and Richardson 2012; MPI 2014). Pines certain services, and restrict options for land use are well-known and conspicuous invasive species, and (Simberloff et al. 2010). This is particularly prob- conservation organizations are concerned about them. lematic when pines invade systems where trees were Nonetheless, invasive pines remain a huge and previously rare or absent, such as natural shrublands growing problem in areas with a long history of 123 Ecology and management of invasive Pinaceae afforestation of non-native pine plantations, and are an all important forestry Pinaceae species have suc- emerging problem in areas with a shorter history of ceeded in invading new ranges (Richardson and exposure to non-native pine plantation forestry Higgins 1998). (Richardson et al. 2008). Pinaceae invasions occur To invade a new area, species must overcome predominantly in the Southern Hemisphere. In the abiotic and biotic barriers. Among the abiotic barriers, Northern Hemisphere, the lower introduction effort of climate is an important factor determining invasion non-native Pinaceae and other factors such as the success in Pinaceae species (Nun˜ez and Medley 2011). widespread presence of pathogens adapted to native Even though appropriate climatic conditions per se are species in the family, have been proposed as causes for required for Pinaceae to invade, in practice the the low levels or even absence of invasions (Sim- importance of this filter is reduced because foresters berloff et al. 2010; Essl et al. 2011; McGregor et al. have tended to use provenances of pine species that are 2012; Rejma´nek and Richardson 2013). well adapted to the local climates in new environments Pine invasions in the Southern Hemisphere are (Zenni et al. 2014; Pauchard et al. 2015). Consistently, difficult to manage, for a number of reasons. These invasion patterns show a strong match between broad include the fact that the invaded areas have become climatic zones in native and invaded ranges—i.e. quite large, and are often in rugged and inaccessible tropical Pinaceae are invasive in tropical regions, sub- terrain; the difficulties of assigning responsibility for tropical and temperate Pinaceae species invade in sub- their management when pines escape from plantations tropical and temperate zones (Pauchard et al. 2015). and invade adjacent areas (McConnachie et al. 2015); Interestingly, in some cases climate in the introduced and the fact that the trees themselves have value in range is more favorable for growth and reproduction certain contexts, but not in others, leading to conflict- of a species, which
Recommended publications
  • Conifer Reproductive Biology Claire G
    Conifer Reproductive Biology Claire G. Williams Conifer Reproductive Biology Claire G. Williams USA ISBN: 978-1-4020-9601-3 e-ISBN: 978-1-4020-9602-0 DOI: 10.1007/978-1-4020-9602-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927085 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover Image: Snow and pendant cones on spruce tree (reproduced with permission of Photos.com). Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword When it comes to reproduction, gymnosperms are deeply weird. Cycads and coni- fers have drawn out reproduction: at least 13 genera take over a year from pollina- tion to fertilization. Since they don’t apparently have any selection mechanism by which to discriminate among pollen tubes prior to fertilization, it is natural to won- der why such a delay in reproduction is necessary. Claire Williams’ book celebrates such oddities of conifer reproduction. She has written a book that turns the context of many of these reproductive quirks into deeper questions concerning evolution. The origins of some of these questions can be traced back Wilhelm Hofmeister’s 1851 book, which detailed the revolutionary idea of alternation of generations.
    [Show full text]
  • 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, Nom. Cons. 金钱松属 Jin Qian Song Shu Chrysolarix H
    Flora of China 4: 41–42. 1999. 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, nom. cons. 金钱松属 jin qian song shu Chrysolarix H. E. Moore; Laricopsis Kent. Trees deciduous; trunk monopodial, straight, terete; branches irregularly whorled; branchlets strongly dimorphic: long branchlets with leaves spirally arranged and radially spreading; short branchlets with leaves radially arranged in false whorls of 10–30 (often spirally spread like a discoid star). Leaves green, turning golden yellow before falling in autumn, narrowly oblanceolate-linear, flattened, 1.5–4 mm wide, flexible, stomatal lines abaxial, in 2 bands, separated by midvein, vascular bundle 1, resin canals 2 or 3 (–7), marginal. Pollen cones terminal on short branchlets, borne in umbellate clusters of 10–25, pendulous at maturity; pollen 2-saccate. Seed cones solitary, shortly pedunculate, erect or ± spreading, ovoid-globose, 2-seeded, maturing in 1st year. Seed scales thick, woody, deciduous at maturity. Bracts adnate to seed scales at base and shed together with them at maturity. Seeds with large, backward projecting wing extending beyond scale margin at maturity. Cotyledons 4–7. 2n = 44*. • One species: China. 1. Pseudolarix amabilis (J. Nelson) Rehder, J. Arnold Arbor. 1: 53. 1919. 金钱松 jin qian song Larix amabilis J. Nelson, Pinaceae 84. 1866; Abies kaempferi Lindley; Chrysolarix amabilis (J. Nelson) H. E. Moore; Laricopsis kaempferi (Lindley) Kent; Pseudolarix fortunei Mayr; P. kaempferi Gordon; P. pourtetii Ferré. Trees to 40 m tall; trunk to 3 m d.b.h.; bark gray-brown, rough, scaly, flaking; crown broadly conical; long branchlets initially reddish brown or reddish yellow, glossy, glabrous, becoming yellowish gray, brownish gray, or rarely purplish brown in 2nd or 3rd year, finally gray or dark gray; short branchlets slow growing, bearing dense rings of leaf cushions; winter buds ovoid, scales free at apex.
