What Do We Know About Knowledge?

Total Page:16

File Type:pdf, Size:1020Kb

What Do We Know About Knowledge? AI Magazine Volume 26 Number 4 (2006)(2005) (© AAAI) Articles IAAI/AI Magazine 2006 Robert Engelmore Award Address What Do We Know about Knowledge? Bruce G. Buchanan ■ Intelligent systems need knowledge. However, the stand nature,4 but the concept of knowledge is simple equation “knowledge is power” leaves three much the same. major questions unanswered. First, what do we Bacon was among the first of the modern mean by “knowledge”; second, what do we mean philosophers to separate the concept of scien- by “power”; and third, what do we mean by “is”? tific knowledge from knowledge gained In this article, I will examine the first of these ques- through the two dominant methods for attain- tions. In particular I will focus on some of the mile- stones in understanding the nature of knowledge ing truth in his time: magic and religious reve- and some of what we have learned from 50 years lation. The essential difference for him, as for of AI research. The discipline and detail required to us, is that knowledge gained through experi- write programs that use knowledge have given us ment is replicable by others. some valuable lessons for implementing the Although all the empirical sciences rely on knowledge principle, one of which is to make our the replication of observations and experi- programs as flexible as we can. ments, AI has been slow to embrace this prin- ciple.5 Programs demonstrating research ideas in AI are often too large and not well enough documented to allow replication or sharing. Applications programs, however, are designed hank you for this distinguished award to be used by others outside the research lab and the opportunity to share some and thus are more amenable to multiple runs Tthoughts with you.1 What I would like to in diverse conditions. Thus they have the give you in this article2 are some of the princi- potential to provide experimental data demon- ples guiding the implementation of knowl- strating strengths, weaknesses, and benefits. edge-based systems that follow from work in philosophy and AI. Many of them are well Contributions before AI known, but they can serve as reminders of the difficulty of implementing the “knowledge is The knowledge principle predates Bacon. For power” principle.3 I wish to clarify the knowl- example, it was pretty clearly articulated in Bib- edge principle and try to increase our under- lical times: “A man of knowledge increaseth standing of what programmers and program strength” (Proverbs 24: 5). designers need to do to make the knowledge Socrates, Plato, Aristotle, and other early principle work in practice. Greek philosophers based their lives on acquir- The “knowledge is power” principle is most ing and transferring knowledge. In the course closely associated with Francis Bacon, from his of teaching, they sought to understand the 1597 tract on heresies: “Nam et ipsa scientia nature of knowledge and how we can establish potestas est.” (“In and of itself, knowledge is knowledge of the natural world. power.”) Incidentally, Bacon was probably as Socrates is famous for pointing out the value much interested in the political power to be of knowledge and seeking truth, as in “… that gained from knowledge as the power to under- which we desire to have, and to impart to oth- Copyright © 2006, American Association for Artificial Intelligence. All rights reserved. ISSN 0738-4602 WINTER 2006 35 Articles ers, [is] expert knowledge….” (Plato, Phaedrus son. Aristotle wrote at least 31 treatises describ- 270d). ing every aspect of the natural world and offer- He was also fond of pointing out how little ing physical explanations of many phenomena. we actually know—and was put to death, Aristotle also advanced the rational tradition essentially, for pointing that out to everyone: of Plato and Pythagoras by developing a logic When I conversed with him I came to see that, that captures many forms of symbolic argu- though a great many persons, and most of all ment, which was powerful enough to survive he himself, thought that he was wise, yet he two thousand years. He demonstrated the was not wise. Then I tried to prove to him that expressive power of simple propositions, “A is he was not wise, though he fancied that he was. B,” along with quantification, “All A’s are B’s,” … I thought to myself, “I am wiser than this or “Some A’s are B’s.” He also established rules man: neither of us knows anything that is really of symbolic inference for combining quanti- worth knowing, but he thinks that he has fied propositions. knowledge when he has not, while I, having no knowledge, do not think that I have. I seem, at Euclid’s geometry firmly established the con- any rate, to be a little wiser than he is on this cept of rigorous proof within mathematics. point: I do not think that I know what I do not Some of the Greek philosophers’ contributions know.” Next I went to another