47th Lunar and Planetary Science Conference (2016) 2156.pdf STRATIGRAPHY OF (1) CERES FROM GEOLOGIC AND TOPOGRAPHIC MAPPING AND CRATER COUNTS USING IMAGES OF THE DAWN FC2 CAMERA. R. J. Wagner1, N. Schmedemann2, K. Stephan1, R. Jaumann1, T. Kneissl2, A. Neesemann2, K. Krohn1, K. Otto1, F. Preusker1, E. Kersten1, T. Roatsch1, H. Hiesing- er3, D. A. Williams4, R. A. Yingst5, D. A. Crown5, S. C. Mest5, C. A. Raymond6, and C. T. Russell7; 1Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany (Email:
[email protected]); 2Institute for Geological Sciences, Free University Berlin, Germany; 3Institute of Planetology, Westphalian Wilhelm Universi- ty, Münster, Germany; 4School of Earth & Space Exploration, Arizona State University, Tempe/Az., USA; 5Planetary Science Institute, Tucson/Az., USA; 6Jet Propulsion Laboratory, Pasadena/Ca., USA; 7Institute of Geo- physics & Planetary Physics, UCLA, Los Angeles/Ca., USA. Introduction: The Dawn spacecraft has been in Previous results from RC2 images. Investigating orbit around dwarf planet (1) Ceres since its capture on data from the RC2 sequence in the first mapping cam- March 6, 2015. Since then, the FC2 Framing Camera paign has been finished [9][10]. Densely cratered [1][2] has been acquiring imaging data at increasing plains are the spatially most abundant units and occur spatial resolution from continuously lower altitudes. In at all three topographic levels. Their cratering model this paper we use image and topographic data to map ages range from ~ 3.7 to ~ 3.3 Ga. Sparsely cratered geologic units and to carry out crater counts in order to plains show frequencies a factor ~ 3 to 5 lower than the derive the global, regional and local stratigraphy of densely cratered plains.