Part 2 Marketing and Waste Collection Survey (IMNR Research Report 1)

Total Page:16

File Type:pdf, Size:1020Kb

Part 2 Marketing and Waste Collection Survey (IMNR Research Report 1) Part 2 Marketing and Waste Collection Survey (IMNR Research Report 1) IMNR INSTITUTE FOR NONFERROUS AND RARE METALS CLASSIFIED INSTITUTUE FOR NONFERROUS AND RARES METALS - S.C. I. M. N. R. S.A. BUCURESTI – RESEARCH REPORT PILOT PROJECT NAMED: ” PROMOTION OF HEAVY METAL RECYCLING USING EXISTING SMELTING FACILITY „ REPORT 1 - BUCHAREST - nov-dec. 2002 2 - 1 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS GENERAL DIRECTOR dr. eng. Teodor Velea RESEARCH TEAM dr. eng. T. Velea dr. eng. A. Manea eng. M. Gorinoiu eng. D. Stoica 2 - 2 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS CONTENT CHAPTER I Target Smelters I. S.C. SOMETRA S.A. …4 II. R.B.G. PHOENIX S.A. …7 III. S.C. ROMPLUMB S.A. …10 CHAPTER II Target Factorys, Which Generate Heavy Metal Wastes Through Manufacturing Process 1. S.C. PROGRESUL S.A. Ploiesti …12 2. S.C. BICAPA S.A. Tarnaveni …13 3. S.C. CELPI S.A. Bucuresti …14 4. S.C. IND. Sarmei S.A. Campia Turzii …15 5. S.C. Santierul Naval S.A. Braila …15 6. S.C. Santierul Naval S.A. Turnu Severin …16 7. S.C. ROMCAR S.A. Bucuresti …16 8. S.C. MEFIN S.A. Sinaia …17 9. S.C. MECORD S.A. Oradea …17 10. S.C. RADIATOARE S.A. Brasov …17 11. S.C. TEHNOFRIG S.A. Cluj …18 12. S.C. DUCTIL S.A. Buzau …18 13. S.C. Santiere Navale S.A. Constanta …19 14. S.C. Santiere Navale S.A. Mangalia …19 15. S.C. SIDEX S.A. Galati …20 CHAPTER III Company Which Generate Heavy Metal Wastes Through Equipment Disintegration 16. S.C. ROMTELECOM S.A. …21 CHAPTER IV General Data for Pastes Used Battery 17. S.C. REMAT S.A. …23 CHAPTER V Prices of Main Wastes … 30 ANNEX I-VII Schematic-Flowsheet …31-36 ANNEX VIII Result of Identification of Target Waste …37 (Table) 2 - 3 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS CHAPTER I Target Smelters In period 28.10 –30.11.2002 was investigated follow smelters: Sometra S.A. Copşa Mica, R.B.G. Phoenix S.A. Baia Mare Romplumb S.A. Baia Mare Details are current condition of operation, waste disposal and recycling in the target smelters as follow: I. Factory Name: S.C. SOMETRA S.A. 1.1. General Location: Copsa Mica , Sibiu County street Fabriciilor 1; phone & fax +004 069 840 325 / 840 326; telex 66 236 SMTRA, ROMANIA Content of business: Company goal: Pirometallurgycal processing of zinc concentrates and lead concentrates for non-ferrous metals extraction Principale activity: • Lead , metallurgical zinc and refined zinc • Antimony, bismuth • d`Oré alloy Preponderant activity: Pirometallurgycal processing of zinc and lead concentrate Number of employee: 1350 (year 2002) Balance sheet as at 31.12.2001: c.a. 20 000 000 $ Contact person: Leonidas KOUDOUMOGIANNAKIS TECHNICAL DIRECTOR 2 - 4 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS 1.2. Process Flow & Internal Wastes Management Facility and process flow: I.S.P. MORGAN technology for pirometallurgycal processing of zinc/lead concentrates Schematic flowsheet – ANNEX I Capacity: 145 0000 ton / year concentrates Raw material: zinc concentrates lead concentrates complex concentrates Production record: (year 2000) Pb: 27 185 ton / year Zn: 52 854 ton / year Waste tratament & gas emission: • Gas dry cleaning for technollogical gases with SO2 and dust . Dalamatic fillter. • Gas dry cleaning sistem (gas+dust) by I.S.P. • Factory chimney (250 m) • Plant for sewage treatment and dump slurry-SENAE Type and amount of internal wastes: (present and historical generation) 2000 2001 2002 Type internal wastes (8 mont) ton ton ton 1. Zn-Pb drosses 8 443 12 125 8 602 2. Blue Powder 10 708 11 343 7 066 3. Agglomerating Dust 9 537 10 261 12 367 5. Cu-Pb drosses 6 142 4 986 2 986 6. Slag 53 147 47 990 29 031 