The Surface Composition of Ceres• Ezinu Quadrangle Analyzed By

Total Page:16

File Type:pdf, Size:1020Kb

The Surface Composition of Ceres• Ezinu Quadrangle Analyzed By Icarus 318 (2019) 124–146 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The surface composition of Ceres’ Ezinu quadrangle analyzed by the Dawn mission ∗ Jean-Philippe Combe a, , Sandeep Singh a, Katherine E. Johnson a, Thomas B. McCord a, Maria Cristina De Sanctis b, Eleonora Ammannito c, Filippo Giacomo Carrozzo b, Mauro Ciarniello b, Alessandro Frigeri b, Andrea Raponi b, Federico Tosi b, Francesca Zambon b, Jennifer E.C. Scully d, Carol A. Raymond d, Christopher T. Russell e a Bear Fight Institute, 22 Fiddler’s Road, P.O. Box 667, Winthrop, WA 98862, USA b Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, Rome, Italy c Agenzia Spaziale Italiana, Rome, Italy d Jet Propulsion Laboratory, Pasadena, CA, USA e Institute of Geophysics and Planetary Physics, University of California Los Angeles, CA, USA a r t i c l e i n f o a b s t r a c t Article history: We studied the surface composition of Ceres within the limits of the Ezinu quadrangle in the ranges Received 5 December 2017 180–270 °E and 21–66 °N by analyzing data from Dawn’s visible and near-infrared data from the Visi- Accepted 22 December 2017 ble and InfraRed mapping spectrometer and from multispectral images from the Framing Camera. Our Available online 5 January 2018 analysis includes the distribution of hydroxylated minerals, ammoniated phyllosilicates, carbonates, the Keywords: search for organic materials and the characterization of physical properties of the regolith. The surface of Dwarf planet Ceres this quadrangle is largely homogenous, except for small, high-albedo carbonate-rich areas, and one zone Surface composition on dark, lobate materials on the floor of Occator, which constitute the main topics of investigation. (1) Mineralogy Carbonate-rich surface compositions are associated with H 2 O ice rich crust. Weaker absorption bands of Spectroscopy hydroxylated and ammoniated minerals over the carbonate-rich areas can be explained by higher abun- dances of carbonates at the topmost surface. (2) Dark, smooth lobate materials at the foot of Occator’s northeastern wall possibly reveal fresh slumping of phyllosilicate-rich materials with fine grain size, or local enrichment in carbon-rich materials such as tholins. (3) The deeper absorption band depth of OH and NH 4 , on the rim of several impact craters, is one observation that is consistent with a stratification of the phyllosilicate abundance that has been inferred previously from global investigations. ©2018 Elsevier Inc. All rights reserved. 1. Introduction fication of molecular groups and minerals by the Visible and In- fraRed mapping spectrometer (VIR) ( De Sanctis et al., 2011 ), mul- (1) Ceres is the largest object in the main asteroid belt, the tispectral data from the Framing Camera (FC) ( Sierks et al., 2011 ), only one with global hydrostatic compensation ( Dermot, 1979; Mil- and the elemental composition by the Gamma-Ray and Neutron lis et al., 1987; Park et al, 2016 ), classified as a dwarf planet 1 and, Detector (GRaND) ( Prettyman et al., 2011 ). because its unique characteristics are linked to the origin and evo- The surface of Ceres is essentially made of aqueously altered lution of the solar system, it is the second main objective of the silicates, similar to the composition of carbonaceous chondrites Dawn mission ( Russell et al., 2011 ). Ceres’ thermodynamics, chem- ( Johnson et al., 1973; 1975; Larson et al., 1979 ; Gaffey and Mc- istry and internal structure are investigated remotely by Dawn’s in- Cord, 1979; Lebofsky et al., 1981; Fanale and Salvail, 1989; Rivkin struments, which are dedicated to observe evidence of differenti- et al., 2006; Milliken and Rivkin, 2009 ). The ubiquitous presence ation processes, material redistribution by