    [Show full text]
  • Cedrus Atlantica 'Glauca'
    Fact Sheet ST-133 November 1993 Cedrus atlantica ‘Glauca’ Blue Atlas Cedar1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION A handsome evergreen with blue, bluish-green or light green foliage, ‘Glauca’ Atlas Cedar is perfect for specimen planting where it can grow without being crowded since the tree looks its best when branches are left on the tree to the ground (Fig. 1). This shows off the wonderful irregular, open pyramidal form with lower branches spreading about half the height. It grows rapidly when young, then slowly, reaching 40 to 60 feet tall by 30 to 40 feet wide. The trunk stays fairly straight with lateral branches nearly horizontal. Allow plenty of room for these trees to spread. They are best located as a lawn specimen away from walks, streets, and sidewalks so branches will not have to be pruned. It looks odd if lower branches are removed. Older trees become flat-topped and are a beautiful sight to behold. GENERAL INFORMATION Scientific name: Cedrus atlantica ‘Glauca’ Pronunciation: SEE-drus at-LAN-tih-kuh Common name(s): Blue Atlas Cedar Family: Pinaceae USDA hardiness zones: 6 through 8 (Fig. 2) Origin: not native to North America Uses: Bonsai; specimen Availability: generally available in many areas within Figure 1. Young Blue Atlas Cedar. its hardiness range DESCRIPTION Height: 40 to 60 feet Spread: 25 to 40 feet Crown uniformity: irregular outline or silhouette 1. This document is adapted from Fact Sheet ST-133, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Pinus Contorta Dougl
    Unclassified ENV/JM/MONO(2008)32 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 05-Dec-2008 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2008)32 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 04 December 2008 Series on Harmonisation of Regulatory Oversight in Biotechnology No. 44 CONSENSUS DOCUMENT ON THE BIOLOGY OF LODGEPOLE PINE (Pinus contorta Dougl. ex. Loud.) English - Or. English JT03257048 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2008)32 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No.
    [Show full text]
  • Phylogeny and Biogeography of Tsuga (Pinaceae)
    Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T.
    [Show full text]
  • Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
    © 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions.
    [Show full text]
  • Establishment of Pseudotsuga Menziesii and Pinus Nigra Seedlings in Kunzea Ericoides and Leptospermum Scoparium Shrubland Communities
    280 AvailableNew on-lineZealand at: Journal http://www.newzealandecology.org/nzje/ of Ecology, Vol. 35, No. 3, 2011 Establishment of Pseudotsuga menziesii and Pinus nigra seedlings in Kunzea ericoides and Leptospermum scoparium shrubland communities Murray Davis1,*, Graham Coker1, Clayson Howell2 and David Henley1 1Scion, PO Box 29237, Christchurch 8540, New Zealand 2Department of Conservation, PO Box 10420, Wellington 6143, New Zealand *Author for correspondence (Email: [email protected]) Published on-line: 21 March 2011 Abstract: We compared establishment of Douglas fir (Pseudotsuga menziesii) and Corsican pine (Pinus nigra) seedlings in kānuka (Kunzea ericoides) and mānuka (Leptospermum scoparium) shrubland to test the hypothesis that Douglas fir, because of its greater shade tolerance, is better able to establish in woody communities than pine species. Seed of the conifer species was sown under a range of canopy covers at six sites, the cover being low-statured vegetation in openings between stands, stand edges, and moderate and dense canopies. After three growing seasons, survival of Corsican pine seedlings was greatest in the open and declined progressively as canopy cover increased. This contrasted with Douglas fir, where survival was greatest at the canopy edge. Survival of Douglas fir seedlings significantly exceeded that of Corscican pine seedlings under dense canopy positions. Seedling numbers of both species declined significantly with increasing leaf area index of mānuka, but not kānuka stands, where seedling numbers were lower. Leaf area index of mānuka stands accounted for substantially greater variation in number and survival of Corsican pine than Douglas fir seedlings. It is concluded that Douglas fir is better able to establish in shaded environments in woody communities than Corsican pine; however, further monitoring is required to confirm the long-term survival of both species under the moderate and dense canopy positions in this trial.