man… (Plato, to our concept of knowledge are highlighted in Apology VI:22). table 1. Plato, Socrates’s pupil and Aristotle’s mentor, In the intervening several centuries before was the first to pose the question in writing of the Middle Ages and the rise of modern science what we mean when we say that a person in the West,6 the search for knowledge was knows something about the world (Cornford overwhelmed by the power of the Christian 1935). He was distinguishing empirical knowl- church to make new knowledge fit with estab- edge, lacking complete certainty, from the cer- lished dogma. The resulting dark ages should tain knowledge of mathematics. The whole be a reminder to all of us that knowledge-based dialogue, The Theaetetus, is worth reading but— systems should not merely perpetuate the if I may oversimplify the conclusion—Plato, established dogma of an organization. speaking for Socrates, concludes that person S The English theologian and philosopher knows empirical proposition p if and only if: Robert Grosseteste (1170–1253) is known for S believes p emphasizing the role of mathematics in under- p is true (otherwise it is a false belief, not a fact standing the natural world. Galileo later under- that is known) scored this principle when he wrote that the S can provide a rationale for why p is true “book of nature” is written in “the language of (which Plato calls giving an account). mathematics.” Grosseteste is also credited with The last condition has been modified by establishing the experimental method as a philosophers in recent years to read that S is path to knowledge in his own experimental justified in believing p. This modification pre- work on the refraction of light. serves the requirement of a rationale but William of Ockham was the most influential removes the onus of providing it from subject philosopher of the 13th century. His two major S. That is, the belief is justified, but S does not contributions to the study of knowledge that need to be the one providing it. But, of course, are relevant to AI were nominalism and his philosophers are not at all in agreement about insistence on simplicity. With nominalism, he what constitutes a proper justification or argued that what we know is expressed in lan- rationale. One view that would seem to be rel- guage. As a pragmatic principle in AI program- evant for AI is that either the belief or the jus- ming, that translates roughly into the principle tification is formed through a reliable cognitive that if someone can accurately describe how process. S didn’t just come to believe p through they solve a problem, then a program can be a series of bad inferences or guessing based on written to solve it. The principle of parsimony, the wrong reasons (Steup 2006). now known as Occam’s Razor, states that plu- Aristotle continued the search for knowl- rality should not be assumed without necessity. In edge, extending the methodology in two other words, explanations that mention fewer important ways beyond the rational discussion entities and mechanisms should be preferred to of Plato and the mathematics of Pythagoras. His more complex ones. term for science, incidentally, was “natural phi- So, by the time modern science was getting losophy,” which was used by scientists as late as started, several important principles about Newton to describe their own work. One of knowledge had already been clearly established Aristotle’s most lasting contributions was show- by the ancient Greeks. Medieval philosophers ing the importance of knowledge gained reinforced and added to the early concepts, as through observation, as opposed to pure rea- shown in table 2. 36 AI MAGAZINE Articles Pythagoras Mathematics holds the key to correct descriptions of theworld. Socrates Seeking knowledge is good. Knowing what we don’t know (metaknowledge) isvaluable. Socrates Empiricalknowledge istruebelief with an account: beliefs have to be justified to be called (Plato) knowledge. Aristotle Observation isalegitimate source of knowledge. Symbolic logic isameansofincreasing our storeofknowledge through valid inference: Knowledge beyond mathematics can be proved. Euclid New knowledge can be derived by rigorousproof. Table 1. Some Contributions of Early Greek Philosophers to Our Understanding of the Concept of Knowledge. R. Grosseteste Mathematics isessential forknowledge of thenatural world. Knowledge can be established experimentally. William of Knowledge is linguistic. Simpler expressions of knowledge are Ockham preferable. Table 2. Some Contributions of Medieval Philosophers to our Understanding of the Concept of Knowledge. Skipping ahead a few more centuries into emphasized planned experiments as an essen- the 15th and 16th centuries, philosophers con- tial step in the inductive process. tinued to investigate scientific questions by René Descartes is most known today for his elaborating the earlier themes and by making work on algebra and geometry, but he also new distinctions.