meteoroid impacts, and of absorption band at 2.7 μm is characteristic of the widespread effects of space weathering. One main objective of the mission is distribution of hydroxyl-rich (OH) minerals. An absorption band at mapping the surface composition of Ceres, particularly the identi- 3.1 μm, also detected everywhere on Ceres, is attributed to N –H + bonds in ammoniated minerals (structural NH4 ) (De Sanctis et al., 2015 ). Both absorption bands have been linked to the presence of ∗ Corresponding author. phyllosilicates on Ceres ( De Sanctis et al., 2015 ), where Mg-rich E-mail address: jean-philippe_combe@bearfightinstitute.com (J.-P. Combe). phyllosilicates exhibit only the OH absorption at 2.7 μm and NH - 4 1 http://astro.cas.cz/nuncius/ . https://doi.org/10.1016/j.icarus.2017.12.039 0019-1035/© 2018 Elsevier Inc. All rights reserved. J.-P. Combe et al. / Icarus 318 (2019) 124–146 125 rich phyllosilicates have both (the ammonium substitutes into a a similar principle to the analysis of Vesta ( Combe et al., 2015 )): large cation site). The observed lateral heterogeneities in the dis- we typically paired the absorption band depths at 2.72 and 3.1 μm tribution of the two absorption band depths are interpreted as rel- (both sensitive to phyllosilicates), and the absorption band depths ative abundance variations of these two phyllosilicate species (and at 3.4 and 4.0 μm (both sensitive to carbonates). We also used only these two). To date, no shifting in position of these two ab- three-color composites (which can be applied with any combina- sorption bands could be measured, which leads to the conclusion tion of three spectral parameters). that fluctuations in the geochemistry of the exposed upper layer Within the boundaries of the Ezinu quadrangle, we defined sev- are too small to be reported, and that no other type of phyllosili- eral topics of investigation, and here we summarize the results: cates is observed ( Ammannito et al., 2016 ). The origin of those phyllosilicates is likely endogenous. Ammo- (1) Areas around flow features have weaker absorption bands of nia could have been delivered on Ceres from other bodies origi- phyllosilicates and stronger absorption bands of carbonates, nating from the outer solar system ( De Sanctis et al., 2015 ), al- suggesting a relationship between the abundance of these min- though at places such as Dantu crater–where the impact reaches erals and H2 O ice in the subsurface, possibly hydrothermal pro- very deep into Ceres’ crust–the 3.1 μm band is very strong–rather cesses. pointing to a higher abundance of ammonium in the subsurface (2) Rims of a few large impact craters (Ezinu, Occator) exhibit ( Stephan et al., 2017b,c ). Bright carbonates, also of endogenous ori- deeper absorption band depths at 2.72 and 3.1 μm than the gin, have been discovered in the areas of highest albedo (faculae) floor or the surrounding terrains, which may reveal either more with an absorption band at 4.0 μm ( De Sanctis et al., 2016 ) that intense aqueous alteration or grain size sorting, or composi- are the strongest on the floor of the Occator crater, and at 3.4 μm. tional variations in the stratigraphy. Aliphatic organics, also likely endogenous, are found in a region (3) On the northern walls, rims and ejecta of the Occator crater, a that includes the Ernutet crater, where the surface exhibits a strong strong positive spectral slope in the visible and up to 1.25 μm, absorption band at 3.4 μm ( De Sanctis et al., 2017 ) and a positive without the absorption bands distinctive of organic materials spectral slope in the visible ( Schröder et al., 2017 ). Finally, exposed is observed. This is a rare finding on Ceres that may indicate either different physical properties (grain size) from the rest H2 O ice was discovered in nine small areas at latitudes above 30° by the presence of absorption bands at 1.28, 1.65 and 2.00 μm of Ceres’ surface, or a distinct composition of the topmost mi- ( Combe et al., 2016, 2017 ), which is likely the result of recent ex- crometers of the surface. posure of buried water ice, consistent with a higher H2 O content in the subsurface as a function of latitude ( Prettyman et al., 2017 ). 