Outcome Evaluation and Procedural Knowledge in Implicit Learning

Total Page:16

File Type:pdf, Size:1020Kb

Outcome Evaluation and Procedural Knowledge in Implicit Learning Outcome Evaluation and Procedural Knowledge in Implicit Learning Danilo Fum ([email protected]) Department of Psychology, University of Trieste Via S.Anastasio 12, I-34134, Trieste, Italy Andrea Stocco ([email protected]) Department of Psychology, University of Trieste Via S.Anastasio 12, I-34134, Trieste, Italy Abstract form. Starting from the 90s, however, it has been suggested that many results could be explained by Although implicit learning has been considered in recent supposing that participants acquire concrete, fragmentary, years as a declarative memory phenomenon, we show that a declarative knowledge of the task represented through procedural model can better elucidate some intriguing and instances. Instance-based knowledge has indeed been unexpected data deriving from experiments carried out with Sugar Factory (Berry & Broadbent, 1984), one of the most shown to underlie or significantly affect performance on popular paradigms in this area, and can account for other artificial grammar learning (Perruchet & Pacteau, 1990), phenomena reported in the literature that are at odds with sequence prediction (Perruchet, 1994) and dynamic current explanations. The core of the model resides in its system control tasks (Dienes & Fahey, 1995; Lebiere, adaptive mechanism of action selection that is related to Wallach & Taatgen, 1998, Taatgen & Wallach, 2002). outcome evaluation. We derived two critical predictions In this paper we will focus on a widely adopted from the model concerning: (a) the role of situational dynamic system control task known as Sugar Factory factors, and (b) the effect of a change in the criterion (Berry & Broadbent, 1984). In this task, henceforth SF, adopted by participants to evaluate the outcome of their participants are asked to imagine themselves in chief of a actions. We tested both predictions with an experiment whose results corroborated the model. We conclude the sugar-producing factory. Their goal is to reach and paper by emphasizing the role played by procedural maintain the production of sugar (P) at a specified target knowledge and evaluation mechanisms in explaining some level by modifying the amount of workers (W) allocated implicit learning phenomena. to the production. Unbeknown to participants, P and W are related by the equation: 2 Introduction Pt = Wt - Pt -1 + e One of the current hot topics in cognitive science is where Pt is the quantity of sugar produced at trial t, just represented by implicit learning, that is the ability to after the allocation of Wt workers, Pt–1 represent the acquire new knowledge even when apparently unaware of amount of sugar produced in the previous trial, and e is a it, or unable to express it. Research on implicit learning, random variable that can assume with equal probability has focussed mostly on three phenomena. First, people one of the values in the set {–1, 0, +1}. The value for both that in a learning phase have experienced a set of W e P ranges from 1 to 12; resulting values of P less than grammatical strings generated from artificial grammar 1 are simply set to 1, and values exceeding 12 are set to automata are surprisingly good in the test phase at 12. For a more realistic interpretation, values of W are discriminating new grammatical strings from multiplied by 100 (hundreds of workers), and values of P ungrammatical ones (Reber, 1967). Second, participants by 1,000 (tons of sugar). seem able to abstract the structure of temporal event In controlling SF for two subsequent blocks of trials, series, as shown, for instance, by an above-chance ability participants generally exhibit an improvement in their to predict the successive events (Kushner, Cleeremans & performance from the first to the second phase Reber, 1991). Third, participants improve their capacity to demonstrating that some learning occurred, even if they control a dynamic system, albeit being unable to report were actually unaware of the relation between W and P. significant information on how the system worked (Berry Performance in SF has been generally measured by the & Broadbent, 1984). total amount of hits, i.e., trials in which participants In all these domains implicit learning was first reached a production that was at most one unit above or explained by supposing the existence of an unconscious below the target level. This loose criterion was and autonomous learning system capable of extracting introduced to take into account the role of the stochastic knowledge in general, abstract, and transferable rule-like noise e, but is important to notice that participants were 426 not informed about the adopted criterion, and they were 1998; Taatgen & Wallach, 2002), it relies almost kept to believe that the only correct responses were those exclusively on the subsymbolic procedural learning capable of obtaining the exact target production level. mechanism provided by that architecture. Two main computational