Recommended publications
  • ED305329.Pdf
    DOCUMENT RESUME ED 305 329 SP 030 956 AUTHOR Sarvimaki, Anneli TITLE Knowledge in Interactive Practice Disciplines. An Analysis of Knowledge in Education and Health Care. Research Bulletin 68. INSTITUTION Helsinki Univ. (Finland). Dept. of Education. REPORT NO ISBN-951-45-4787-X PUB DATE 88 NOTE 292p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC12 Plus Postage. DESCRIPTORS *Educational Objectives; Educational Philosophy; Educational Practices; *Educational Principles; Health Promotion; *Interaction; Sociolinguistics; *Theory Practice Relationship; Values ABSTRACT This study formulates a conception of knowledge in interactive practice disciplines such as education and health care and clarifies different types of knowledge in these disciplines. Focus is on the relationship between practical and theoretical knowledge. Four theses are discussed: (1) the role of knowledge in an interactive practice is to guide practice; (2) different types of knowledge in an interactive practice consist of value-knowledge, factual knowledge and procedural knowledge, parts of which are unarticulated, parts articulated; (3) science is a way of articulating and creating knowledge that can be used as internal action determinants in the practice concerned; and (4) theories in an interactive practice can have both a theoretical and a practical purpose but the theoretical purpose is also indirectly linked to the practical. (Author/JD) "t***************************************************2****************** * Reproductions supplied by EDRS are the
    [Show full text]
  • Procedural and Declarative Knowledge an Evolutionary Perspective
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Open Universiteit Nederland Procedural and Declarative Knowledge An Evolutionary Perspective Timon ten Berge Ren´e van Hezewijk Vrije Universiteit Utrecht University Abstract. It appears that there are resemblances in the organization of memory and the visual system, although the functions of these faculties differ considerably. In this article, the principles behind this organization are discussed. One important principle regards the distinction between declarative and procedural knowledge, between knowing that and knowing how. Declarative knowledge is considered here not as an alternative kind of knowledge, as is usually the case in theories of memory, but as part of procedural knowledge. In our view this leads to another approach with respect to the distinction. Declarative knowledge has occupied more attention in (cognitive) psychological research than can be justified on the basis of the importance of procedural knowledge for behavior. We also discuss the question whether there are other brain faculties that reflect the same organizational characteristics. We conclude with some speculations about the consequent role of consciousness in such a tentative model. KEY WORDS: declarative knowledge, evolutionary psychology, memory, procedural knowledge, vision Introduction: Modularity in the Human Brain Traditionally, cognitive psychology has viewed the human mind as a general information-processing device. On this view, a human being is born with a set of general reasoning capacities that can be used when confronted with any problem. A growing number of researchers are supporting a view of the human brain as an organized collection of specialized modules, each with its own domain-specific knowledge and responses.
    [Show full text]
  • Spinoza and the Sciences Boston Studies in the Philosophy of Science
    SPINOZA AND THE SCIENCES BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE EDITED BY ROBERT S. COHEN AND MARX W. WARTOFSKY VOLUME 91 SPINOZA AND THE SCIENCES Edited by MARJORIE GRENE University of California at Davis and DEBRA NAILS University of the Witwatersrand D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ~~~.'~*"~ ACADEMIC PUBLISHERS GROUP i\"lI'4 DORDRECHT/BOSTON/LANCASTER/TOKYO Library of Congress Cataloging-in-Publication Data Main entry under title: Spinoza and the sciences. (Boston studies in the philosophy of science; v. 91) Bibliography: p. Includes index. 1. Spinoza, Benedictus de, 1632-1677. 2. Science- Philosophy-History. 3. Scientists-Netherlands- Biography. I. Grene, Marjorie Glicksman, 1910- II. Nails, Debra, 1950- Ill. Series. Q174.B67 vol. 91 OOI'.Ols 85-28183 101 43.S725J 100 I J ISBN-13: 978-94-010-8511-3 e-ISBN-13: 978-94-009-4514-2 DOl: 10.1007/978-94-009-4514-2 Published by D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. 2-0490-150 ts All Rights Reserved © 1986 by D. Reidel Publishing Company Softcover reprint of the hardcover 1st edition 1986 and copyright holders as specified on appropriate pages within No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner FROM SPINOZA'S LETTER TO OLDENBURG, RIJNSBURG, APRIL, 1662 (Photo by permission of Berend Kolk) TABLE OF CONTENTS ACKNOWLEDGEMENTS ix MARJORIE GRENE I Introduction xi 1.