2. Dawn’s spectral dataset and methods To date, the distributions of each of the surface components de- tected by the Dawn mission have only been studied separately. Dawn began orbiting Ceres on 6 March 2015 at a 14,0 0 0 km At present, a comparative distribution can be performed in de- radius (23 April–9 May), followed by a 4900 km (6–30 June), a tail at high resolution (140 m) from maps of VIR spectral param- 1950 km radius orbit (17 August–23 October), and an 850 km or- eters ( Frigeri et al., 2017 ), which may lead to refined interpreta- bit (16 December 2015–October 2016). Reflectance spectroscopy tions on a case-by-case basis. The analysis of Ezinu quadrangle is the main technique available on the Dawn spacecraft to study is also the opportunity to open new questions about the detec- the surface composition remotely; it is sensitive to the molecular tion and distribution of carbonates and phyllosilicates on Ceres. bonds, minerals and physical properties of the first micrometers of Indeed, the presence of these two mineralogical species has been the surface. Multispectral, high-resolution images from FC and data inferred only from the identification of absorption bands beyond from the imaging spectrometer VIR are used in this study. 2.7 μm, although they are both expected to have absorption bands between 1.4 and 2.5 μm. In this paper, we discuss the reasons for 2.1. FC multispectral images and albedo maps their non-detection, and we open the exploration of alternative in- terpretations such as the possible presence of carboxylic acids (e.g. The Framing Camera has a two-dimension detector Applin et al., 2016 ) instead of ammoniated phyllosilicates and car- (1024 × 1024 pixels) and seven bandpass filters, plus a clear bonates.
Recommended publications
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Special Crater Types on Vesta and Ceres As Revealed by Dawn Katrin Krohn
    Chapter Special Crater Types on Vesta and Ceres as Revealed by Dawn Katrin Krohn Abstract The exploration of two small planetary bodies by the Dawn mission revealed multifaced surfaces showing a diverse geology and surface features. Impact crater are the most distinctive features on these planetary bodies. The surfaces of asteroid Vesta and the dwarf planet Ceres reveal craters with an individual appearance as caused by different formation processes. Special topographic and subsurface conditions on both bodies have led to the development of special crater types. This chapter present the three most characteristic crater forms fund on both bodies. Asymmetric craters are found on both bodies, whereas ring-mold craters and floor-fractured craters are only visible on Ceres. Keywords: asteroids, asymmetric craters, ring mold craters, floor-fractured craters, impact into ice 1. Introduction The Dawn Mission was the first mission exploring two different planetary objects in the asteroid belt between Mars and Jupiter, the asteroid Vesta and the dwarf planet Ceres. Asteroid Vesta is the second most massive asteroid (2.59079 x 1020 kg) with a mean diameter of 525 km and a mean density of 3.456 ± 0.035 g/ cm (e.g., [1, 2]). Vesta is believed to be a dry, differentiated proto-planet with an iron core of about 220 km in diameter, a mantle with diogenite compositions and an igneous crust [1, 3, 4]. Asteroid Vesta is a fully differentiated planetary body with a complex topography [2] and a multifaceted morphology including impact basins, various forms of impact craters, large troughs extending around the equato- rial region, enigmatic dark material, mass wasting features and surface alteration processes [2, 5, 6].