models have been put forward ACT-R is based on the assumption that the knowledge to explain the results from the Sugar Factory task: one utilized by the cognitive system can be distinguished developed by Dienes & Fahey (1995), and the other by between declarative and procedural. The former encodes Wallach and coworkers (Lebiere, Wallach & Taatgen, knowledge related to remembered facts, perceived events 1998; Taatgen & Wallach, 2002). The former is loosely or sensorial input, and is represented through chunks, i.e., based on Logan’s theory of automatization (Logan, 1988), frame-like structures constituted by labeled slots with the latter is grounded on the ACT-R cognitive architecture associated filler values. Procedural knowledge represents (Anderson & Lebiere, 1998) and takes advantage of many processes and skills used by the cognitive systems to of its features. Both models rely on the retrieval from pursue its goals. It is represented through production memory of previously stored instances of the interaction rules, or productions, whose conditions specify the with SF, although they differ in the way this information patterns of declarative elements that are to be active for is represented, and in the retrieval mechanism adopted. the production to apply. The action part of a production In the paper we illustrate a new procedural model that specifies some modifications to be brought to declarative can better elucidate some intriguing and unexpected data chunks, or some actions to be performed in the obtained in previous experiments with SF (Fum & Stocco, environment. Differently from chunks, productions are 2003), and that can account for other phenomena reported supposed not to be conscious or reportable, and thus are in the literature that are at odds with current explanations. implicit in nature. All the strategies encoded in our model We present a new experiment testing two critical have been implemented as ACT-R productions that are let predictions of the model concerning (a) the role of compete for execution. situational factors, and (b) the effect of a change in the The process of selecting which production to execute criterion adopted by participants to evaluate the outcome among those that have their conditions satisfied is based of their actions in which we obtained results that in ACT-R on the concept of expected utility. The utility corroborated the model. We conclude the paper by Ui of a production i is a noisy, continuously varying emphasizing the role played by procedural knowledge and quantity defined by the formula Ui = PiG – Ci, where Pi evaluation mechanisms in explaining implicit learning represents the probability that production i will reach the phenomena. goal it is meant to achieve, G is the value of the goal itself, and Ci is the estimated cost of applying i. The A Procedural Model for Sugar Factory higher the expected utility of a production, the higher the The model we developed for the SF task is grounded on probability that the production will be chosen for the assumption that participants interacting with SF can execution, even if a randomly distributed noise prevents exploit a set of very simple strategies in choosing the the mechanism from being completely deterministic. workforce value for the SF task. By combing the SF Subsymbolic procedural learning is accomplished in literature, and by looking at the interaction traces of the ACT-R through the adjustment and refinement of the participants, we could identify some of these strategies: production parameters. The estimated value Pi of a Choose-Random: Choose randomly a value between 1 production i, in particular, is given by the ratio between and 12. the number of successes obtained in the past by applying Repeat-Choice: Repeat the value of W chosen in the the production (i.e., the number of times the production previous interaction episode. has succeeded in reaching its goal) and the total number Stay-on-Hit: Whenever the previous W choice resulted of times (i.e., the sum of the successes and failures) the in a success, repeat it. This strategy can be considered as production has been executed. After each production a more selective variant of the previous one. firing, the probability Pi is updated to reflect the statistical Pivot-Around-Target: Choose for W the value of the structure of environment, according to a Bayesian target, plus/minus one. updating framework. Because probability P is initially Jump-Up/Down: If the resulting P is lower than the not defined (and after the very first production firing its target, increase the value of W; if it is higher, diminishes estimate will be 1 or 0 according to whether it was a it. There exist several possible variants of this strategy. success of a failure), it is common practice to start the The one employed in the model was the Jump-on-Middle, learning process by providing each production with values i.e., choose as the new W a quantity that lies midway that represent prior estimates of the production’s between the previous value and the upper/lower limit of successes and failures.