    [Show full text]
  • Mapping the Meaning of Knowledge in Design Research Kristina Niedderer University of Hertfordshire
    V.2:2 April 2007 www.designresearchsociety.org Design Research Society ISSN 1752-8445 Mapping the Meaning of Knowledge in Design Research Kristina Niedderer University of Hertfordshire Knowledge plays a vital role in our life This question has arisen for design in Table of Contents: in that it reflects how we understand the UK, as well as more generally for the world around us and thus deter- creative and practice-led disciplines Articles: 1 Mapping the Meaning of Knowledge mines how we act upon it. In this sense, (CPDs), because research regulations in Design Research knowledge is of particular importance and requirements in the UK remain Kristina Niedderer for designers because they act to shape silent about what knowledge and our world. Conventionally, knowledge understanding mean in the context of 3 Call for Papers: Design Research creation has been assumed by (design) their specifications while implicitly pri- Quarterly research. However developments of oritising propositional knowledge over Case Studies in Research: Knowledge using practice within research have knowledge that cannot be expressed in and Inquiry pointed to knowledge creation within that form (Niedderer 2007). and through practice. This has raised This has led to a number of prob- Listings: the question of the meaning, role and lems concerning the role and format 14 Current Research in Design: format of knowledge in both research of knowledge in research and practice ToCs from Leading Design Journals and practice, and about the compatibil- in the UK. For example, because of the ity between knowledge of research and language-based mode of proposition- 21 Upcoming Events Worldwide practice.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • The Newton-Leibniz Controversy Over the Invention of the Calculus
    The Newton-Leibniz controversy over the invention of the calculus S.Subramanya Sastry 1 Introduction Perhaps one the most infamous controversies in the history of science is the one between Newton and Leibniz over the invention of the infinitesimal calculus. During the 17th century, debates between philosophers over priority issues were dime-a-dozen. Inspite of the fact that priority disputes between scientists were ¡ common, many contemporaries of Newton and Leibniz found the quarrel between these two shocking. Probably, what set this particular case apart from the rest was the stature of the men involved, the significance of the work that was in contention, the length of time through which the controversy extended, and the sheer intensity of the dispute. Newton and Leibniz were at war in the later parts of their lives over a number of issues. Though the dispute was sparked off by the issue of priority over the invention of the calculus, the matter was made worse by the fact that they did not see eye to eye on the matter of the natural philosophy of the world. Newton’s action-at-a-distance theory of gravitation was viewed as a reversion to the times of occultism by Leibniz and many other mechanical philosophers of this era. This intermingling of philosophical issues with the priority issues over the invention of the calculus worsened the nature of the dispute. One of the reasons why the dispute assumed such alarming proportions and why both Newton and Leibniz were anxious to be considered the inventors of the calculus was because of the prevailing 17th century conventions about priority and attitude towards plagiarism.
    [Show full text]
  • Berkeley's Case Against Realism About Dynamics
    Lisa Downing [Published in Berkeley’s Metaphysics, ed. Muehlmann, Penn State Press 1995, 197-214. Turbayne Essay Prize winner, 1992.] Berkeley's case against realism about dynamics While De Motu, Berkeley's treatise on the philosophical foundations of mechanics, has frequently been cited for the surprisingly modern ring of certain of its passages, it has not often been taken as seriously as Berkeley hoped it would be. Even A.A. Luce, in his editor's introduction to De Motu, describes it as a modest work, of limited scope. Luce writes: The De Motu is written in good, correct Latin, but in construction and balance the workmanship falls below Berkeley's usual standards. The title is ambitious for so brief a tract, and may lead the reader to expect a more sustained argument than he will find. A more modest title, say Motion without Matter, would fitly describe its scope and content. Regarded as a treatise on motion in general, it is a slight and disappointing work; but viewed from a narrower angle, it is of absorbing interest and high importance. It is the application of immaterialism to contemporary problems of motion, and should be read as such. ...apart from the Principles the De Motu would be nonsense.1 1The Works of George Berkeley, Bishop of Cloyne, ed. A.A. Luce and T.E. Jessop (London: Thomas Nelson and Sons, 1948-57), 4: 3-4. In this paper, all references to Berkeley are to the Luce-Jessop edition. Quotations from De Motu are taken from Luce's translation. I use the following abbreviations for Berkeley’s works: PC Philosophical Commentaries PHK-I Introduction to The Principles of Human Knowledge PHK The Principles of Human Knowledge DM De Motu A Alciphron TVV The Theory of Vision Vindicated and Explained S Siris 1 There are good general reasons to think, however, that Berkeley's aims in writing the book were as ambitious as the title he chose.