    [Show full text]
  • Mineralogy of the Occator Quadrangle
    Icarus 318 (2019) 205–211 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Mineralogy of the Occator quadrangle ∗ A. Longobardo a, , E. Palomba a,b, F.G. Carrozzo a, A. Galiano a, M.C. De Sanctis a, K. Stephan c, F. Tosi a, A. Raponi a, M. Ciarniello a, F. Zambon a, A. Frigeri a, E. Ammannito d, C.A. Raymond e, C.T. Russell f a INAF-IAPS, via Fosso del Cavaliere 100, I-00133 Rome, Italy b ASI-ASDC, via del Politecnico snc, I-00133 Rome, Italy c Institute for Planetary Research, Deutsches Zentrum fur Luft- und Raumfahrt (DLR), D-12489 Berlin, Germany d ASI-URS, via del Politecnico snc, I-00133 Rome, Italy e California Institute of Technology, JPL, 91109 Pasadena, CA, USA f UCLA, Los Angeles, CA 90095, USA a r t i c l e i n f o a b s t r a c t Article history: We present an analysis of the areal distribution of spectral parameters derived from the VIR imaging Received 28 April 2017 spectrometer on board NASA/Dawn spacecraft. Specifically we studied the Occator quadrangle of Ceres, Revised 11 September 2017 which is bounded by latitudes 22 °S to 22 °N and longitudes 214 °E to 288 °E, as part of the overall study Accepted 18 September 2017 of Ceres’ surface composition reported in this special publication. The spectral parameters used are the Available online 22 September 2017 photometrically corrected reflectance at 1.2 μm, the infrared spectral slope (1.1–1.9 μm), and depths of Keywords: the absorption bands at 2.7 μm and 3.1 μm that are ascribed to hydrated and ammoniated materials, Asteroid ceres respectively.
    [Show full text]
  • Ceres: Astrobiological Target and Possible Ocean World
    ASTROBIOLOGY Volume 20 Number 2, 2020 Research Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2018.1999 Ceres: Astrobiological Target and Possible Ocean World Julie C. Castillo-Rogez,1 Marc Neveu,2,3 Jennifer E.C. Scully,1 Christopher H. House,4 Lynnae C. Quick,2 Alexis Bouquet,5 Kelly Miller,6 Michael Bland,7 Maria Cristina De Sanctis,8 Anton Ermakov,1 Amanda R. Hendrix,9 Thomas H. Prettyman,9 Carol A. Raymond,1 Christopher T. Russell,10 Brent E. Sherwood,11 and Edward Young10 Abstract Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system’s only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres’ internal evolution. Key Words: Ceres—Ocean world—Astrobiology—Dawn mission. Astro- biology 20, xxx–xxx. 1. Introduction these bodies, that is, their potential to produce and maintain an environment favorable to life. The purpose of this article arge water-rich bodies, such as the icy moons, are is to assess Ceres’ habitability potential along the same lines Lbelieved to have hosted deep oceans for at least part of and use observational constraints returned by the Dawn their histories and possibly until present (e.g., Consolmagno mission and theoretical considerations.
    [Show full text]
  • Ceres Observed at Low Phase Angles by VIR-Dawn M
    A&A 634, A39 (2020) https://doi.org/10.1051/0004-6361/201936492 Astronomy & © ESO 2020 Astrophysics Ceres observed at low phase angles by VIR-Dawn M. Ciarniello1, M. C. De Sanctis1, A. Raponi1, B. Rousseau1, A. Longobardo1, J.-Y. Li2, S. E. Schröder3, F. Tosi1, F. Zambon1, E. Ammannito4, F. G. Carrozzo1, A. Frigeri1, E. Rognini5, C. A. Raymond6, and C. T. Russell7 1 IAPS-INAF, Via Fosso del Cavaliere, 100, 00133 Rome, Italy e-mail: [email protected] 2 Planetary Science Institute, Tucson, AZ, USA 3 German Aerospace Center DLR, Institute of Planetary Research, Berlin, Germany 4 ASI, Rome, Italy 5 ASI-SSDC, Rome, Italy 6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA 7 University of California Los Angeles, Earth Planetary and Space Sciences, Los Angeles, CA, USA Received 9 August 2019 / Accepted 11 December 2019 ABSTRACT Context. Particulate surfaces exhibit a surge of reflectance at low phase angles, a phenomenon referred to as the opposition effect (OE). Two mechanisms are recognized as responsible for the OE: shadow hiding (SH) and coherent backscattering. The latter is typically characterized by a small angular width of a few degrees at most and according to the theoretical prediction should exhibit wavelength and albedo dependence. Aims. We characterize the OE on the surface of Ceres using Dawn Visible InfraRed mapping spectrometer hyperspectral images at low phase angles. Furthermore, this dataset, coupled with previous observations, allows us to perform a complete spectrophotometric modeling at visual-to-infrared (VIS-IR) wavelengths (0.465–4.05 µm) in the broad phase angle range ≈0◦−132◦.