7. Sludge/dust-deposit 12 895 13 068 10 570 2 - 5 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS Analysis: Type waste (%) 29.55%Zn; 40.99%Pb; 0.26%Cu; 3.01%Fe; 2.89%S; 9.2%H O Zn-Pb drosses 2 (0.026%Bi; 0.056%Sb; 0.1%Cd; 0.12%As ; 0.069%Sn ; 6.43 SiO2; 2.82%CaO) 21.46%Zn; 39.76%Pb; 0.39%Cu; 4.32%FeO; Blue powder 11.45%S; 25%H2O 27.98%Zn; 17.56%Pb; 1.26%Cu; 8.08%Fe; Agglomerating Dust 1.79%S; 3% H2O Slag 6.5%Zn; 1.12%Pb; 0.6%Cu 1.25%Zn; 46.23%Pb; 18.39%Cu; 2.02%Fe; 1.3%S Cu-Pb drosses (2.5%Sb; 0.1%Bi; 1.2%As) Slurry S.E.N.A.E. 0.8%Zn; 2.2%Pb; 0.086%Cu Present method of waste treatment: Type internal method wastes Recirculation to charge for agglomeration, Zn-Pb dross depositing Recirculation to charge for agglomeration, Blue Powder depositing Recirculation to charge for agglomeration, Agglomerating Dust depositing Cu-Pb dross/ashe Depositing and market-sale Slag Depositing and market-sale Slurry/dust Depositing (Recirculation to charge for (SENAE) agglomeration and market-sale) 1.3. External Wastes Treatment: - 1.4. Problems in Terms of Waste Management: - 2 - 6 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS II. Factory Name: R.B.G. PHOENIX S.A. 2.1. General Location: Baia Mare, jud. Maramureş, ROMANIA street Eliberării 15 phone +40 (0) 62 217 812 fax +40 (0) 62 217 813 E-mail: [email protected] Website: www.rbgphoenix.com Content of business: Company goal: Pirometallurgycal processing of copper concentrates and gold-bearing concentrates for non- ferrous metals extraction Principale activity: • Metallurgycal industry • Production of preciouses metalls and others non-ferrous metals (copper production) Preponderant activity: Pirometallurgycal processing of copper concentrates Number of employee: 686 (year 2002) Balance sheet as at 31.12.2001: c.a. 30 000 000 $ Contact person: Florian Dumitru Medium Vice-president 2.2. Process Flow & Internal Wastes Management Facility and process flow: OUTOKUMPU technology for pirometallurgycal processing of copper concentrates Schematic flowsheet – ANNEX II Capacity: 160 000 ton / year concentrate Raw material: copper concentrate pirytes (gold-bearing) concentrate Production record: (year1999) 60 000 Cu ton 2 - 7 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS Waste tratament & gas emission: • Gas dry cleaning system (gas+dust) of dry (I+II) to prepare charge • Gas dry and humid cleaning for technollogical gases with SO2 and dust . Sulphuric acid plant. • Gas dry cleaning sistem (gas+dust) of converter and thermal reffining • Factory chimney • Plant for sewage treatment and dump slurry-SENAE Type and amount of internal wastes: historical generation deposit Type internal wastes 2000 2001 2002 ton ton ton 1. solderings 38 51 30 2. dust (electric-filter) 425 512 375 3. Slurry 208 322 185 4. Slag 26 524 21 230 19 534 5. Dust converter 263 332 210 6. Slag converter - 380 - 7. Dust thermal refining 232 312 212 8. Slag thermal refining 652 821 554 9. Slurry (SENAE) - 421 - 2 - 8 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS Analysis: Type waste (%) Dust 4.16%Zn; 4.5%Pb; 16.25%Cu; 27.5%Fe; (electric-filter) 10.25%S; (2.5%As; 0.24%Cd ) Solderings 7.26%Zn ; 6.45%Pb ; 14.15%Cu ; 20.5%Fe; (waste-heat boiler) 8.25%S; (3.28%SiO2; 1.12%As; 0.28%Cd ) 2.45%Zn ; 28.92%Pb ; 5.32%Cu ; 13.17%Fe; Slurry 8.86%S; (4.58%SiO2; 0.24%As; 0.10%Sb ) Slag 2.42%Zn ; 0.42%Pb ; 1.18%Cu ; 1.56%Fe; Dust converter 6.84%Zn ; 34.12%Pb ; 4.37%Cu ; 1.26%Fe; Slag converter 2.57%Zn ; 1.16%Pb ; 7.25%Cu ; 1.02%Fe; 7.25%Zn ; 26.3%Pb ; 4.25%Cu ; 11.26%Fe; Dust thermal refining (1.25%As; 0.02%Sb) Slag thermal refining 1.63%Zn ; 1.27%Pb ; 39.42%Cu ; 17.60%Fe; 0.11%S; (4.47%SiO2; 0.005%As; 0.024%Sb ) 1.3%Zn ; 1.02%Pb ; 3.5%Cu ; 1.2%Fe; Slurry S.E.N.A.E. (1.5%As) Present method of waste treatment: 1. solderings Recirculation to charge furnace 2. dust (electric-filter) Recirculation to charge furnace 3. Slurry Recirculation to charge furnace 4. Slag Recirculation to charge furnace, depositing/market- sale 5. Dust converter Recirculation to charge furnace and depositing 6. Slag converter Recirculation to charge furnace, depositing/market- sale 7. Dust thermal refining Recirculation to charge furnace and depositing 8. Slag thermal refining Recirculation to converter 9. Slurry (SENAE) Depositing (recirculation to charge furnace /market- sale) 2.3. External Wastes Treatment: - 2.4. Problems in Terms of Waste Management: - 2 - 9 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS III. Factory Name: S.C. ROMPLUMB S.A. 3.1. General Location: Baia Mare, MARAMUREŞ Street: Gutinului, nr. 9 phone & fax: 21 05 40 / 21 01 10 ROMANIA Content of business: Company goal: Pirometallurgycal processing of lead concentrates for lead metal extraction Principale activity: Plumb bullion Preponderant activity: Pirometallurgycal processing of lead concentrates Number of employee: 740 (year 2002) Balance sheet as at 31.12.2001: - Contact person: Uta Vasile GENERAL DIRECTOR 3.2. Process Flow & Internal Wastes Management Facility and process flow: Watter Jacket technollogy- pirometallurgycal processing for lead concentrates Schematic flowsheet – ANNEX III Capacity 28 000 ton / year concentrate : Raw material: lead concentrates Production record: (year1998) Pb bullion: 7708 ton / year (year2002) Pb bullion: 7700 ton / year Waste tratament & gas emission: • Gas dry cleaning of sintering • Gas dry cleaning of Watter Jacket smelting 2 - 10 IMNR INSTITUTE FOR NONFERROUS AND RARE METALS Type and amount of internal wastes: (present and historical generation) Type 2000 2001 2002 internal wastes ton ton ton 1.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Sofiite Zn2(Se4+O3)Cl2
    4+ Sofiite Zn2(Se O3)Cl2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are thin platy to micalike, pseudohexagonal, may be elongated along [001], with {010}, {100}, to 5 mm. Twinning: On {100}, contact, to give “swallow-tail” forms. Physical Properties: Cleavage: On {010}, perfect; on {201}, less perfect. Tenacity: Brittle. Hardness = n.d. VHN = 38–61, average 49 (10 g load). D(meas.) = n.d. D(calc.) = 3.64(1) Soluble with difficulty in H2O. Optical Properties: Transparent. Color: Colorless, becomes sky-blue on long exposure to air. Streak: White. Luster: Vitreous to greasy or silky. Optical Class: Biaxial (+). Orientation: X = b; Y = c; Z = a. α = 1.709(3) β = 1.726(2) γ = 1.750(2) 2V(meas.) = n.d. 2V(calc.) = 91◦ Cell Data: Space Group: P ccn. a = 10.251(4) b = 15.223(2) c = 7.666(5) Z = 8 X-ray Powder Pattern: Tolbachik volcano, Russia; preferred orientation due to {010} cleavage. 7.61 (100), 3.807 (23), 2.918 (12), 3.055 (8), 3.237 (6), 2.538 (6), 2.727 (4) Chemistry: (1) (2) SeO2 34.48 33.76 CuO 0.19 ZnO 47.83 49.53 PbO 0.35 Cl 22.26 21.58 −O=Cl2 5.02 4.87 Total 100.09 100.00 (1) Tolbachik volcano, Russia; by electron microprobe, average of 38 analyses; corresponds to (Zn1.92Cu0.01Pb0.01)Σ=1.94(Se1.02O2.94)Cl2.06. (2) Zn2(SeO3)Cl2. Occurrence: In fractures in volcanic fumaroles, formed at 180 ◦C–230 ◦C.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • User's Manual for Wateq4f, with Revised Thermodynamic Data