    [Show full text]
  • Newton and Kant on Absolute Space: from Theology to Transcendental Philosophy
    Newton and Kant on Absolute Space: From Theology to Transcendental Philosophy Michael Friedman Abstract I argue that Einstein’s creation of both special and general relativity instantiates Reichenbach’s conception of the relativized a priori. I do this by show- ing how the original Kantian conception actually contributes to the development of Einstein’s theories through the intervening philosophical and scientific work of Helmholtz, Mach, and Poincaré. In my previous work on Newton and Kant I have primarily emphasized methodo- logical issues: why Kant takes the Newtonian Laws of Motion (as well as certain related propositions of what he calls “pure natural science”) as synthetic a priori constitutive principles rather than mere empirical laws, and how this point is inti- mately connected, in turn, with Kant’s conception of absolute space as a regulative idea of reason – as the limit point of an empirical constructive procedure rather than a self-subsistent “container” existing prior to and independently of all perceptible matter. I have also argued that these methodological differences explain the circum- stance that Kant, unlike Newton, asserts that gravitational attraction must be con- ceived as an “action at a distance through empty space,” and even formulates a (rare) criticism of Newton for attempting to leave the question of the “true cause” of gravitational attraction entirely open. In this paper I emphasize the importance of metaphysical and theological issues – about God, his creation of the material world in space, and the consequences different views of such creation have for the metaphysical foundations of physics. I argue, in particular, that Kant’s differences with Newton over these issues constitute an essential part of his radical transforma- tion of the very meaning of metaphysics as practiced by his predecessors.
    [Show full text]
  • Determinism Is False
    %&5&3.*/*4. Barry Loewer %FUFSNJOJTNJTBDPOUJOHFOUNFUBQIZTJDBMDMBJNBCPVUUIFGVOEBNFOUBMOBUVSBMMBXT UIBUIPMEJOUIFVOJWFSTF*UTBZT The natural laws and the way things are at time t determine the way things will be at later times. 5IF NBUIFNBUJDJBO 1JFSSF4JNPO -BQMBDF FYQSFTTFE IJT CFMJFG UIBU EFUFS- minism is true this way: 8F PVHIU UP SFHBSE UIF QSFTFOU TUBUF PG UIF VOJWFSTF BT UIF FGGFDU PG JUT antecedent state and as the cause of the state that is to follow. An intel- MJHFODF LOPXJOH BMM UIF GPSDFT BDUJOH JO OBUVSF BU B HJWFO JOTUBOU BT XFMM as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world, provided that its intellect were suf!ciently QPXFSGVMUPTVCKFDUBMMEBUBUPBOBMZTJTUPJUOPUIJOHXPVMECFVODFSUBJO UIF future as well as the past would be present to its eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble outline of such intelligence. 5IF QIZTJDT PG -BQMBDFT EBZ UIF àSTU EFDBEFT PG UIF OJOFUFFOUI DFOUVSZ XBT /FXUPOJBO DMBTTJDBM NFDIBOJDT*TBBD/FXUPOGPSNVMBUFEQSJODJQMFTUIBUIFUIPVHIU FYQSFTTUIFMBXTEFTDSJCJOHIPXGPSDFTEFUFSNJOFUIFNPUJPOTPGCPEJFT F ma) and IPXUIFQPTJUJPOTPGCPEJFTBOEPUIFSGBDUPSTEFUFSNJOFHSBWJUBUJPOBMBOEPUIFSLJOET PGGPSDFT6TJOHUIFTFQSJODJQMFT /FXUPOBOEQIZTJDJTUTGPMMPXJOHIJNXFSFBCMFUP QSFEJDUBOEFYQMBJOUIFNPUJPOTPGDFMFTUJBMBOEUFSSFTUSJBMCPEJFT'PSFYBNQMF UIFTF laws account for the orbits of the planets, the trajectories of cannon balls, and the QFSJPET PG QFOEVMVNT-JLF/FXUPO -BQMBDFEJE OPULOPX BMM UIFGPSDFTUIFSF BSF but he envisioned that, once those forces (and the corresponding force laws) were LOPXO /FXUPOJBO QIZTJDT XPVME CF B complete physical theory. That is, its laws would account for the motions of all material particles. And since he thought that FWFSZUIJOH UIBU FYJTUT JO TQBDF JT DPNQPTFE PG WBSJPVT LJOET PG WFSZ TNBMM NBUFSJBM #"33:-0&8&3 QBSUJDMFT PSBUPNT IFUIPVHIUUIBU/FXUPOJBONFDIBOJDT PODFBMMUIFGPSDFTXFSF LOPXO XPVMECFXIBUUPEBZXFXPVMEDBMMthe theory of everything.