    [Show full text]
  • FC Colour Images of Dwarf Planet Ceres Reveal a Complicated Geological MARK History ⁎ A
    Planetary and Space Science 134 (2016) 122–127 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss FC colour images of dwarf planet Ceres reveal a complicated geological MARK history ⁎ A. Nathuesa, ,M.Hoffmanna, T. Platza, G.S. Thangjama, E.A. Cloutisb, V. Reddya,c, L. Le Correa,c, J.-Y. Lic, K. Mengeld, A. Rivkine, D.M. Applinb, M. Schaefera, U. Christensena, H. Sierksa, J. Ripkena, B.E. Schmidtf, H. Hiesingerg, M.V. Sykesc, H.G. Sizemorec, F. Preuskerh, C.T. Russelli a Max Planck Institute for Solar System Research, Goettingen, Germany b University of Winnipeg, Winnipeg, Canada c Planetary Science Institute, Tucson, AZ, USA d IELF, TU Clausthal, Clausthal-Zellerfeld, Germany e Johns Hopkins University, Applied Physics Laboratory, USA f Georgia Institute of Technology, Atlanta, GA, USA g Institut für Planetologie, Westfälische Wilhelms Universität Münster, Germany h German Aerospace Center, Institute of Planetary Research, Germany i Institute of Geophysics and Planetary Physics, Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA ARTICLE INFO ABSTRACT Keywords: The dwarf planet Ceres (equatorial diameter 963km) is the largest object that has remained in the main asteroid Asteroid belt (Russell and Raymond, 2012), while most large bodies have been destroyed or removed by dynamical Ceres processes (Petit et al. 2001; Minton and Malhotra, 2009). Pre-Dawn investigations (McCord and Sotin, 2005; Colour spectra Castillo-Rogez and McCord, 2010; Castillo-Rogez et al., 2011) suggest that Ceres is a thermally evolved, but still Imaging volatile-rich body with potential geological activity, that was never completely molten, but possibly differ- Mineralogy entiated into a rocky core, an ice-rich mantle, and may contain remnant internal liquid water.
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript The Mineralogy of Ceres’ Nawish Quadrangle F.G. Carrozzo , F. Zambon , M.C. De Sanctis , A. Longobardo , A. Raponi , K. Stephan , A. Frigeri , Ammannito , M. Ciarniello , J.-Ph. Combe , E. Palomba , F. Tosi , C.A. Raymond , C.T. Russell PII: S0019-1035(17)30330-5 DOI: 10.1016/j.icarus.2018.07.013 Reference: YICAR 12962 To appear in: Icarus Received date: 29 April 2017 Revised date: 19 June 2018 Accepted date: 13 July 2018 Please cite this article as: F.G. Carrozzo , F. Zambon , M.C. De Sanctis , A. Longobardo , A. Raponi , K. Stephan , A. Frigeri , Ammannito , M. Ciarniello , J.-Ph. Combe , E. Palomba , F. Tosi , C.A. Raymond , C.T. Russell , The Mineralogy of Ceres’ Nawish Quadrangle, Icarus (2018), doi: 10.1016/j.icarus.2018.07.013 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT HIGHLIGHTS Sodium carbonates are found in bright material in ejecta craters Mineralogy of quadrangle Nawish using the band at 2.7, 3.1 and 3.9 µm. Correlation between age of terrains and the mineralogy ACCEPTED MANUSCRIPT 1 ACCEPTED MANUSCRIPT The Mineralogy of Ceres’ Nawish Quadrangle F.G. Carrozzo1, F. Zambon1, M.C.