    USER'S MANUAL FOR WATEQ4F, WITH REVISED THERMODYNAMIC DATA BASE AND TEST CASES FOR CALCULATING SPECIATION OF MAJOR, TRACE, AND REDOX ELEMENTS IN NATURAL WATERS By James W. Ball and D. Kirk Nordstrom ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Open-File Report 91-183 Menlo Park, California 1991 Revised and reprinted - April, 2001 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: Copies of this report can be purchased from: Regional Hydrologist U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section 345 Middlefield Road Federal Center, Bldg. 810 Menlo Park, California 94025 Box 25425 Denver, Colorado 80225 ii CONTENTS Page Abstract .......................................................................... 1 Introduction ....................................................................... 2 Background ................................................................. 2 Purpose and scope............................................................ 2 Acknowledgments ............................................................ 3 Solute speciation calculations ......................................................... 3 Saturation indices................................................................... 4 Limits............................................................................ 4 Thermodynamic data................................................................
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Tolbachite Cucl2 C 2001-2005 Mineral Data Publishing, Version 1
    Tolbachite CuCl2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals, elongated, to 2 mm, in fibrous, mosslike growths incrusting basalt. Physical Properties: Hardness = n.d. D(meas.) = n.d. D(calc.) = 3.42 Readily soluble in cold H2O; hygroscopic, alters rapidly to eriochalcite in air. Optical Properties: Semitransparent. Color: Brown to golden brown. Luster: Pearly. Optical Class: Biaxial; high birefringence. Pleochroism: Pale greenish ⊥ elongation; dark reddish brown k elongation. Orientation: Elongation positive. α = n.d. β = n.d. γ = n.d. 2V(meas.) = n.d. Cell Data: Space Group: C2/m (synthetic). a = 6.9038(9) b = 3.2995(4) c = 6.824(1) β = 122.197(8)◦ Z=2 X-ray Powder Pattern: Tolbachik volcano, Russia. 5.76 (100), 2.915 (35), 3.445 (25), 1.923 (5), 2.373 (3) Chemistry: (1) (2) CuO 51.99 59.16 ZnO 0.30 PbO 0.11 Na2O 0.74 K2O 1.50 Cl 42.59 52.74 + H2O 1.05 − H2O 4.45 SO4 4.24 −O=Cl2 9.61 11.90 insol. 2.68 Total 100.04 100.00 (1) Tolbachik volcano, Russia; analysis of a water extract. (2) CuCl2. Occurrence: As fumarolic incrustations on basalt (Tolbachik volcano, Russia); formed with other copper chlorides in an oxidized copper deposit (Bisbee, Arizona, USA). Association: Tenorite, euchlorine, dolerophanite, piypite, ponomarevite, kamchatkite, klyuchevskite, chalcocyanite, cotunnite, sofiite, halite, sylvite, (Tolbachik volcano, Russia); paratacamite, nantokite, cuprite (Bisbee, Arizona, USA). Distribution: At the Tolbachik fissure volcano, Kamchatka Peninsula, Russia. In the Southwest mine, Bisbee, Cochise Co., Arizona, USA.
    [Show full text]
  • Journal of the Russell Society, Vol 8 No. 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: Norman Moles, School of the Environment, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ. JOURNAL MANAGER: Stand in:: Jim Robinson, 21 Woodside Park Drive, Horsforth, Leeds LS18 4TG. EDITORIAL BOARD: RE. Bevins, Cardiff, u.K. RJ. King, Tewkesbury, u.K. RS.W. Braithwaite, Manchester, u.K. I.R Plimer, Parkville, Australia T.E. Bridges, Ovington, UK RE. Starkey, Bromsgrove, U.K. NJ Elton, St Austell, U.K. RF. Symes, Sidmouth, U.K. N.J. Fortey, Keyworth, U.K. P.A. Williams, Kingswood, Australia RA. Howie, Matlock, UK Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, or obtained from the editor. Subscription rates: The Journal is free to members of the Russell Society. Subscription rate for non-members is £15 for two issues. Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society, named after the eminent amateur mineralogist Sir Arthur Russell (1878-1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material. For information about membership, write to the Membership Secretary, Mr Dave Ferris, 6 Middleton Road, Ringwood, Hampshire, BH241RN. Typography and Design by: Jim Robinson, 21 Woodside Park Drive, Horsforth, Leeds, LS18 4TG Printed by: St.