Recommended publications
  • ED305329.Pdf
    DOCUMENT RESUME ED 305 329 SP 030 956 AUTHOR Sarvimaki, Anneli TITLE Knowledge in Interactive Practice Disciplines. An Analysis of Knowledge in Education and Health Care. Research Bulletin 68. INSTITUTION Helsinki Univ. (Finland). Dept. of Education. REPORT NO ISBN-951-45-4787-X PUB DATE 88 NOTE 292p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC12 Plus Postage. DESCRIPTORS *Educational Objectives; Educational Philosophy; Educational Practices; *Educational Principles; Health Promotion; *Interaction; Sociolinguistics; *Theory Practice Relationship; Values ABSTRACT This study formulates a conception of knowledge in interactive practice disciplines such as education and health care and clarifies different types of knowledge in these disciplines. Focus is on the relationship between practical and theoretical knowledge. Four theses are discussed: (1) the role of knowledge in an interactive practice is to guide practice; (2) different types of knowledge in an interactive practice consist of value-knowledge, factual knowledge and procedural knowledge, parts of which are unarticulated, parts articulated; (3) science is a way of articulating and creating knowledge that can be used as internal action determinants in the practice concerned; and (4) theories in an interactive practice can have both a theoretical and a practical purpose but the theoretical purpose is also indirectly linked to the practical. (Author/JD) "t***************************************************2****************** * Reproductions supplied by EDRS are the
    [Show full text]
  • Procedural and Declarative Knowledge an Evolutionary Perspective
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Open Universiteit Nederland Procedural and Declarative Knowledge An Evolutionary Perspective Timon ten Berge Ren´e van Hezewijk Vrije Universiteit Utrecht University Abstract. It appears that there are resemblances in the organization of memory and the visual system, although the functions of these faculties differ considerably. In this article, the principles behind this organization are discussed. One important principle regards the distinction between declarative and procedural knowledge, between knowing that and knowing how. Declarative knowledge is considered here not as an alternative kind of knowledge, as is usually the case in theories of memory, but as part of procedural knowledge. In our view this leads to another approach with respect to the distinction. Declarative knowledge has occupied more attention in (cognitive) psychological research than can be justified on the basis of the importance of procedural knowledge for behavior. We also discuss the question whether there are other brain faculties that reflect the same organizational characteristics. We conclude with some speculations about the consequent role of consciousness in such a tentative model. KEY WORDS: declarative knowledge, evolutionary psychology, memory, procedural knowledge, vision Introduction: Modularity in the Human Brain Traditionally, cognitive psychology has viewed the human mind as a general information-processing device. On this view, a human being is born with a set of general reasoning capacities that can be used when confronted with any problem. A growing number of researchers are supporting a view of the human brain as an organized collection of specialized modules, each with its own domain-specific knowledge and responses.
    [Show full text]
  • Mapping the Meaning of Knowledge in Design Research Kristina Niedderer University of Hertfordshire
    V.2:2 April 2007 www.designresearchsociety.org Design Research Society ISSN 1752-8445 Mapping the Meaning of Knowledge in Design Research Kristina Niedderer University of Hertfordshire Knowledge plays a vital role in our life This question has arisen for design in Table of Contents: in that it reflects how we understand the UK, as well as more generally for the world around us and thus deter- creative and practice-led disciplines Articles: 1 Mapping the Meaning of Knowledge mines how we act upon it. In this sense, (CPDs), because research regulations in Design Research knowledge is of particular importance and requirements in the UK remain Kristina Niedderer for designers because they act to shape silent about what knowledge and our world. Conventionally, knowledge understanding mean in the context of 3 Call for Papers: Design Research creation has been assumed by (design) their specifications while implicitly pri- Quarterly research. However developments of oritising propositional knowledge over Case Studies in Research: Knowledge using practice within research have knowledge that cannot be expressed in and Inquiry pointed to knowledge creation within that form (Niedderer 2007). and through practice. This has raised This has led to a number of prob- Listings: the question of the meaning, role and lems concerning the role and format 14 Current Research in Design: format of knowledge in both research of knowledge in research and practice ToCs from Leading Design Journals and practice, and about the compatibil- in the UK. For example, because of the ity between knowledge of research and language-based mode of proposition- 21 Upcoming Events Worldwide practice.