    [Show full text]
  • Geological Mapping of the Ac-10 Rongo Quadrangle of Ceres
    Icarus 316 (2018) 140–153 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Geological mapping of the Ac-10 Rongo Quadrangle of Ceres ∗ T. Platz a,b, , A. Nathues a, H.G. Sizemore b, D.A. Crown b, M. Hoffmann a, M. Schäfer a,c, N. Schmedemann d, T. Kneissl d, A. Neesemann d, S.C. Mest b, D.L. Buczkowski e, O. Ruesch f, K.H.G. Hughson g, A. Naß c, D.A. Williams h, F. Preusker c a Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany b Planetary Science Institute, 1700 E. Fort Lowell Rd., Suite 106, Tucson, AZ 85719-2395, USA c Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany d Planetary Sciences and Remote Sensing, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany e Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA f NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA g University of California Los Angeles, Los Angeles, CA 90024, USA h School of Earth and Space Exploration, Arizona State University, Box 871404, Tempe, AZ 85287-1404, USA a r t i c l e i n f o a b s t r a c t Article history: The Dawn spacecraft arrived at dwarf planet Ceres in spring 2015 and imaged its surface from four suc- Received 18 January 2017 cessively lower polar orbits at ground sampling dimensions between ∼1.3 km/px and ∼35 m/px. To under- Revised 19 July 2017 stand the geological history of Ceres a mapping campaign was initiated to produce a set of 15 quadrangle- Accepted 1 August 2017 based geological maps using the highest-resolution Framing Camera imagery.
    [Show full text]
  • Ceres• Occator Crater and Its Faculae Explored Through Geologic
    Icarus 320 (2019) 7–23 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ceres’ Occator crater and its faculae explored through geologic mapping ∗ Jennifer E.C. Scully a, , Debra L. Buczkowski b, Carol A. Raymond a, Timothy Bowling c, David A. Williams d, Adrian Neesemann e, Paul M. Schenk f, Julie C. Castillo-Rogez a, Christopher T. Russell g a Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA b Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA c Southwest Research Institute, Boulder, CO 80302, USA d Arizona State University, Tempe, AZ 85004, USA e Free University of Berlin, 14195 Berlin, Germany f Lunar and Planetary Institute, Houston, TX 77058, USA g University of California, Los Angeles, CA 90095, USA a r t i c l e i n f o a b s t r a c t Article history: Occator crater is one of the most recognizable features on Ceres because of its interior bright regions, Received 17 October 2017 which are called the Cerealia Facula and Vinalia Faculae. Here we use high-resolution images from Revised 6 April 2018 Dawn ( ∼35 m/pixel) to create a detailed geologic map that focuses on the interior of Occator crater and Accepted 15 April 2018 its ejecta. Occator’s asymmetric ejecta indicates that the Occator-forming impactor originated from the Available online 20 April 2018 northwest at an angle of ∼30–45 °, perhaps closer to ∼30 ° Some of Occator’s geologic units are analo- gous to the units of other complex craters in the region: the ejecta, crater terrace material, hummocky crater floor material and talus material.
    [Show full text]
  • Evidence for Limited, Laterally Heterogeneous Ice Content on Ceres from Its 1 2 3 4 Deep (And Not-So-Deep) Impact Craters
    47th Lunar and Planetary Science Conference (2016) 1267.pdf EVIDENCE FOR LIMITED, LATERALLY HETEROGENEOUS ICE CONTENT ON CERES FROM ITS 1 2 3 4 DEEP (AND NOT-SO-DEEP) IMPACT CRATERS. M. T. Bland , C. A. Raymond , P. M. Schenk , R. R. Fu , R. Park2, J. Castillo-Rogez2, S. D. King5, C. T. Russell6. 1USGS Astrogeology, Flagstaff AZ, 2Jet Propulsion Labor- atory Pasadena CA, 3Lunar Planetary Institute, Houston TX, 4Columbia University, New York, NY, 5Virginia Tech., Blacksburg VA, 6UCLA, Los Angeles CA. Overview: Prior to the Dawn mission [1], Ceres’ topography should viscously relax on short timescales low density and shape suggested that its interior was (~1 Ma) [3], even if covered by a consolidated rocky differentiated into a rock core and outer ice-rich shell layer several kilometers thick. Figure 2 shows the ex- [e.g., 2], which is concealed below a relatively thin pected present-day apparent depth of 100-km diameter rocky surface layer. The presence of substantial near- craters with different formation ages as a function of surface ice has profound implications for the mainte- latitude (i.e., surface temperature) on Ceres (solid nance of topography, as the low-viscosity of water ice lines). Depths were calculated from finite element at Ceres’ surface temperatures permits rapid viscous simulations. The craters were initially 4.5 km deep and relaxation (flattening) of craters [3]. Dawn Framing the simulations were viscoelastic and included all flow Camera (FC) images of Ceres have revealed a highly mechanisms for ice and time-dependent radiogenic cratered surface, with many craters that are several heating [see 3].