    [Show full text]
  • Deposition of Trace Elements from High Temperature Gases of Satsuma-Iwojima Volcano
    Earth Planets Space, 54, 275–286, 2002 Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano F. Africano1, G. Van Rompaey1, A. Bernard1, and F. Le Guern2 1Geochemistry CP 160/02, University of Brussels, 50 Av. F. Roosevelt, 1050 Brussels, Belgium 2CNRS, LSCE, Av. De la Terrasse, 91198 Gif/Yvette, France (Received July 5, 2000; Revised September 25, 2001; Accepted September 28, 2001) The Satsuma-Iwojima volcano has been emitting continuously high temperature (600◦ to 900◦C) gases for at least 800 years. We identified the minerals that form in response to closed-system cooling of these gases and from air- mixing reactions. Major differences compared with the sublimates observed at other volcanoes are the occurrence of wulfenite (PbMoO4) and several mixed chlorides. This is the first report of wulfenite in fumarolic deposits. Thermochemical modeling shows that wulfenite precipitates between 540◦ and 490◦C from a gas with lower sulfur content and/or higher f O2, and a higher Mo content (log f SO2 =−2.1, log f H2S =−5, log f O2 =−18.6, ◦ log f H2MoO4 =−4.5, T = 500 C) than the previously reported gas composition. The occurrence of abundant K, Pb, Fe, Zn, Rb and Cs mixed chlorides may be promoted by the low S/Cl of the Satsuma-Iwojima high temperature gases. Natural sublimates of metallic elements (molybdenite, wulfenite, anglesite, Tl-Pb and Tl-Bi sulfides, Mo oxydes and Pb oxides) are deposited along the fumarolic conduit and on the ground under conditions of variable temperatures and f O2. The increase in f O2 due to the mixing of the gases with the atmosphere reduces the volatility of several elements (As, Sn, Na, K and Pb) by promoting their condensation at higher temperatures.
    [Show full text]
  • Minerals of Arizona Report
    MINERALS OF ARIZONA by Frederic W. Galbraith and Daniel J. Brennan THE ARIZONA BUREAU OF MINES Price One Dollar Free to Residents of Arizona Bulletin 181 1970 THE UNIVERSITY OF ARIZONA TUCSON TABLE OF CONT'ENTS EIements .___ 1 FOREWORD Sulfides ._______________________ 9 As a service about mineral matters in Arizona, the Arizona Bureau Sulfosalts ._. .___ __ 22 of Mines, University of Arizona, is pleased to reprint the long-standing booklet on MINERALS OF ARIZONA. This basic journal was issued originally in 1941, under the authorship of Dr. Frederic W. Galbraith, as Simple Oxides .. 26 a bulletin of the Arizona Bureau of Mines. It has moved through several editions and, in some later printings, it was authored jointly by Dr. Gal­ Oxides Containing Uranium, Thorium, Zirconium .. .... 34 braith and Dr. Daniel J. Brennan. It now is being released in its Fourth Edition as Bulletin 181, Arizona Bureau of Mines. Hydroxides .. .. 35 The comprehensive coverage of mineral information contained in the bulletin should serve to give notable and continuing benefits to laymen as well as to professional scientists of Arizona. Multiple Oxides 37 J. D. Forrester, Director Arizona Bureau of Mines Multiple Oxides Containing Columbium, February 2, 1970 Tantaum, Titanium .. .. .. 40 Halides .. .. __ ____ _________ __ __ 41 Carbonates, Nitrates, Borates .. .... .. 45 Sulfates, Chromates, Tellurites .. .. .. __ .._.. __ 57 Phosphates, Arsenates, Vanadates, Antimonates .._ 68 First Edition (Bulletin 149) July 1, 1941 Vanadium Oxysalts ...... .......... 76 Second Edition, Revised (Bulletin 153) April, 1947 Third Edition, Revised 1959; Second Printing 1966 Fourth Edition (Bulletin 181) February, 1970 Tungstates, Molybdates.. _. .. .. .. 79 Silicates ...