    [Show full text]
  • Descartes' Hostages: Mind and Observability in Education
    Descartes’ Hostages: Mind and Observability in Education by Shannon Rodgers B.A. (Hon.), Simon Fraser University, 1994 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In the Curriculum Theory & Implementation: Philosophy of Education Program Faculty of Education © Shannon Rodgers 2017 SIMON FRASER UNIVERSITY Summer 2017 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Shannon Rodgers Degree: Doctor of Philosophy Title: Descartes’ Hostages: Mind and Observability in Education Examining Committee: Chair: Dr. Stephen Smith Teaching Professor Dr. Charles Bingham Senior Supervisor Professor ___________________________________________ Dr. Heesoon Bai Supervisor Professor ___________________________________________ Dr. Sean Blenkinsop Supervisor Assistant Professor ___________________________________________ Dr. Allan MacKinnon Internal Examiner Associate Professor ___________________________________________ Dr. Taylor Webb External Examiner Associate Professor Dept. of Educational Studies University of British Columbia ___________________________________________ Date Defended/Approved: June 14th, 2017 ii Ethics Statement iii Abstract My purpose in this dissertation is to argue that given the relationship among the concepts of mind, knowledge, education and assessment, educators must pay more attention to our current view of mind. Educators use assessment practices,
    [Show full text]
  • A Knowledge Concept Map: Structured Concept Analysis from Systematic Literature Review
    29 a Knowledge Concept Map: Structured Concept analysis from Systematic literature review Philip Sisson1 and Julie J.C.H. Ryan2 Abstract The purpose of this article is to present a mental model of knowledge as a concept map as an input to knowledge management (KM) investigations. This article’s extended knowledge concept map can serve as a resource where the investigation, development, or application of knowledge would be served with a broad mental model of knowledge. Previously unrelated concepts are related; knowledge concepts can sometimes be expressed as a range, i.e., certainty related states: view, opinion, sentiment, persuasion, belief, and conviction. Extrathesis is identified as a potential skill level higher than synthesis, and associated with the concepts: discovery, institution, insight (the event), revelation, or illumination that precedes innovation. Qualitative methods were used to gather and document concepts. System engineering and object analysis methods were applied to define and relate concepts. However, the theoretical sampling and theoretical saturation methods applied do not guarantee all appropriate concepts have been identified. Given the breadth, depth, and dimensionality of concepts of knowledge, later researchers may add additional concepts. This article provides evidence of additional things people know, an alternative to psychology’s acquaintanceship, understanding and placement of newer categorizations of knowledge in relation to older ones, and suggests that ranges for knowledge terms exist. This article extends the 2015 paper on this topic by: 1) taking a deeper look into epistemological terms and relationships, 2) providing contextual definitions, 3) suggesting extrathesis as an idea beyond synthesis, 4) updating the concept map; and 5) providing new insight on the overloaded knows including adding an eleventh know.
    [Show full text]
  • The Spaces of Data, Information, and Knowledge
    The Spaces of Data, Information, and Knowledge Xiaoyu Chena and Dongming Wangb,c Abstract We study the data space D of any given data set X and explain how functions and relations are defined over D. From D and for a specific domain ∆ we construct the information space I of X by interpreting variables, functions, and explicit relations over D in ∆ and by including other relations that D implies under the interpretation in ∆. Then from I we build up the knowledge space K of X as the product of two spaces KT and KP , where KT is obtained from I by using the induction principle to generalize propositional relations to quantified relations, the deduction principle to generate new relations, and standard mechanisms to validate relations and KP is the space of specifications of methods with operational instructions which are valid in KT . Through our construction of the three topological spaces the following key observation is made clear: the retrieval of information from the given data set for ∆ consists essentially in mining domain objects and relations, and the discovery of knowledge from the retrieved information consists essentially in applying the induction and deduction principles to generate propositions, synthesizing and modeling the information to generate specifications of methods with operational instructions, and validating the propositions and specifications. Based on this observation, efficient approaches may be designed to discover profound knowledge automatically from simple data, as demonstrated by the result of our study in the case of geometry. Keywords data space, declarative knowledge, deduction principle, implied knowledge, induction principle, information retrieval, knowledge discovery, procedural knowledge, quantified relation arXiv:1411.1497v1 [cs.AI] 6 Nov 2014 1 Introduction With increasingly wide use of digital devices and networks, more and more scientific explorations and social activities are carried out electronically, where the involved objects, phenomena, and behaviors of interest are measured and presented in the form of data.