    [Show full text]
  • The Aerial Control of Wilding Pinus Radiata in Forest
    Project No: ADV-363 THE AERIAL CONTROL OF SCATTERED WILDING PINUS RADIATA IN FOREST ENVIRONMENTS PREPARED BY: Andrew Macalister & Tom Stein Marlborough Sounds Restoration Trust PO Box 787 Nelson Corresponding author: [email protected] PREPARED FOR: Biodiversity Advice Fund April 2013 ABSTRACT Wilding conifers threaten conservation and landscape values over large areas of New Zealand, with Pinus radiata one of the most common wilding conifer species. This report reviews the suitability of the aerial application of herbicide onto the trunks of wilding P. radiata trees as a control technique, and assesses whether it can be undertaken in a cost-efficient manner and without incurring widespread damage to surrounding native vegetation. INTRODUCTION Wilding conifers occur throughout large parts of New Zealand, threatening conservation values and disrupting visual landscapes. Ten species contribute most of the wildings currently seen in New Zealand, with P. radiata being one of the most common. There are a range of proven control methodologies available for controlling wilding conifers, documented in ‘Wilding Control: Guidelines for the Control of Wilding Conifers’ (Ledgard, 2009). Ground-based methods, such as felling, stem-poisoning and basal bark application, are well-suited for individual trees in accessible locations. For trees in thick infestations and/or scattered individual trees in remote locations, aerial control methods are often preferred, with foliar spraying and bark application methods under development, using a range of herbicides. This project sought to trial aerial application of herbicide onto the trunks of large wilding P. radiata in a forest environment. P. radiata is the most common wilding conifer species in north Marlborough, and most are large and mature trees that established in the past 20 to 80 years coincident with the cessation of grazing on marginal farming land.
    [Show full text]
  • Phloem in Pinophyta
    Phloem in Pinophyta G. S Paliwal Paliwal GS 1992. Phloem in Pinophyta. Palaeobotanist 41 : 114·127. The gymnospermous phloem shows major differences from those of the cryptogams on one hand and the angiosperms on the Other. These include both the type of conducting cells as well as the cellular composition. Even more important is the degree and nature of functional inter· relationship between the conducting and parenchyma cells. The following evolutionary trends have been suggested: Increase in the amount of axial parenchyma; Decrease in the number of albuminous cells in the rays; Increase in the axial albuminous cells: Increase in the fibres; Increase in the regular arrangement. of cells The work on the fossil taxa does prOVide variable suppOrt to these suggestions. It is generally believed that the cryptogamic sieve element arose from a parenchyma cell and all the phloem produced in the fossil lycopods, Sphenopsida and ferns is primary in origin. Here the phloem consists of either sieve elements only or the sieve elements with scattered parenchyma cells. There is no definite relationship between the conducting elements and the parenchyma cells as seen in the seed plants. Additional parenchyma is often present in the form of a sheath separating the ,-ylem from the narrow phloem tissue. The typical cryptOgamic sieve elements are identical to the elongate parenchyma cells. These are relatively small in diameter, longer than the parenchyma cells but shorter than the gymnospermous sieve cells. In some taxa, the sieve elements are of twO sizes: large (up to 600 /lm) and small (between 100·1,500 /lm). The end walls of the cryptogamous sieve elements are horizontal or slightly oblique and the sieve areas are small and vary markedly in their outline.
    [Show full text]
  • Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
    Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore ..................................................................................
    [Show full text]
  • Pseudotsuga Menziesii)
    120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.
    [Show full text]
  • Invasive Alien Trees
    Strasbourg, 2 November 2017 T-PVS/Inf (2017) 8 [Inf08e_2017.docx] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 37th meeting Strasbourg, 5-8 December 2017 __________ CODE OF CONDUCT FOR INVASIVE ALIEN TREES - FINAL DRAFT - November 2017 Document prepared by Mr Giuseppe Brundu & Mr David M. Richardson (Department of Agriculture, University of Sassari, Italy - Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, South Africa) on behalf of the Bern Convention This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2017) 8 - 2 – CODE OF CONDUCT FOR INVASIVE ALIEN TREES by Giuseppe Brundu & David M. Richardson (Department of Agriculture, University of Sassari, Italy - Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, South Africa) Summary 1. RATIONALE AND AIMS OF THE CODE OF CONDUCT ..............................................................4 2. CODE OF CONDUCT.............................................................................................................................5 2.1 Focus of the Code of Conduct: Invasive Alien Trees ..........................................................................5 2.2 Audience and aims of the Code of Conduct .........................................................................................6 2.3 A voluntary tool ......................................................................................................................................6
    [Show full text]