    [Show full text]
  • THE MINERALOGICAL MAGAZINE Journhl
    THE MINERALOGICAL MAGAZINE AND JOURNhL OF THE MINERALOGICAL SOCIETY. No. 89. MAY 1889. Vol. VIII. On Crystals of Percylite, Caracolite, and an Oxychloride of Lead ( Daviesite), from Mina Beatriz, Sierra Gorda, Atacama, South Amelia. By L. FLZTCm~R, M.A., F.G.S. [Read January 22nd, 1889.] OME time ago a specimen studded with small but well developed S crystals of a sky-blue mineral, supposed to be percylite, was offered for the British Museum collection : the rarity of percylite and the excellence of the crystals on this specimen rendered a careful examination desirable. The specimen had been obtained from the Mina Beatriz, Sierra Gorda : on a large-scale chart, kindly placed at my service some years ago by Mr. George Hicks, of Newquay, Cornwall, Sierra Gorda is shown situate between the Bay of Mejillones and Caracoles, about 20 or 30 miles from the latter; longitude 69~ ' W. of Greenwich, latitude 22~ ' S. : at the truce of 1884 possession of this district was temporarily assigned to Chili. On measurement one of the crystals proved to belong to the cubic system, and to be limited by the faces of the rhombic dodecahedron, octa- hedron and cube, those of the latter being subordinate in development; N 172 L. FLETCHER ON on other crystals the cube was seen to be a predominating form: the mineral is without action on polarised light : by help of the blowpipe the presence of copper, lead and chlorine was recognised : hence the crystals are doubtless percylite. The crystals are sprinkled upon calcite which presents here and there large cleavage-faces, and is coated in parts with a white powder containing both calcium and sulphuric acid: limonite and crystals of chlorargyrite are also present.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 94, pages 399–408, 2009 New Mineral Names* GLENN POIRIER,1 T. SCOTT ERCIT ,1 KIMBERLY T. TAIT ,2 PAULA C. PIILONEN ,1,† AND RALPH ROWE 1 1Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada 2Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada ALLORIITE * epidote, magnetite, hematite, chalcopyrite, bornite, and cobaltite. R.K. Rastsvetaeva, A.G. Ivanova, N.V. Chukanov, and I.A. Chloro-potassichastingsite is semi-transparent dark green with a Verin (2007) Crystal structure of alloriite. Dokl. Akad. Nauk, greenish-gray streak and vitreous luster. The mineral is brittle with 415(2), 242–246 (in Russian); Dokl. Earth Sci., 415, 815–819 perfect {110} cleavage and stepped fracture. H = 5, mean VHN20 2 3 (in English). = 839 kg/mm , Dobs = 3.52(1), Dcalc = 3.53 g/cm . Biaxial (–) and strongly pleochroic with α = 1.728(2) (pale orange-yellow), β = Single-crystal X-ray structure refinement of alloriite, a member 1.749(5) (dark blue-green), γ = 1.751(2) (dark green-blue), 2V = of the cancrinite-sodalite group from the Sabatino volcanic complex, 15(5)°, positive sign of elongation, optic-axis dispersion r > v, Latium, Italy, gives a = 12.892(3), c = 21.340(5) Å, space group orientation Y = b, Z ^ c = 11°. Analysis by electron microprobe, wet chemistry (Fe2+:Fe3+) P31c, Raniso = 0.052 [3040 F > 6σ(F), MoKα], empirical formula and the Penfield method (H2O) gave: Na2O 1.07, K2O 3.04, Na18.4K6Ca4.8[(Si6.6Al5.4)4O96][SO4]4.8Cl0.8(CO3)x(H2O)y, crystal- CaO 10.72, MgO 2.91, MnO 0.40, FeO 23.48, Fe2O3 7.80, chemical formula {Si26Al22O96}{(Na3.54Ca0.46) [(H2O)3.54(OH)0.46]} + Al2O3 11.13, SiO2 35.62, TiO2 0.43, F 0.14, Cl 4.68, H2O 0.54, {(Na16.85K6Ca1.15)[(SO4)4(SO3,CO3)2]}{Ca4[(OH)1.6Cl0.4]} (Z = 1).
    [Show full text]