    [Show full text]
  • Mind, Machines and Language
    Mind, Machines and Language ELL457/HUL381 [Slides by Santanu Chaudhury, Hiranmay Ghosh, and Sumeet Agarwal] [Material sourced from Friedenberg and Silverman, 2006] Introduction: Philosophical & Psychological Perspectives “The sciences have developed in an order the reverse of what might have been expected. What was most remote from ourselves was first brought under the domain of law, and then, gradually, what was nearer: first the heavens, next the earth, then animal and vegetable life, then the human body, and last of all (as yet very imperfectly) the human mind.” —Bertrand Russell, 1935 Neuroscience Electrical Engineering Psychology and Cognitive Science Computer Science Philosophy Linguistics Cognitive Science: Mind as Computer ● Representation ➔ Concepts ➔ Propositions ➔ Rules ➔ Analogies ➔ Digital (symbols) ➔ Analog (images) ● Transformation/Processing/Computation Example: Analogical reasoning [Duncker '45] Suppose you are a doctor faced with a patient who has a malignant tumor in his stomach. To operate on the patient is impossible, but unless the tumor is destroyed, the patient will die. A kind of ray, at a sufficiently high intensity, can destroy the tumor. Unfortunately, at this intensity the healthy tissue that the rays pass through on the way to the tumor will also be destroyed. At lower intensities the rays are harmless to healthy tissue, but will not affect the tumor. How can the rays be used to destroy the tumor without injuring the healthy tissue? Analogy A small country was ruled from a strong fortress by a dictator. The fortress was situated in the middle of the country, surrounded by farms and villages. Many roads led to the fortress through the countryside.
    [Show full text]
  • Representation of Procedural Knowledge
    NEW MEXICO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT Representation of Procedural Knowledge Roger T Hartley Abstract A case is made for correcting a perceived imbalance between the usual ways of representing declarative and procedural knowledge. A proposed solution joins the traditional conceptual graph notation and elements of visual programming languages. The aim is to maintain the visual nature of both notations without greatly changing each one. Representation of Procedural Knowledge 1. Introduction We start with the premise that there is a clear duality between declarative and procedural knowledge [Ryle, 1949]. One form of knowledge is inadequate without the other, and thus choosing one form of knowledge over the other for any reason would lead to philosophical falsehoods at worst, or a serious neglect at best. We believe that there has been such a neglect of procedural knowledge over the course of history, rooted in our human predilection for language on the one hand, and pictures on the other. Add to this that we are still puzzled over the nature of time. It has only recently, and reluctantly, been incorporated into our understanding of the physical world as an equal to space. Processes are hard to perceive, hard to understand, and, in the end, get the short end of the theoretical stick. We are much happier with observable measurement - the visual realm again - and static relationships between relatively fixed quantities. This paper is a brief investigation of the nature of the duality between the two types of knowledge, and their representation for processing in computer form. Our preference for the conceptual graph formalism will lead us to a particular set of choices for representing procedural knowledge so that the perceived imbalance with declarative knowledge can be redressed.
    [Show full text]
  • A Truth-Based Epistemological Framework for Supporting Teachers in Integrating Indigenous Knowledge Into Science Teaching
    A Truth-Based Epistemological Framework for Supporting Teachers in Integrating Indigenous Knowledge into Science Teaching Gracious Zinyeka*, Gilbert O.M. Onwu and Max Braun Department of Science Mathematics & Technology Education, University of Pretoria, Pretoria, South Africa *Corresponding author. 713 Popgum Road, Greenhill, Bindura, Zimbabwe. Email: [email protected] Integrating indigenous knowledge (IK) into school science teaching is one way of maximising the socio- cultural relevance of science education for enhanced learners’ performance. The epistemological differences however between the nature of science (NOS) and nature of indigenous knowledge (NOIK) constitute a major challenge for an inclusive IK-science curriculum integration. This article is about the application of a truth-based epistemological framework designed to support teachers to make decisions on how specific pieces of indigenous knowledge (local traditional practices and technologies) may be included in science lessons. First, an attempt was made to develop a truth-based epistemological framework for identifying epistemology(ies) of indigenous knowledge and practices. Second a group of science teachers used the truth-based epistemological framework to examine ways in which some specified IK practices that comprised a coherent set of knowledge themes on health, agriculture and technology could be integrated into the school science curriculum in a valid and legitimate way. The IK practices used in the study were systematically identified and documented by means of personal observations and interviews of key informants in a rural community in Zimbabwe. The main findings of the study showed that the truth-based epistemological framework was useful in providing an epistemological basis for including some IK practices in science teaching and learning.