    [Show full text]
  • Descartes' Hostages: Mind and Observability in Education
    Descartes’ Hostages: Mind and Observability in Education by Shannon Rodgers B.A. (Hon.), Simon Fraser University, 1994 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In the Curriculum Theory & Implementation: Philosophy of Education Program Faculty of Education © Shannon Rodgers 2017 SIMON FRASER UNIVERSITY Summer 2017 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Shannon Rodgers Degree: Doctor of Philosophy Title: Descartes’ Hostages: Mind and Observability in Education Examining Committee: Chair: Dr. Stephen Smith Teaching Professor Dr. Charles Bingham Senior Supervisor Professor ___________________________________________ Dr. Heesoon Bai Supervisor Professor ___________________________________________ Dr. Sean Blenkinsop Supervisor Assistant Professor ___________________________________________ Dr. Allan MacKinnon Internal Examiner Associate Professor ___________________________________________ Dr. Taylor Webb External Examiner Associate Professor Dept. of Educational Studies University of British Columbia ___________________________________________ Date Defended/Approved: June 14th, 2017 ii Ethics Statement iii Abstract My purpose in this dissertation is to argue that given the relationship among the concepts of mind, knowledge, education and assessment, educators must pay more attention to our current view of mind. Educators use assessment practices,
    [Show full text]
  • Newton's Notebook
    Newton’s Notebook The Haverford School’s Math & Applied Math Journal Issue I Spring 2017 The Haverford School Newton’s Notebook Spring 2017 “To explain all nature is too difficult a task for any one man or even for any one age. ‘Tis much better to do a little with certainty & leave the rest for others that come after you.” ~Isaac Newton Table of Contents Pure Mathematics: 7 The Golden Ratio.........................................................................................Robert Chen 8 Fermat’s Last Theorem.........................................................................Michael Fairorth 9 Math in Coding............................................................................................Bram Schork 10 The Pythagoreans.........................................................................................Eusha Hasan 12 Transfinite Numbers.................................................................................Caleb Clothier 15 Sphere Equality................................................................................Matthew Baumholtz 16 Interesting Series.......................................................................................Aditya Sardesi 19 Indirect Proofs..............................................................................................Mr. Patrylak Applied Mathematics: 23 Physics in Finance....................................................................................Caleb Clothier 26 The von Bertalanffy Equation..................................................................Will
    [Show full text]
  • A Knowledge Concept Map: Structured Concept Analysis from Systematic Literature Review
    29 a Knowledge Concept Map: Structured Concept analysis from Systematic literature review Philip Sisson1 and Julie J.C.H. Ryan2 Abstract The purpose of this article is to present a mental model of knowledge as a concept map as an input to knowledge management (KM) investigations. This article’s extended knowledge concept map can serve as a resource where the investigation, development, or application of knowledge would be served with a broad mental model of knowledge. Previously unrelated concepts are related; knowledge concepts can sometimes be expressed as a range, i.e., certainty related states: view, opinion, sentiment, persuasion, belief, and conviction. Extrathesis is identified as a potential skill level higher than synthesis, and associated with the concepts: discovery, institution, insight (the event), revelation, or illumination that precedes innovation. Qualitative methods were used to gather and document concepts. System engineering and object analysis methods were applied to define and relate concepts. However, the theoretical sampling and theoretical saturation methods applied do not guarantee all appropriate concepts have been identified. Given the breadth, depth, and dimensionality of concepts of knowledge, later researchers may add additional concepts. This article provides evidence of additional things people know, an alternative to psychology’s acquaintanceship, understanding and placement of newer categorizations of knowledge in relation to older ones, and suggests that ranges for knowledge terms exist. This article extends the 2015 paper on this topic by: 1) taking a deeper look into epistemological terms and relationships, 2) providing contextual definitions, 3) suggesting extrathesis as an idea beyond synthesis, 4) updating the concept map; and 5) providing new insight on the overloaded knows including adding an eleventh know.
    [Show full text]