    [Show full text]
  • THE GLOBAL LAMO-BASED GEOLOGIC MAP of CERES Abstract #7035 Planetary Data Archiving, Restoration, and Tools Program
    This research is funded by the NASA THE GLOBAL LAMO-BASED GEOLOGIC MAP OF CERES Abstract #7035 Planetary Data Archiving, Restoration, and Tools Program. S.C. Mest1, D.C. Berman1, D.L. Buczkowski2, D.A. Crown1, J.E.C. Scully3, D.A. Williams4, R.A. Yingst1, A. Frigeri5, A. Nass6, A. Neesemann6, and T.H. Prettyman7 1Planetary Science Institute, Tucson, AZ, USA 85719 ([email protected]); 2JHU-APL, Laurel, MD, USA; 3NASA JPL, Pasadena, CA, USA; 4School of Earth & Space Exploration, ASU, Tempe, AZ, USA; 5Istituto Nazionale di Astrofisica e Planetologia Inaf, Rome, Italy; 6German Aerospace Center, DLR, Berlin, Germany; 7Freie Universität, Berlin, Germany a INTRODUCTION a c BACKGROUND The Dawn mission to Ceres began in 2014 after Throughout the Dawn mission to Ceres, iterative Vendimia D its successful mission to Vesta. Dawn acquired Hanami O D geologic mapping was conducted during the Survey, D O H A image, spectral, and topographic data from its O K Planitia HAMO, and LAMO phases. H A Planum H A approach to Ceres (late 2014) through two K K J Y extended missions, until its conclusion in Global Survey-based geologic map (Fig. 2a): U J October 2018. Images acquired by Dawn during J Y Y U U large number of structures the LAMO phase of the mission provided global 12 geologic units (e.g., cratered terrain, smooth coverage at ~35 m/pixel, and images acquired material, undivided crater material) b during the extended phases of the mission for albedo differences permitted unique crater several targeted locations, such as Occator Dawn Framing Camera LAMO mosaic Dawn Framing Camera HAMO-derived materials, e.g.
    [Show full text]
  • Masterarbeit / Master's Thesis
    MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „Polygonal Impact Craters (PICs) on Rhea, Dione, Tethys, Ceres and Vesta“ verfasst von / submitted by Tanja Neidhart, BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2018 / Vienna 2018 Studienkennzahl lt. Studienblatt / A 066 861 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Astronomie degree programme as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dr. Maria Gertrude Firneis Contents Acknowledgements I List of Abbreviations IX 1 Introduction 1 1.1 Definition of a Polygonal Impact Crater (PIC) . 1 1.2 Overview ......................................... 2 1.3 Formation of Polygonal Impact Craters (PICs) . 3 2 Previous studies on Polygonal Impact Craters (PICs) 9 2.1 PICsonMercury..................................... 9 2.2 PICsonVenus ....................................... 12 2.3 PICsontheMoon ...................................... 15 2.4 PICsonMars......................................... 20 2.5 PICs on other Solar System bodies . 23 3 Data and Methods 29 4 Saturnian Satellites 33 4.1 Rhea............................................. 33 4.2 Dione ............................................. 35 4.3 Tethys........................................... 38 5 Asteroid Belt Objects 43 5.1 Ceres............................................ 43 5.2 Vesta............................................ 46 6
    [Show full text]