    [Show full text]
  • Notes on Knowledge Gary Hardegree Department of Philosophy University of Massachusetts Amherst, MA 01003
    Notes on Knowledge Gary Hardegree Department of Philosophy University of Massachusetts Amherst, MA 01003 1. Introduction......................................................................................................................................1 2. Epistemology ...................................................................................................................................2 3. The Verb ‘Know’.............................................................................................................................2 4. Propositional Attitudes and Propositional Adjectives .....................................................................4 5. Propositions......................................................................................................................................5 6. The Distinction between Sentences and Propositions......................................................................6 7. The Ubiquitous ‘That’......................................................................................................................6 8. Direct versus Indirect Quotation......................................................................................................7 9. Sentential Attitudes and Properties..................................................................................................8 10. The Ubiquitous ‘It’...........................................................................................................................9 11. Sentential Attitudes can be Weird..................................................................................................10
    [Show full text]
  • 2019-01-08 Peels on El Kassar
    http://social-epistemology.com ISSN: 2471-9560 Exploring the Boundaries of Ignorance: Its Nature and Accidental Features Rik Peels, Vrije Universiteit Amsterdam –––––––––––––––––– Peels, Rik. “Exploring the Boundaries of Ignorance: Its Nature and Accidental Features.” Social Epistemology Review and Reply Collective 8, no. 1 (2019): 10-18. Short url: https://wp.me/p1Bfg0-456 (provided by WordPress) Vol. 8, no. 1 (2019): 10-18. https://wp.me/p1Bfg0-456 Nadja El Kassar is right that different fields in philosophy use rather different conceptions of ignorance. I also agree with her that there seem to be three major conceptions of ignorance: (i) ignorance as propositional ignorance, which she calls the ‘propositional conception of ignorance’, (ii) ignorance as actively upheld false outlooks, which she names the ‘agential conception of ignorance’, and (iii) ignorance as an epistemic practice, which she dubs the ‘structural conception of ignorance’. It is remarkable that nobody else has addressed the question before of how these three conceptions relate to each other. I consider it a great virtue of her lucid essay that she not only considers this question in detail, but also provides an account that is meant to do justice to all these different conceptions of ignorance. Let us call her account the El Kassar Synthesis. It reads as follows: Ignorance is a disposition of an epistemic agent that manifests itself in her beliefs – either she has no belief about p or a false belief – and her epistemic attitudes (doxastic attitudes, epistemic virtues, epistemic vices).1 My reply to her insightful paper is structured as follows. First, I argue that her synthesis needs revision on various important points (§2).
    [Show full text]
  • 1 Inductive Teaching and Learning Methods
    INDUCTIVE TEACHING AND LEARNING METHODS: DEFINITIONS, COMPARISONS, AND RESEARCH BASES* Michael J. Prince Bucknell University Richard M. Felder North Carolina State University To state a theorem and then to show examples of it is literally to teach backwards. (E. Kim Nebeuts) ABSTRACT Traditional engineering instruction is deductive, beginning with theories and progressing to applications of those theories. Alternative teaching approaches are more inductive. Topics are introduced by presenting specific observations, case studies or problems, and theories are taught or the students are helped to discover them only after the need to know them has been established. This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching. The paper defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness of the methods. While the strength of the evidence varies from one method to another, inductive methods are consistently found to be at least equal to, and in general more effective than, traditional deductive methods for achieving a broad range of learning outcomes. I. INTRODUCTION A. Two Approaches to Education Engineering and science are traditionally taught deductively. The instructor introduces a topic by lecturing on general principles, then uses the principles to derive mathematical models, shows illustrative applications of the models, gives students practice in similar derivations and applications in homework, and finally tests their ability to do the same sorts of things on exams. Little or no attention is initially paid to the question of why any of that is being done—what real- world phenomena can the models explain, what practical problems can they be used to solve, and why the students should care about any of it.
    [Show full text]